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Abstract. We propose a kinetic description of the Hamiltonian Mean Field model, which is
paradigmatic for dynamical systems with long-range interactions. We predict algebraic tails for
the momentum autocorrelations and anomalous diffusion for the angles. We derive analytically
the corresponding laws in the limit of a large number of particles. We argue that the mechanism
for such an anomalous transport does not depend on some complex structure of the phase
space: indeed, the transport is anomalous for out-of-equilibrium distributions but also for the
equilibrium microcanonical distribution.

1. Introduction
Since Boltzmann’s seminal work on the “Kinetic theory of Gases”, kinetic physics aims at
bridging the gap between the microscopic dynamics of physical systems and their macroscopic
behavior. The kinetic approach is also important for the study of transport properties. In this
paper, we consider a kinetic approach to study anomalous transport in an Hamiltonian system
with a large number of particle: the Hamiltonian Mean Field (HMF) model.

Recently, a new light was shed on long-range interacting systems [1]. The first reason
is the broad spectrum of applications: self-gravitating and Coulomb systems, vortices in
two-dimensional fluid mechanics, wave-particles interaction, trapped charged particles,... We
consider here the HMF model, presented in Sec. 2, which is considered as the paradigmatic
dynamical model for long-range interacting systems. Using classical kinetic theory, we then
predict and characterize anomalous transport in this model.

Transport characteristics of many systems correspond to a self similar evolution of the
probability distribution function, explaining the fundamental role of the heat equation in such
a domain. The moment of order n of the distribution scales thus like tn/2 at large time t.
Such a transport is called normal. However, interest has also been concentrated on anomalous
transport [2, 3, 4], where moments do not scale as in the diffusive case. It has indeed been
observed that anomalous transport occurs in a large class of systems. In stochastic models, for
instance, one of the mechanism leading to anomalous transport is linked to the non-validity of
the law of large numbers. In continuous time random walks (Levy walks), such a behavior may
be linked to distributions with large tails [5]. Another possible mechanism for the appearance of
anomalous transport can be the lack of stationarity of the corresponding stochastic process [6]
(acceleration).
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For deterministic chaotic systems, it would interesting to link the transport properties to
some characteristics of the dynamics. To reach this goal, the kinetic approach necessitates some
probabilistic assumptions, which would take into account the essential features of the dynamics.
The information kept from the dynamics determines indeed the characteristics of the kinetics.
For instance, for Hamiltonian chaos, the detailed study of the structure of the phase space for
several systems has led to the concept of dynamical barriers. Complex phase space structures
(island, stochastic sea, stochastic web) may be responsible for the non uniformity in the phase
space. Associated to this picture, anomalous transport may result from flights, stickiness... Such
an anomalous transport has been described using fractional kinetics, in which the characteristics
of the phase space structure should be linked to the properties of the kinetic equation (See Ref. [7]
for a review).

For Hamiltonian systems, most of the studies have been performed for systems with a few
degrees of freedom N . For a system with a large number of degrees of freedom (N � 1), one
usually assumes that the effect of non uniformity in phase space is negligible. This is presumably
a reasonable assumption, even if such an hypothesis is difficult to characterize and to quantify.

In this paper, we describe anomalous transport obtained by a mechanism which is not linked
to non uniformity in the phase space. We consider the HMF model in the limit N → ∞,
and use standard methods in kinetic theory of plasmas. Using a perturbative approach valid
for large N , we show that the Lenard-Balescu equation identically vanishes in such a system.
In addition, we derive a Fokker-Planck equation which describes the stochastic process of the
particle momentum. This classical kinetic approach is detailed in Sec. 3. If, at first sight, this
seems to correspond to normal transport process, we however show that, because of a very
strong decrease of the diffusion coefficient for large values of the momentum, this Fokker-Planck
equation leads to anomalous transport. At the end of Sec. 3, we map the latter equation with
a variable diffusion coefficient, to a Fokker-Planck equation with a logarithmic potential and a
constant diffusion coefficient.

