
Dynamics and Thermodynamics of Systems
with Long-Range Interactions: An Introduction

Thierry Dauxois1, Stefano Ruffo2, Ennio Arimondo3, and Martin Wilkens4

1 Laboratoire de Physique, UMR CNRS 5672, ENS Lyon,
46, allée d’Italie, F-69007 Lyon, France

2 Dipartimento di Energetica “S. Stecco”, Università di Firenze,
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Abstract. We review theoretical results obtained recently in the framework of sta-
tistical mechanics to study systems with long-range forces. This fundamental and
methodological study leads us to consider the different domains of applications in a
trans-disciplinary perspective (astrophysics, nuclear physics, plasmas physics, metallic
clusters, hydrodynamics,...) with a special emphasis on Bose–Einstein condensates.

The main issues discussed in this context are: non additivity, ensemble inequiv-
alence, thermodynamic anomalies at phase transitions (e.g. negative specific heat),
“convex intruders” in the entropy, non-extensive statistics and new entropies, coher-
ent structures and self-consistent chaos, laser induced long-range interactions in cold
atomic systems.

1 Introduction

Properties of systems with long-range interactions are to a large extent only
poorly understood although they concern a wide range of problems in physics.
Recently, the disclosure of new methodologies to approach the study of these
systems has revealed its importance also in a trans-disciplinary perspective (as-
trophysics, nuclear physics, plasmas physics, Bose–Einstein condensates, atomic
clusters, hydrodynamics,...). The main challenge is represented by the construc-
tion of a thermodynamic treatment of systems with long-range forces and by
the understanding of analogies and differences among the numerous domains of
applications.

Some promising results in this direction have been recently obtained in the
attempt of combining tools developed in the framework of standard statistical
mechanics with concepts and methods of dynamical systems. Particularly ardu-
ous, but very exciting, is the understanding of phase transitions for such systems
which must be treated separately in the different statistical ensembles and reveal
anomalies like negative specific heat and temperature jumps in the microcanon-
ical ensemble. Important are also those aspects of non-equilibrium phenomena
that involve the formation of chaotic coherent structures of extraordinary sta-
bility.
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This fundamental and methodological study should help us to detect the
depth and the origin of the analogies found in the different domains mentioned
above or on the contrary emphasize their specificities. In particular, we would like
to put a special emphasis on Bose–Einstein Condensation (BEC), which could
be the main field of applications, since experiments and theoretical ideas have
reached an impressive quality in the last decade. In this domain, many inequiva-
lences between ensembles have been reported and should be clarified. Moreover,
long-range interactions in BEC have opened very exciting new perspectives to
consider BEC as a model for other systems.

2 Why Systems with Long-Range Interactions
Are Important?

2.1 The Problem of Additivity

The methods to describe a given system of N particles interacting via a gravi-
tational potential in 1/r are dramatically dependent on the value N . If Newton
showed the exact solution for N = 2, and one can expect to get a numerical
solution in the range N = 3−103, the results are clearly out of reach for a larger
number of particles. In addition, it is clear that the detailed knowledge of the
evolution of the different trajectories is completely useless, since it is well known
that these systems are chaotic as soon as N is greater than two. Therefore, one
needs to get a statistical analysis, in order to get insights into the thermodynam-
ical properties [1] of the system under study.

However, such statistical study leads immediately to unexpected behaviors
for physicists used to neutral gases, plasmas or atomic lattices. The underlying
reason is directly related to the long range of the interaction, and more precisely
to the non additivity of the system.

To avoid misunderstandings, let us first clarify the definition of extensivity
with respect to additivity. A thermodynamic variable, like the energy or the
entropy, would be extensive, if it is proportional to the number of elements, once
the intensive variables are kept constant. To be more precise, let us consider the
mean-field Ising Hamiltonian,

H = − J

N

(
N∑
i=1

Si

)2

, (1)

where the spins Si = ±1, i = 1, . . . , N , are all coupled. Without the 1/N pref-
actor such a Hamiltonian would have an ill defined thermodynamic limit. This
is correctly restored by applying the Kac prescription [2], within which the po-
tential is rescaled by an appropriate volume dependent factor, here proportional
to N : such a Hamiltonian is therefore extensive. Let us note in passing that
this regularization is not always accepted. In cases with a kinetic energy term,
such a regularization corresponds to a renormalization of the time scale. On
the contrary, this Hamiltonian is not additive. Indeed, let us divide a system,
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Fig. 1. Schematic picture of a system separated in two equal parts.