In Sec. 4, using perturbative methods, we analytically study the large time behavior of this
latter Fokker-Planck equation. Let us emphasize that this study is independent on the HMF
model, and gives a detailed analysis of Fokker-Planck equations leading to anomalous transport.
We analytically compute the long-range temporal momentum autocorrelation laws, and we in
particular explicitly characterize anomalous transport by the relevant exponents.

Finally, in Sec. 5, we use these results for the HMF model, and we analytically compute
the anomalous diffusion coefficient for angles. Anomalous diffusion phenomena, indicating non
standard diffusions in the asymptotic time-limit, were previously found numerically in this
system and highly debated [8, 9]. The main achievement of this work is the theoretical prediction
and analytical characterization of such anomalous transport from the microscopic Hamiltonian
dynamics, and for a large class of initial distributions. We show how to characterize initial
distributions leading to anomalous diffusion. The result that anomalous diffusion also occurs
at equilibrium proves that the mechanism involved is independent of any lack of uniformity in
phase space. One thus gives a mechanism to obtain anomalous transport, complementary to the
one described in Ref. [7].

Moreover, the recent discovery of non gaussian distributions [10] in the HMF model led
to an intense and productive debate on the applicability of usual Boltzmann-Gibbs statistical
mechanics to long-range interacting systems (see Tsallis et al. in Ref. [1]). Such non Gaussian
distributions have been fitted using Tsallis’ distributions [10]. The striking algebraic large
time behaviors for momentum autocorrelations have also been fitted using q-exponential
functions [10, 11] derived from non extensive statistical mechanics. The analytical results of
this paper, revisiting this question, explain these numerical findings, by relying only on usual
statistical mechanics. We refer to Ref. [12] to further discussions of this point.
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2. The Hamiltonian Mean Field Model
The Hamiltonian Mean Field model

HN =
1
2

N∑
j=1

p2
j −

1
2N

N∑
i,j=1

cos(θi − θj), (1)

is nowadays thought to be the simplest model to study dynamical and thermodynamical
properties of system with long-range interactions [1]. In addition to its pedagogical properties, it
corresponds to a simplification of one-dimensional gravitational interactions and is an excellent
first step before the Colson-Bonifacio’s model for free-electron Lasers [13]. Note that the
factor 1/N is the appropriate and classical mean field scaling relevant for long-range interacting
systems [14], since the physically interesting limit for such systems amounts to let the number of
particles go to infinity at fixed volume, by contrast with the usual thermodynamical limit. In the
present work, we consider the case of an attractive potential. This model has been introduced
independently in several contexts [15, 16, 17, 18]. In this section, we briefly review properties of
this system, but see Ref. [19] for a complete presentation of the model. More recent results are
cited when appropriate.

The corresponding equations of motion are

θ̇i = pi and ṗi = − 1
N

N∑
j=1

sin(θi − θj). (2)

The state of the N -particles system can be described by the discrete single particle time-
dependent density function

fd (t, θ, p) =
1
N

N∑
j=1

δ (θ − θj (t)) δ (p − pj (t)) , (3)

where δ is the Dirac function, (θ, p) the Eulerian coordinates of the µ−space (projection of the
phase space onto the one particle phase space) and (θi, pi) the coordinates of the particles which
verify Eqs. (2). The time evolution of the density fd is governed by the Klimontovitch equation
and is equivalent to the Hamiltonian evolution (2).

2.1. Microcanonical and canonical equilibria
Let us define the magnetization

−→
M = (Mx, My) =

1
N

N∑
j=1

(cos θj , sin θj) (4)

and its associated modulus M = |−→M |. The statistical mechanics study has been performed
both in the microcanonical [20, 21] and canonical ensembles [18]. Both ensembles are equivalent
and the system exhibits a second order phase transition between a homogenous state (〈M〉 =
Meq = 0) at high energy, and a clustered phase (〈M〉 = Meq > 0) at low energy (the bracket
〈·〉 denotes phase space averages using either the microcanonical or the canonical measures). In
both ensembles, the average density is given by 〈fd〉 = feq(θ, p) = A exp[−β(p2/2 − Meq cos θ)],
where A is a normalization constant and β is either the microcanonical or the canonical inverse
temperature.