schematically pictured in Fig. 1, in two equal parts. In addition, one considers
the particular case with all spins in the left part are equal to 1, whereas all spin
in the right part are equal to -1. It is clear that the energy of the two different
parts, will be E1 = E2 = − J

N

(
N
2

)2
= −JN

4 . However, if one computes the total

energy of the system, one gets E = − J
N

(
N
2 − N

2

)2
= 0. It is therefore clear

that such a system is not additive, since one cannot consider that E1 +E2 = E,
even approximately. The energy of the interface, usually neglected, is clearly of
the order of the energies of the two different parts: the system is not additive.
The underlying reason is that Hamiltonian (1) is long (strictly speaking infinite)
range, since every spin interact with all others: moreover, as the interaction is
not dependent on the distance between spins, this is a mean-field model. This
example is further elaborated in [4].

This non additivity has strong consequences in the construction of the canon-
ical ensemble. Once the microcanonical ensemble has been defined, the usual
construction of this ensemble is usually taught as follows. The probability that
system 1 has an energy within [E1, E1 + dE1], given that the system 2 has an
energy E2, is proportional to Ω1(E1) Ω2(E2) dE1, where the number of states of
a system with a given energy E, Ω(E), is related to the entropy via the classical
Boltzmann formula S(E) = lnE (we omit the kB factor for the sake of simplic-
ity). Using the additivity of the energy, and considering the case where system 1
is much smaller than system 2, one can expand the term S2(E −E1), as shown
in the following different steps

Ω1(E1) Ω2(E2) dE1 = Ω1(E1) Ω2(E − E1) dE1 (2)

= Ω1(E1) eS2(E − E1) dE1 (3)

= Ω1(E1) e
(S2(E) − E1

∂S2

∂E2 |E
+ ...)

dE1 (4)

∝ Ω1(E1) e−βE1 dE1 , (5)

where β = ∂S2
∂E2 |E . One ends up with the usual canonical distribution. It is clear

that additivity is crucial to justify (2), which means that non additive systems
will have a very peculiar behavior if there are in contact with a thermal reservoir.
This is one of the topic discussed in this paper, and in numerous contributions
in this book.
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2.2 Definition of Long-Range Systems

To define now systems with long-range interactions, let us consider the potential
energy for a given particle, situated in the center of a sphere of radius R, where
mass or charge is homogenously distributed. We will omit at this stage the
interaction of matter situated in a small neighborhood of radius ε � R (see
Fig. 2). The reason for excluding this neighborhood will be explained in the
following subsection.

Fig. 2. Schematic picture of a particle interacting with all particles located in a homo-
geneous sphere of radius R, except the closest ones located in the sphere of radius ε.

If one considers that particles interact via a potential energy proportional to
1/rα, where α is the key-parameter defining the range of interaction, we obtain
in the three dimensional space

U =
∫ R

ε

4πr2dr ρ
1
rα

= 4πρ
∫ R

ε

r2−αdr ∝ [r3−α]R
ε

(6)

where ρ is the particle density. When increasing the radius R, the contribution
due to the surface of the sphere, R3−α, could be neglected when α > 3, but
diverges if α < 3. In the latter case, surface effects are important and therefore
additivity is not fulfilled.

If one generalizes this definition to long-range systems in d dimensions, one
easily shows that energy will not be additive if the potential energy behaves at
long distance as

V (r) ∼ 1
rα

with
α

d
< 1 . (7)

Mean-field models, like Hamiltonian (1) correspond to the value α = 0, since
the interaction does not depend on the distance. They are therefore not additive
as shown in Sect. 2.1. J. Barré et al consider [4] such a mean field model:
the Blume-Emery-Griffith (BEG) model with infinite range interactions. The
gravitational problem, which is at the origin of this study, and corresponds to
α = 1 in three dimensions, clearly belongs to this category, but presents also
additional difficulties.

2.3 Difficulties with the Gravitational Problem

This problem is particularly tedious because, in addition to the non additiv-
ity due to long-range character, such a system needs a careful regularization
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at short distances to avoid collapse. To be more specific, let us consider the
configurational partition function of a system of N particles

ZU =
∫
V

d3N−→ri e−βU(−→ri ) , (8)

where one notes U(−→ri ) the gravitational potential energy, β the inverse of the
temperature and V the volume of the system. From the shape of the potential
energy depicted in Fig. 3, one clearly see that ZU will diverge if all particles
collapse towards the same point. This difficulty arises because the potential
energy is not bounded from below as for a Lennard-Jones or a Morse potential.
This effect is of course physically forbidden by the Pauli principle. However, to
avoid the use of Quantum Mechanics, the usual trick is to introduce an ad-hoc
cut-off. The potential is therefore “regularized” by introducing the value −C,
shown in Fig. 3. Thus, the inequality U(−→ri ) ≥ −C allows easily to find a finite
upper bound for the configurational partition function ZU ≤ V eβC , where V is
the volume of the system.

Fig. 3. The gravitational potential energy as a function of the distance r is represented
by the solid curve, whereas the dotted one shows the regularized potential energy to
avoid gravitational collapse.

However, there is a third difficulty in the case of gravitational interaction: the
system is open, i.e. without boundary, strictly speaking. In the microcanonical
ensemble, the number of states

Ω(E) =
∫ ∏

i

dpi

∫ ∏
i

dqi δ (E −H (qi, pi)) (9)

will diverge if the system is not confined. This divergence is actually not re-
stricted to the gravitational interaction but would also occur if one considers a
perfect gas in an infinite volume. However, one considers of course always a gas
in a finite domain, i.e. in a finite volume. This is not any more possible for the
gravitational interaction where the system is clearly infinite.

Despite these additional difficulties, the astrophysics community has obtained
an impressive quantity of results in this domain. Thanu Padmanabhan [5] de-
scribes several remarkable features, both for isolated gravitating systems as well
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as for systems undergoing nonlinear clustering in an expanding background
cosmology. The emphasis is on general results and he brings out the inter-
relationships of this subject with topics in fluid mechanics, condensed matter
and renormalization group theory.

Similarly, Pierre-Henri Chavanis [6] presents how the structure and the orga-
nization of stellar systems (globular clusters, elliptical galaxies,...) in astrophysics
can be understood in terms of a statistical mechanics for a system of parti-
cles in gravitational interaction. Finally, Eddie Cohen and Iaroslav Ispolatov [7]
consider the related gravitational-like collapse of particles with an attractive
1/rα potential. Using mean field continuous integral equation, they determine
the saddle-point density profile that extremizes the entropy functional. For all
0 < α < d = 3, a critical energy is determined below which the entropy of the
system exhibits a discontinuous jump.

2.4 Applications to Large Systems

A growing scientific community has recently begun to tackle the problem of
long-range interactions with different viewpoints. One of the fascinating aspects
of this problem is that, in addition to gravitating systems, it concerns a large
variety of systems that we would like to discuss briefly in the following section.

Plasmas. Rarefied plasmas share many properties with collisionless stellar sys-
tems, and in particular the property that the mean field of the system is more
important than the fields of individual nearby particles. Here again, the Coulomb
force is of long-range character. However, there is a fundamental difference be-
tween plasmas and gravitation. Plasmas have both positive and negative charges,
so that they are neutral on large scales and can form static homogeneous equilib-
ria; on the contrary, gravitating systems can never form static homogeneous equi-
libria. This so-called Debye screening explains why many techniques of plasma
physics can not be transferred immediately to the gravitational problem. Yves
Elskens [8] and Diego Del Castillo Negrete [9] present some of their results in
the framework of plasma physics.

2D Hydrodynamics. Two-dimensional incompressible hydrodynamics is an-
other important case where the interaction is long-range. Indeed, the stream-
function ψ is related to the modulus of the vorticity ω, via the Poisson equation
∆ψ = ω. Using the Green’s function technique, one easily finds that the solution
is

ψ(−→r ) = − 1
2π

∫
D

d2−→r ′ ω(−→r ′) G (−→r − −→r ′) , (10)

where G (−→r − −→r ′) depends onD, but G (−→r ) ∼ | ln−→r |, when −→r → 0. The kinetic
energy being conserved by the Euler equation (dissipativeless), it is straightfor-
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ward to compute it on the domain D, with boundary ∂D,

E =
∫
D

d2−→r 1
2

(∇ψ)2 (11)

=
∮
∂D

−→n dl ψ∇ψ +
1
2

∫
D

d2−→r ω(−→r )ψ(−→r ) (12)

= − 1
4π

∫ ∫
D

d2−→r d2−→r ′ ω(−→r ′)ω(−→r ) ln |−→r − −→r ′| (13)

since ψ = 0 on ∂D. This emphasizes that one gets a logarithmic interaction.
The analogy is even more clear if one approximates the vorticity field by point
vortices ω(−→r ) =

∑
i Γiδ(

−→r − −→r i), located at −→r i, with a given circulation Γi.
The energy of the system reads now

E =
1
2

∑
i �=j

ΓiΓj ln |−→r i − −→r ′
j | . (14)

The interaction among vortices has a logarithmic character, which corresponds
to α = 0.