In the remainder of the text, we mostly consider out-of-equilibrium states.

36



2.2. Short time evolution. Vlasov dynamics
The evolution of the discrete single particle distribution fd is equivalent to the Hamiltonian
evolution. However, it is important to realize that we are not interested in the exact motion of
all particles, far too precise for usual physical quantities of interest.

When N is large, it is natural to approximate fd by the continuous function f0 (t, θ, p).
Considering an ensemble of microscopic initial conditions close to the same initial macroscopic
state, one defines their statistical average 〈fd (t, θ, p)〉 = f0(t, θ, p). Initially, the distribution
fluctuations are of order 1/

√
N , so that one can write

fd(t = 0, θ, p) = f0(t = 0, θ, p) +
1√
N

δf(t = 0, θ, p). (5)

For systems with long-range interactions, it is well known that the short-time dynamics of
the averaged distribution f0 are well approximated by the Vlasov dynamics

∂f0

∂t
+ p

∂f0

∂θ
− dV

dθ

∂f0

∂p
= 0, (6)

where the potential V that affects all particles is

V (t, θ) ≡ −
∫ 2π

0
dα

∫ +∞

−∞
dp cos(θ − α) f0(t, α, p). (7)

If one starts from an out-of-equilibrium distribution f0, the latter relax towards an equilibrium
distribution for the Vlasov equation. The time scale for this Vlasov relaxation does not depends
on N . In a second stage of the dynamics, equilibrium distributions evolve due to corrections
to the Vlasov equation towards the equilibrium distribution. The time of validity of the Vlasov
approximation diverges with N , and is linked to the stability of the Vlasov solution f0 [14]. For
this reason, in the large N -limit, the time scale for Vlasov relaxation and relaxation towards
equilibrium are well separated.

We are here interested in the second stage of the dynamics. We thus consider ensembles of
initial distributions f0(p) corresponding to any homogeneous stable stationary solutions of the
Vlasov equation. When f0 is stable for the Vlasov equation, the evolution f0 is expected to
occur on times scaling at least as N , when N is large. Such an evolution is discussed in terms
of kinetics equation in Sec. 3.

The linear stability of the Vlasov equation has been studied in Ref. [12], where the importance
of the dielectric permittivity

ε(ω, k) = 1 + πk (δk,1 + δk,−1)
∫ +∞

−∞
dp

∂f0

∂p

pk − ω
(8)

has been emphasized. For a given type of initial distribution, the condition for the neutral mode
ε(0, k) = 0 gives the stability threshold. In a recent paper, we have reported in terms of the
density an explicit criterion for the study of the formal stability of the Vlasov equation [22]. In
the HMF model, the formal stability and the linear stability criteria for the Vlasov equation
turn out to be equivalent.

The huge quantity of such stationary stable solutions [22] explains the generic existence of
out-of-equilibrium distributions. These quasi-stationary states do not evolve on time scales much
smaller than N . This explains the extremely slow relaxation of the system toward the statistical
equilibrium. In the following, we study transport properties of particles for ensembles of initial
conditions close to some stable solution of the Vlasov equation.
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3. Kinetic description
In this section, we are interested, on the one hand, in the evolution of the density f0 on time scales
of order N and, on the other hand, in the stochastic process describing the dynamics of a single
particle in contact with an ensemble of particles characterized by their density f0. Both of these
problems are classical problems in kinetic theory of plasma physics. The approach developed
for this system with long-range interactions is thus directly inspired from these technics.

Such a kinetic theory could be studied by perturbative expansions of

• the Liouville equation around the free particle motion and performing appropriate
resummations [23, 24],

• the Liouville equation around the Vlasov evolution [25],
• the Klimontovich equation [26, 27].