Pierre-Henri Chavanis [6] studies carefully the analogy between the statistics
of large-scale vortices in two-dimensional turbulence and self-gravitating sys-
tems. This analogy concerns not only the equilibrium states, i.e. the formation
of large-scale structures, but also the relaxation towards equilibrium and the
statistics of fluctuations. Diego Del Castillo Negrete [9] discusses also his results
in the framework of hydrodynamics.

Dipolar Interactions. Dielectrics and diamagnets in an external electric or
magnetic field exhibit a shape dependent thermodynamic limit [11]. This is due
to the marginal decay of the potential energy α = d = 3 for systems of dipoles.
There is some approach to the solution of this problem only in zero field and in
the absence of spontaneous ferromagnetism [12]. This is a border case for the
long-range interactions, but it deserves a special attention.

Fracture. Let us examine analytical solutions for the plane stress and displace-
ment fields around the tip of a slit-like plane crack in an ideal Hookean continuum
solid. The classic approach to any linear elasticity problem of this sort involves
the search for a suitable “stress function” that satisfies the so-called biharmonic
equation ∇2(∇2ψ) = 0 where ψ is the Airy stress function, in accordance with
appropriate boundary conditions. The deformation energy density is then de-
fined as U ∝ σε where σ is the fracture stress field around the tip, whereas ε
is the deformation field. Considering a crack-width a in a two-dimensional ma-
terial and using the exact Muskhelishvili’s solution [10], one obtains the elastic
potential energy due to the crack

U � σ2
∞(1 − ν)

2E
a2

r2
, (15)
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where E is the Young modulus, σ∞ the stress field at infinity, ν the Poisson
coefficient and r the distance to the tip: the elasticity equation in the bulk of
solids leads therefore, again, to a border case for the long-range interactions
since U ∼ 1/r2 in two dimensions. It appears that, despite of its engineering
applications, the dynamics of this non conservative system has been very little
studied, presumably because of its long-range character. In addition, in such a
two dimensional material, the presence of several fractures could exhibit very
interesting screening effects.

Table 1. Table listing different applications where systems are governed by long-range
interactions. Large systems where the interactions is truly long-range and small systems
where the range of the interactions is of the order of the size of the system are separated.

Interactions α α/d Comments

Large systems

Gravity 1 1/3 long-range

Coulomb 1 1/3 long-range with Debye screening

Dipole 3 1 Limiting value

2D Hydrodynamics 0 0 Logarithmic interactions

Fracture 2 1 Stress field around the tip

Small systems

atomic and molecular clusters

nuclei

BE Condensation

2.5 Applications to Small Systems

In addition to large systems where the interactions are truly long range, one
should consider small systems where the range of the interactions is of the order
of the size. In these cases, the system would not be additive either, and many
similarities with the long-range case will be encountered. Phase transitions are
universal properties of interacting matter which have been widely studied in the
thermodynamic limit of infinite systems. However, in many physical situations
this limit is not attained and phase transitions should be considered from a
more general point of view. This is for example the case of some microscopic
or mesoscopic systems: atomic clusters can melt, small drops of quantum fluids
may undergo a Bose–Einstein condensation or a super-fluid phase transition,
dense hadronic matter is predicted to merge in a quark and gluon plasma phase
while nuclei are expected to exhibit a liquid-gas phase transition. For all these
systems the experimental issue is how to characterize a phase transition in a
finite system.
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Philippe Chomaz and Francesca Gulminelli [13] discuss results from nuclear
physics as well as from clusters physics. In particular, they propose a definition
of first order phase transitions in finite systems based on topology anomalies of
the event distribution in the space of observations. This generalizes the defini-
tions based on the curvature anomalies [14] of thermodynamical potentials and
provides a natural definition of order parameters. The new definitions are con-
structed to be directly operational from the experimental point of view. Finally,
they show why, without the thermodynamic limit or at phase-transitions, the
systems do not have a single peaked distribution in phase space.

In a closely related contribution, Dieter Gross [15] makes the statement,
that the microcanonical ensemble with Boltzmann’s principle S = kB lnΩ is
the only proper basis to describe the equilibrium of a closed “small” system.
Phase-transitions are linked to convex (upwards bending) intruders of the en-
tropy, where the canonical ensemble defined by the Laplace transform to the
intensive variables becomes multi-modal, non-local, and violates the basic con-
servation laws. The one-to-one mapping of the Legendre transform being lost,
Gross claims that it is all possible to define phase transitions without invoking
the thermodynamic limit, extensivity, or concavity of the entropy.

3 Thermodynamics

3.1 Inequivalence of Statistical Ensembles

Following the example exhibited long time ago by Hertel and Thirring [16], it is
striking that these systems could lead to inequivalences between microcanonical,
canonical or grand canonical ensembles. In this book, the first example is given by
Barré et al [4] who present the Blume-Emery-Griffiths (BEG) model which allows
a deep understanding of the fundamental reason why this happens. They studied
the spin-1 BEG model both in the canonical and in the microcanonical ensemble.
The canonical phase diagram exhibits a first order and a continuous transition
lines which join at a tricritical point. It is shown that in the region where the
canonical transition is first order, the microcanonical ensemble yields a phase
diagram which differs from the canonical one. In particular it is found that the
microcanonical phase diagram exhibits energy ranges with negative specific heat
and temperature jumps at the transition energies. The global phase diagrams in
the two ensembles and their multicritical behavior are calculated and compared.

Pierre-Henri Chavanis [6] shows similar features in self-gravitating systems
where canonical and microcanonical tricritical points do not coincide either, as
shown in Fig. 4 in the framework of self-gravitating fermions. Let us empha-
size that this property survives to the introduction of a finite cut-off instead of
quantum degeneracy as discussed by Chavanis.

3.2 Negative Specific Heats

This fact produces striking phenomena in the microcanonical ensemble, since
it may result in a negative specific heat, as was emphasized by Eddington in
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Fig. 4. Inverse temperature as a function of the energy for self-gravitating fermions
without cut-off. CE (MCE) is the transition point in the canonical (microcanonica)
ensemble. The dashed curve between CE and MCE has negative specific heat.

1926 [17] and then discussed by Lynden-Bell [18]. A first remark on the possibility
of having negative specific heat in the microcanonical ensemble can even be found
in the seminal paper on statistical mechanics by J.C. Maxwell [19]. Thirring [16]
has finally clarified the point by showing that the paradox disappears if one
realizes that only the microcanonical specific heat could be negative.

Indeed, in the canonical ensemble the mean value of the energy of a system
with different energy levels Ei is

〈E〉 =
∑
iEi e

−βEi

Z
= −∂ lnZ

∂β
(16)

where Z is the partition function. It is then straightforward to compute the
specific heat

Cv =
∂〈E〉
∂T

∝ 〈(E − 〈E〉)2〉> 0 . (17)

This clearly shows that the canonical specific heat is always positive. Notice also
that this condition is true for systems of any size, regardless of whether a proper
thermodynamic limit exists or not.

This is not the case if the energy is constant as shows the simplified following
derivation for the example of interacting self-gravitating systems. Using the virial
theorem for such particles

2〈Ec〉 + 〈Epot〉 = 0 , (18)

one gets that the total energy

E = 〈Ec〉 + 〈Epot〉 = −〈Ec〉 . (19)
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As the kinetic energy Ec is by definition proportional of the temperature one
gets that

Cv =
∂E

∂T
∝ ∂E

∂〈Ec〉 < 0 (20)

Loosing its energy, the system is becoming hotter.
It is important at this stage to make a short comment on the Maxwell con-

struction, usually taught in the framework of the Van der Waals liquid-gas tran-
sition. The existence of a negative specific heat region corresponds to a convex
intruder in the entropy-energy curve, as shown in Fig. 5. When the interactions
are short range, the system will phase separate in two parts, corresponding to the
two phases 1 and 2 with a molar fraction x, so that the free energy xF1+(1−x)F2
is lower than the original free energy. This is clearly possible if the energy cost
of the interface is proportional to the surface whereas the energy gain is pro-
portional to the volume of the phase. However, this is not any more possible
when the interactions are long-range since, on one hand, it is not straightfor-
ward to define a phase and, moreover, the system is not additive. The Maxwell
construction has to be redefined in this new framework.

Fig. 5. Schematic shape of the entropy S as a function of the energy E with a convex
intruder: the solid curve corresponds to the microcanonical result, whereas the dashed
line to the canonical one.

Let us note that the microcanonical entropy as a function of the energy and
of the order parameter generically leads to the landscape presented in Fig. 6.
The projection for the critical points of the surface onto the entropy-energy plane
produces the well known “swallowtail” catastrophe [20], depicted on the right of
the figure. This corresponds to still another strange feature of the microcanonical
ensemble, the presence of temperature jumps [4,6,7].