In all cases, the small parameter of the expansion turns out to be 1/N , and these three methods
give completely equivalent results. This is why, for the sake of simplicity, we here follow the
third alternative.

3.1. The Lenard Balescu equation
We recall that f0(p) is any stable homogeneous stationary solution of the Vlasov equation. The
discrete time-dependent density function (3) can thus be rewritten as

fd(t, θ, p) = f0(θ, p) +
1√
N

δf(t, θ, p), (9)

where the fluctuation δf is of zero average. This decomposition is the self-consistent ansatz
of the perturbative expansion, and makes sense only for perturbations around stable stationary
solutions. To any fluctuation of the density δf , we associate a fluctuation of the potential (7)
so that V (t, θ) = 〈V 〉 + δV (t, θ)/

√
N .

The leading order correction to the Vlasov equation is then given by

∂f0

∂t
=

1
N

〈
dδV

dθ

∂δf

∂p

〉
. (10)

Let us remark that the Vlasov part of the evolution vanishes because f0 is stationary.
At leading order, the fluctuation δf evolves, on the contrary, according to the linearized

Vlasov equation, which can be solved explicitly using a Fourier-Laplace transform. It is
therefore possible to compute the correlations; we refer to Ref. [27] for such lengthy but classical
calculations. One obtains, for instance, the potential autocorrelation

〈δV (t1,±1)δV (t2,∓1)〉 =
π

2

∫
C
dω e−iω(t1−t2) f0(ω)

|ε(ω, 1)|2
, (11)

where the dielectric permittivity ε is defined in Eq. (8).
Following the same procedure, one can compute the right-hand-side of Eq. (10). In plasma

physics, this lead to the Lenard-Balescu equation. In the case of the HMF model, it turns out
that the left-hand-side of Eq. (10) identically vanishes at leading order. Indeed, in the expression
of the Lenard-Balescu operator, a resonance condition appears, which can never be satisfied for
a one dimensional model.

We thus conclude from this analysis that the Lenard-Balescu operator identically vanishes
for the HMF model. As a consequence, the average density f0 does not evolve on time-scales of
order N or smaller. This is in agreement with the evolution of the distribution on times scaling
as N1.7, as it has been numerically found and reported in Refs. [9, 22].
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3.2. Fokker-Planck equation for the stochastic process of a single particle
Let us now consider the relaxation properties of a test-particle, indexed by 1, surrounded by
a background system of (N − 1) particles with a homogeneous distribution f0(p). Taking into
account of the known position of the particle 1, the fluctuations of the potential are

δV (t, θ) ≡ −N − 1
N

∫ 2π

0
dα

∫ +∞

−∞
dp cos(θ − α) δf(t, α, p) − 1√

N
cos (θ − θ1) . (12)

In the large N -limit, one can easily forget the prefactor (N − 1)/N , unimportant at the order
we consider. We note that the averaged potential 〈V 〉 vanishes for a homogeneous distribution,
so that the particle only feels the fluctuations of the potential. Its momentum thus evolves on
time scales of order

√
N . Using the equations of motion of the test particle

dθ1

dt
= p1 and

dp1

dt
= −dδV (t, θ1)

dθ
= o

(
1√
N

)
, (13)

and omitting the index 1 for the sake of simplicity, one obtains

θ(t) = θ(0) + p(0) t − 1√
N

∫ t

0
du1

∫ u1

0
du2

dδV

dθ
(u2, θ(u2)) (14)

p(t) = p(0) − 1√
N

∫ t

0
du

dδV

dθ
(u, θ(u)). (15)

The key point of this approach is that we do not limit the study to the usual ballistic
approximation, in order to have an expansion exact at order 1/N . This is of paramount
importance here to treat accurately the essential collective effects.