This concept of negative specific heat is now widely accepted in the astrophys-
ical community, and was popularized in particular by Hawking [21] in 1974, with
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Fig. 6. A stylized microcanonical entropy as a function of the energy and of the order
parameter mimicks an Alpine landscape where the workshop took place. The projection
for the critical points of the surface onto the entropy-energy plane produces the well
known “swallowtail” catastrophe.

some esoteric applications to black holes. The caloric curve of self-gravitating
fermions derived by Chavanis and shown in Fig. 4 emphasizes such negative
specific heat branch: the dotted branch is one example. Similarly one gets neg-
ative specific heat branch in the BEG model proposed by Barré et al [4]. In
the canonical ensemble, they correspond to local maxima or saddle point of the
corresponding free energy; it is the constraint of keeping the energy constant
that stabilizes these canonical unstable states in the microcanonical ensemble.

Experimental groups have recently claimed signatures of negative specific
heats in small systems. The first one corresponds to nuclear fragmentation [22],
even if the authors use prudently the word “indication” of negative specific heat.
The latter being inferred from the event by event study of energy fluctuations
from Au + Au collisions. However, the signatures correspond to indirect mea-
surements.

In the clusters community, two experimental groups have very recently re-
ported negative specific heat. The first system [23] corresponds to atomic sodium
clusters, namely Na+

147 and the negative microcanonical specific heat has been
found near the solid to liquid transition. The cluster ion are produced in a gas
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aggregation source and then thermalized with Helium gas of controlled temper-
ature. Accelerated thanks to the charge in a mass spectrometer, they are finally
irradiated by a laser to determine the energy from the evaporation of several
atoms after laser irradiation, also called photofragmentation. However, the con-
trol of equilibrium is as always the key point and therefore the evaluation of the
temperature seems to be questionable, in particular since the temperature could
not be constant during the motion of the ions.

In the Lyon’s molecular cluster experiment [24], with H+
17, the energy and

the temperature are determined from the size distribution of fragments after
collision of the cluster with a Helium projectile. To simplify the method, the
larger the ratio of small fragments versus large ones, the larger is the tempera-
ture determined using the Bonasera et al procedure [25]. The reported caloric
curve [24] shows a plateau. Work along this line is in progress and seems to show
a negative specific heat region.

3.3 Non Extensive Statistics

Constantino Tsallis, Andrea Rapisarda, Vito Latora and Fulvio Baldovin [26]
review the generalized non-extensive statistical mechanics formalism and its im-
plications for different physical systems. The original very interesting idea is to
generalize Boltzmann’s entropy by defining

Sq = kB
1 −∑i pi

q

q − 1
(21)

where
∑
i pi = 1. Using either the L’Hopital rule or a first order expansion of

the term pqi in power of q, one immediately notices that

lim
q→1

Sq = −kB
∑
i

pi ln pi , (22)

i.e. the well known Shannon entropy, known to be equivalent to the Boltzmann’s
one.

However, for q different from 1, this generalized entropy Sq is non additive,
and one gets

Sq(A+B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B) . (23)

They illustrate in particular its application and the meaning of the entropic in-
dex q for conservative and dissipative low-dimensional maps. They also report
on non Boltzmann-Gibbs behavior [26] and hindrance of relaxation for Hamilto-
nian systems with long-range interaction, where fingerprints of the generalized
statistics have recently emerged.

This very interesting proposal [27] had however until now no strong founda-
tions and many physicists were not ready to admit that the exponential Boltz-
mann distribution of states is at equilibrium only a particular case of a gen-
eralized distributions, with power tails. Dieter Gross [15] in particular makes
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different comments to this point. On the contrary, Tsallis et al emphasize also
different situations were the Boltmann-Gibbs behavior is clearly not appropriate.

Recently, Beck and Cohen [28] showed that considering different statistics
with large fluctuations, one can obtain generalized results, called superstatistics,
with the Tsallis formalism being presumably so far the most relevant example.
Moreover, Baldovin and Robledo worked out [29,26] exactly the q indices for the
generalized largest Lyapunov exponent proposed by Tsallis for the logistic map.
This an important step toward the derivation of a complete theory which, in
particular, should help to understand the limits of its applications.

4 Dynamical Aspects

An essential peculiarity of these physical systems, and of some of their simplified
models, is that a classical system of particles with long-range interactions will
display strong non-equilibrium features. Dynamics is typically chaotic and self-
consistent, since all particles give a contribution to the field acting on each of
them: one calls this self-consistent chaos. Numerous physical systems fall in this
category: galactic dynamics, dynamics of a plasma, vorticity dynamics,....

It is therefore essential to study the thermodynamic stability of these systems
and in particular to understand the formation of structures trough instabilities.
They should have logical similarities with the Jean’s instability of self-gravitating
systems, or with the modulational instability, leading to the formations of lo-
calized structures, as confirmed by preliminary results. Additional dynamical
effects, like anomalous diffusion and Levy walks, which are reported in the neg-
ative specific heat regions, should be linked to these uncommon characteristics
of thermodynamics [30].

In particular, Diego Del Castillo Negrete [9] discusses a mean-field single-
wave model that describes the collective dynamics of marginally stable fluids
and plasmas. He shows thus the role of self-consistent chaos in the formation
and destruction of coherent structures, and presents a mechanism for violent
relaxation of far from equilibrium initial conditions. The model bears many sim-
ilarities with toy-models used in the study of systems with long range interactions
in statistical mechanics, globally coupled oscillators, and gravitational systems.

One of these toy models is for example studied by Dauxois et al [31]. They
consider the dynamics of the Hamiltonian Mean Field model which displays
several interesting and new features. They show in particular the emergence of
collective properties, i.e. the coherent (self-consistent) behavior of the particle
motion. The space-time evolution of such coherent structures can sometimes be
understood using the tools of statistical mechanics , otherwise can be a manifes-
tation of the solutions of an associated Vlasov equation. Both cases in which the
interaction among the particles is attractive and the one where it is repulsive
are interesting to study: they offer different views to the process of cluster for-
mation and to the development of the collective motion on different time-scales.
The clustering transition can be first or second order, in the usual thermody-
namical sense. In the former case, ensemble inequivalence naturally arises close
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to the transition. The behavior of the Lyapunov spectrum is also commented
and the ‘universal’ features of the scaling laws that it involves.

Yves Elskens [8] shows that plasmas are a most common example of sys-
tems with long-range interactions, where the interplay between collective (wave)
and individual (particle) degrees of freedom is well known to be central. This
interplay being essentially non-dissipative, its prototype is described by a self-
consistent Hamiltonian, which provides clear and intuitive pictures of fundamen-
tal processes such as the weak warm beam instability and Landau damping in
their linear regimes. The description of the nonlinear regimes is more difficult. In
the damping case, new insight is provided by a statistical mechanics approach,
which identifies the distinction between a trapping behavior and linear Landau
behavior in terms of a phase transition. In the unstable case, the model has
shown that the commutation of long-time and large-N limits is not guaranteed.

Chavanis considers also dynamical aspects in the framework of stellar systems
and two-dimensional vortices. He discusses in particular two possible relaxation
scenarios: one due to collisions (or more precisely to discrete interactions) and
the second one, called violent relaxation, really collisionless but due to the mean
field effect and the long-range of the interaction.

Finally, the dynamical processes that give rise to power-law distributions
and fractal structures have been studied extensively in the recent years. Ofer
Biham and Ofer Malcai [32] describe recent studies of self-organized criticality
in sandpile models as well as studies of multiplicative dynamics, giving rise to
power-law distributions. Sandpile models turn out to exhibit universal behavior
while in the multiplicative models the powers vary continuously as a function of
the parameters. They consider the formation of a fractal object in the presence
of a dynamical mechanism that generates a power-law distribution and present
a model that demonstrates clustering when the probability of adding a particle
decays with a power α > d, so it has a short-range nature.

5 Bose–Einstein Condensation

Finally, we would like to put a special emphasis on Bose–Einstein Condensation
(BEC), predicted by Bose and Einstein in 1924, which could be an important
field of application. With the recent achievement [33] of Bose–Einstein conden-
sation in atomic gases thanks to the evaporation cooling technique, it becomes
possible to study these phenomena in an extremely diluted fluid, thus helping to
bridge the gap between theoretical studies, only tractable in dilute systems, and
experiments. In the BEC, atoms are trapped at such low temperatures that they
tumble into the same quantum ground state creating an intriguing laboratory
for testing our understanding of basic quantum phenomena.

First, Jean Dalibard [34] presents how coherence and superfluidity are hall-
mark properties of quantum fluids and encompass a whole class of fundamental
phenomena. He reviews several experimental facts which reveal these two re-
markable properties. Coherence appears in interference experiments, carried out
either with a single condensate or with several condensates prepared indepen-
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dently. Superfluidity can be revealed by studying the response of the fluid to a
rotating perturbation, which involves the nucleation of quantized vortices.