By introducing iteratively the expression for the variable θ in the right-hand-side and by
expanding the derivatives of the potential, one gets the result at order 1/N

p(t) = p(0) − 1√
N

∫ t

0
du

dδV

dθ
(u, θ(0) + p(0)u)

+
1
N

∫ t

0
du

d2δV

dθ2
(u, θ(0) + p(0)u)

∫ u

0
du1

∫ u1

0
du2

dδV

dθ
(u2, θ(0) + p(0)u2). (16)

As the changes in the impulsion are small, since of order 1/
√

N , the description of the
impulsion stochastic process by a Fokker-Planck equation is valid [28]. This latter equation
is then characterized by the time behavior of the first two moments 〈p(t) − p(0)〉 and
〈(p(t) − p(0))2〉. Using the generalization of formula (11) when the effect of the test particle
is taken into account, one obtains in the large t-limit (1 	 t 	 N)

〈(p(t) − p(0))〉 ∼ t

N

(
dD

dp
(p) +

1
f0

∂f0

∂p
D(p)

)
(17)

〈(p(t) − p(0))2〉 ∼ 2t

N
D(p), (18)

where the diffusion coefficient D(p) is defined by

D(p) = 2 Re
∫ +∞

0
dt eipt 〈δV (t, 1)δV (0,−1)〉 =

π2f0(p)
|ε(p, 1)|2

. (19)

Equations (17) and (18) show that the momentum distribution of particle 1 evolve on
timescales of order N . Let us introduce the rescaled time τ = t/N , and the distribution for
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the dyed particle f1(τ, p). Equations (17) and (18), valid for 1 	 t 	 N , prove that f1 evolves
according to the Fokker-Planck equation

∂f1

∂τ
=

∂

∂p

[
D(p)

(
∂f1

∂p
− 1

f0

∂f0

∂p
f1

)]
, (20)

valid for time τ 	 N .
In the limit τ → ∞ provided the condition 1 	 τ 	 N is still fulfilled, the bracket vanishes:

the pdf f1 of the test particle converges towards the quasi-stationary distribution f0 of the
surrounding bath. It thus does not converge towards the equilibrium Gaussian distribution, in
complete agreement with the result that f0 is stationary for times scales of order N .

In order to illustrate the behavior of the diffusion coefficient, let us carry on by explicitly
evaluating the diffusion coefficient for a homogenous Gaussian distribution function

fg(θ, p) =
1
2π

√
β

2π
e−βp2/2. (21)

In that case, after straightforward calculations, one gets the expression derived in Ref. [29] for
the diffusion coefficient of a test particle in a equilibrium bath. The diffusion coefficient has
gaussian-like tails (see Fig. 1), given by the asymptotic expression

D(p) ∼
√

πβ/2 e−βp2/2. (22)

Interestingly, the method presented here can be used for any Vlasov-stable out-of-equilibrium
distributions. For instance, in Fig. 1, we present the result for the waterbag distribution.

fwb(p) =

⎧⎪⎨⎪⎩
1

4πp0
if |p| ≤ p0

0 if |p| > p0 .

(23)

Let us remark that the existence of zeroes for the dielectric permittivity ε(ω, 1) = 1− 1/[2(p2
0 −

ω2)] for p = ±
√

p2
0 − 0.5 is a peculiarity of the water bag distribution, since ε(ω, 1) cannot have

zeroes on the real axis, for any even distributions strictly decreasing for p > 0. The diffusion
coefficient is plotted in Fig. 1.

The knowledge of the Fokker-Planck Eq. (20) allows, for instance, to compute the momenta
autocorrelation 〈p(τ)p(0)〉, fitted numerically [11, 30, 9] with power laws, stretched-exponentials
or q-exponentials. The time dependence of the momentum autocorrelation function scales with
N as

〈p(t)p(0)〉 = C(t/N), (24)
where C is a function to be determined.

Let us first present the particular but very important case of a test particle in contact
with a gaussian distribution f0 (equilibrium bath). Fig. 2 shows the momenta autocorrelation
〈p(τ)p(0)〉, numerically computed from the Fokker-Planck Eq. (20); it presents an unexpected
very slow relaxation which can, numerically, hardly be distinguished from a 1/τ -law.

As shown below, the very fast decrease of the diffusion coefficient shown in Fig. 1 is actually
the key point in these interesting and unusual properties of the momenta autocorrelation. The
qualitative explanation is that particles that have a large momentum p relax very slowly to
typical values because of the extremely small value of the diffusion coefficient. This results in
long-range temporal correlations and the associated long flight may lead to anomalous diffusion
for the angles θ.

We would like to explain such a very interesting algebraic behavior for large time (long-range
temporal correlation) by studying theoretically the Fokker-Planck equation (20). In the following
subsection, we thus first map this Eq. (20) to a constant diffusion Fokker-Planck equation, before
studying it in Sec. 4.
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Figure 1. Diffusion coefficient D(p) in the case HN/N = 2 for a Boltzmann thermal bath (solid
line) and a waterbag distribution (dashed line).

3.3. Mapping to a logarithmic potential Fokker-Planck equation
By introducing the appropriate change of variable x = x(p), defined by dx/dp = 1/

√
D(p),

and the associated distribution function f̂1, defined by f̂1(τ, x)dx = f1(τ, p)dp, one can map the
Fokker-Planck equation (20) to the constant diffusion coefficient Fokker-Planck equation

∂f̂1

∂τ
=

∂

∂x

(
∂f̂1

∂x
+

∂ψ

∂x
f̂1

)
, (25)

where
ψ(x) = − ln

(√
D(p)f0(p)

)
p→±∞∼ −3

2
ln (f0(p)) . (26)

Let us note that we have used the property ε(p, 1)
|p|→∞∼ 1, and Eq. (19) to show that

D(p)
|p|→∞∼ π2f0(p).

Let us now prove that for large classes of distribution functions f0, the potential ψ(x) is
asymptotically equivalent to a logarithm. More precisely

ψ(x) x→±∞∼ α ln |x|, (27)

with α = 3 if f0(p) decreases to zero more rapidly than algebraically for large p, and α < 3
if f0(p) decreases to zero algebraically. To illustrate this point, we evaluate the asymptotic
behavior explicitly in two cases: stretched exponential and algebraic tails.

3.4. Gaussian, exponential and stretched exponential tails for the bath distribution f0

Let us first consider distribution functions so that

f0(p)
|p|→∞∼ C exp(−γpδ), (28)

which includes not only the gaussian (δ = 2) and exponential tails (δ = 1), but also stretched-
exponential ones with δ > 0.

From dx/dp = 1/
√

D(p), asymptotic analysis leads to

p(x) =
(

2
γ

ln(|x|)
)1/δ

+ o(1) (29)

whereas ψ(x) =x→±∞ 3 ln |x| − 3γ(1 − δ)/(2δ) ln (ln |x|) + O(′).
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3.5. Algebraic tails for the bath distribution f0

Let us now consider distribution function f0(p) with algebraic tails

f0(p)
|p|→∞∼ Cp−ν , (30)

where ν > 3. The criteria ν > 3 ensures that the second moment of the distribution f0 exists.
This is essential here since the second moment is linked to the kinetic energy.

Using dx/dp = 1/
√

D(p), one can prove that Eq. (27) is still valid for distribution functions
with algebraic tails. However, one obtains α = 3ν/(2+ν), so that for ν > 3, one has 9/5 < α < 3.
We also have

p(x)
|x|→∞∼ C ′xη with η =

2
2 + ν

. (31)

4. Analysis of the logarithmic potential Fokker-Planck equation
Let us study now the long time behavior of a Fokker-Planck equation with constant diffusion
coefficient and with a potential having an asymptotic logarithmic behavior. This will be used
in Sec. 5 to predict anomalous diffusion for the HMF model.