Second, Ennio Arimondo and Oliver Morsch [35] present the current inves-
tigations of Bose–Einstein condensates within optical lattices, where the long-
range interactions are an essential part of the condensate stability. Previous work
with laser cooled atomic gases is also briefly discussed.

On the theoretical side, the fluctuations of the number of particles in ideal
Bose–Einstein condensates within the different statistical ensembles has shown
interesting differences. Martin Holthaus explains [36] why the usually taught
grand canonical ensemble is inappropriate for determining the fluctuation of the
ground-state occupation number of a partially condensed ideal Bose gas: it pre-
dicts r.m.s.-fluctuations that are proportional to the total particle number at
vanishing temperature. In contrast, both the canonical and the microcanoni-
cal ensemble yields fluctuations that vanish properly for the temperature going
toward zero. It turns out that the difference between canonical and microcanon-
ical fluctuations can be understood in close analogy to the familiar difference
between the heat capacities at constant pressure and at constant volume. The
detailed analysis of ideal Bose–Einstein condensates turns out to be very helpful
for understanding the occupation number statistics of weakly interacting con-
densates.

Ulf Leohnardt [37] shows that Bose–Einstein condensates can serve as lab-
oratory systems for tabletop astrophysics. In particular, artificial black holes
can be made (sonic or optical black holes). A black hole represents a quantum
catastrophe where an initial catastrophic event, for example the collapse of the
hole, triggers a continuous emission of quantum radiation (Hawking radiation).
The contribution summarizes three classes of quantum catastrophes, two known
ones (black hole, Schwinger’s pair creation) and a third new class that can be
generated with slow light.

Finally, Gershon Kurizki presents [38] an exciting theoretical idea to in-
duce long-range attractions between atoms that acts across the whole Bose–
Einstein condensate. He shows that dipole-dipole interatomic forces induced by
off-resonant lasers

Vdd = V0

[
2z2 − x2 − y2

r3
(cos qr + qr sin qr) − 2z2 + x2 + y2

r
q2 cos qr

]
(24)

allow controllable drastic modifications of cold atomic media. “Sacrifying strength
for beauty”, Kurizki proposed [40] to average out the first term in 1/r3 of the
dipole-dipole interaction by the different lasers, in order to keep only the last one
with a 1/r interaction. The important point is that induced gravity-like force
would be strong enough to see it acting among atoms in the BEC: i.e. that,
having induced the gravity-like attraction in the BEC, one could switch off the
trap used originally to create the BEC, and it will remain stable, holding it-
self together. Depending on the number of lasers, the resulting gravity-like force
could be anisotropic for three lasers, or strictly identical to gravity with eighteen
lasers ! If the last proposal is presumably too speculative and if the difficulties
(the power of the laser required being really huge) facing the experimentalists
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are a real challenge, the ability to emulate gravitational interactions in the lab-
oratory is of course fascinating. Indeed, these modifications may include the
formation of self-gravitating “bosons stars” and their plasma-like oscillations,
self-bound quasi-one-dimensional Bose condensates and their “supersolid” den-
sity modulation, giant Cooper pairs and quasibound molecules in optical lattices
and anomalous scattering spectra in systems of interacting Bosons or Fermions.
These novel regimes set the arena for the exploration of exotic astrophysical and
condensed -matter objects, by studying their atomic analogs in the laboratory.

6 Conclusion

The dynamics and thermodynamics of long-range system is a rich and fascinating
topic. We want to conclude with the following comments:

• long-range interactions are a rich laboratory for statistical physics. Let us
only mention a few of the interesting phenomena and features: inequivalence
of ensembles, negative specific heat, collisionless relaxation, role of coherent
structures, nonadditivity, generalizations of entropy.

• This problem has also the nice property to be related to neighboring scientific
disciplines. Let us mention mathematics, with the application of catastrophe
theory [39] and large deviations theory [41], and computer science. In the
latter, because of the long-range interactions, naive numerical codes are of
orderN2, and the developments of efficient algorithms such as the heap based
procedure [42] or local simulation algorithm for Coulomb interaction [43] is
needed.

• This methodological and fundamental effort should provide a general ap-
proach to the problems arising in each specific domain which has motivated
this study: astrophysical objects, plasmas, atomic and molecular clusters,
fluid dynamics, fracture, Bose–Einstein condensation, ... in order to detect
the depth and the origin of the observed analogies or, on the contrary, to
emphasize their specificities.

Many of these different aspects are considered in this book but it is clear
that, rather than closing the topic, it opens the pandora box.
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