4.1. The logarithmic potential Fokker-Planck equation
Let us consider the Fokker-Planck equation

∂f̂1

∂τ
=

∂

∂x

(
∂f̂1

∂x
+

∂ψ

∂x
f̂1

)
with ψ(x) x→±∞∼ α ln |x| and α > 1. (32)

Its ground state solution is
ϕ0(x) = C exp(−ψ(x)), (33)

where C is a normalization constant. As ln (ϕ0(x))
|x|→±∞∼ α ln |x|, the ground state ϕ0 is

normalizable provided α > 1.
Let us show that this Fokker-Planck equation has long-range temporal correlations. For

instance, for any odd function pη such that pη(x) x→+∞∼ xη, we have

〈pη(x(τ))pη(x(0))〉 τ→+∞∝ τη−(α−1)/2, (34)

provided η < (α − 1)/2, as it is necessary for the autocorrelations to be defined.
For a weakly confining potential ψ(x), Eq. (32) would have a non-normalizable ground state.

The heat equation, for example, which corresponds to ψ(x) = 0, describes a diffusive process
leading to an asymptotic self-similar evolution. In such a case, the spectrum of the Fokker-Planck
equation is purely continuous. By contrast, a strongly confining potential ψ(x) (for instance, the
Ornstein-Ulhenbeck process with a quadratic potential) would lead to exponentially decreasing
distributions and autocorrelation functions, linked to the existence in the spectrum of a gap
above the ground state.

The logarithmic potential (27) is a limiting case between these both behaviors. The
normalizable ground state ϕ0 is unique and coincides with the bottom of the continuum. The
absence of gap forbids a priori any exponential relaxation.

4.2. Matched asymptotics expansion of the eigenfunctions
Let us define the eigenfunctions ϕλ and associated eigenvalues λ of the Fokker-Planck Eq. (32)
by

d
dx

(
dϕλ

dx
+

dψ

dx
ϕλ

)
= −λϕλ (35)
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and by the normalization condition∫ +∞

−∞
dx

ϕλ(x)ϕλ′(x)
ϕ0(x)

= δ(λ − λ′) , (36)

where the first eigenfunction is the ground state ϕ0.
As we are interested in the asymptotic large-τ limit, we restrict the analysis to the small-

λ values and determine ϕλ by matched asymptotic expansions. For |x| > �(λ), the large-x
asymptotic expansion of ψ can be used, whereas for |x| < �(λ), we perform an expansion in
power of λ. Part of this analysis is inspired from Refs. [31, 32].

In the first domain, |x| > �(λ), we evaluate the leading order correction by introducing

in Eq. (35), the asymptotic estimate ψ(x)
|x|→±∞∼ α ln |x|. Defining z =

√
λ x and gλ(z) =

zϕλ(z/
√

λ), one ends up with

z2 d2gλ

dz2
+

dgλ

dz
(α − 2)z + gλ(2 − 2α + z2) = 0. (37)

The solutions can be expressed in terms of Bessel functions of order ν, Jν and Yν , as

gλ(z) = Aλ z(3−α)/2J(α+1)/2(z) + Bλ z(3−α)/2Y(α+1)/2(z). (38)

In the domain |x| < �(λ), at leading order, one neglects the term proportional to the vanishing
eigenvalue λ. Eq. (35) can thus be reduced to

d2ϕλ

dx2
+

d

dx

(
ϕλ

dψ

dx

)
= 0, (39)

whose solutions are
ϕλ(x) = Dλ e−ψ(x) + Cλ e−ψ(x)

∫ x

0
du eψ(x). (40)

In order to compute the momenta autocorrelation function, noting that pη(x) is an odd function
of x, we focus on odd eigenfunctions by considering Dλ = 0. Both asymptotic expansion can be
matched in the domain 1 	 �(λ) 	 λ−1/2. Using the leading order matching relations in this
domain, and taking care of the normalization condition (36), one ends up with the scaling

Aλ
λ→0∝ λ

α−1
4 (41)

Cλ
λ→0∝ λ

α+1
4 (42)

Bλ
λ→0∝ λ

3α+1
4 , (43)

where multiplicative constants independent on λ are not reported. This determines the
eigenfunctions ϕλ.

4.3. Large time behavior of the auto-correlations
All these results are finally useful to derive the auto-correlations. Indeed, let us consider
fp(x, t) the solution of the Fokker-Planck equation (32) corresponding to the initial condition
fp(x, 0) ≡ p(x)ϕ0(x), where p is an odd continuous function of x. The autocorrelation
〈p(x(τ))p(x(0))〉 can be rewritten as

〈p(x(τ))p(x(0))〉 =
∫ +∞

−∞
dx p(x)fp(x, τ). (44)
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In order to evaluate this integral, we decompose fp(x, 0) on the eigenfunctions {ϕλ}

fp(x, 0) =
∫ +∞

0
dλ µp(λ)ϕλ(x) with µp(λ) ≡

∫ +∞

−∞
dx p(x)ϕλ(x). (45)

The Fokker-Planck evolution leads therefore to

〈p(x(τ))p(x(0))〉 =
∫ +∞

0
dλ µp(λ)2e−λτ . (46)

The limiting behavior of 〈p(x(τ))p(x(0))〉 in the τ → ∞ limit is thus given by the behavior of
µ(λ) when λ → 0, which is itself determined from (45) by the large |x| behavior of p(x).

Let us be more specific in several important cases. Let us consider an odd function pη(x)
such that pη(x) x→+∞∼ xη, with η < (α − 1)/2. We evaluate µp(λ), given by Eq. (45), for small
λ values by using the expansion for ϕλ obtained previously. The leading contribution

µp(λ)
λ→0∝ λ(α−2η−3)/4 (47)

leads to the limiting behavior

〈xη(τ)xη(0)〉 =
∫ +∞

0
dλ e−λτλ

α−2η−3
2

τ→+∞∝ τη−(α−1)/2. (48)

as anticipated in equation (34).
Let us now make the choice p(x) ∝ (ln x)1/δ. Similar computations lead to

〈p(x(τ))p(x(0))〉 τ→+∞∝ (ln τ)2/δ

τ
, (49)

which does not depend on α.

5. Long-range correlations and anomalous diffusion in the HMF model
Let us now apply results derived in Sec. 4 to the HMF model, to prove in particular the
occurrence of anomalous diffusion. It is important to emphasize that this latter behavior depends
crucially on the exponent α of the logarithmic potential (25). As discussed in Sec. 3, if the
distributions f0(p) decrease faster than any algebraic power law, one obtains α = 3, whereas
α < 3 if the decay is algebraic. We discuss both cases in the remainder of this section.

5.1. Strong anomalous diffusion for f0(p) with algebraic tails

For algebraic distributions f0(p)
|p|→∞∼ Cp−ν where ν > 3, we proved in Sec. 3 that the

prefactor of the logarithmic potential is α = 3ν/(2 + ν). Moreover, we have shown that p(x) is
asymptotically algebraic (see formula (31)) with η = 2/(2 + ν). Introducing these expressions
for α and η in Eq. (34), we thus obtain

〈p(τ)p(0)〉 τ→+∞∝ τ (3−ν)/(2+ν). (50)

This characterizes the algebraic asymptotic behavior of the momentum autocorrelation for the
HMF model.

From the momenta autocorrelations, one usually derives the angle diffusion

〈(θ(τ) − θ(0))2〉 = 2Dθ τ (51)
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Figure 2. The solid line represents the time evolution of the momentum autocorrelations
obtained using the numerical integration of the Fokker-Planck equation for a test particle in a
surrounding gaussian reservoir (β = 0.25). Its slope can hardly be distinguished from a 1/τ law
(dotted line).

where Dθ is defined via the Kubo formula

Dθ =
∫ +∞

0
dτ 〈p(τ)p(0)〉. (52)

However, since the exponent (ν − 3)/(2 + ν) = −1+5/(2+ ν) is larger than −1, the asymptotic
result (50) shows that integral (52) diverges, leading to anomalous diffusion.

Relying on a direct generalization of the Kubo formula, we thus predict the anomalous
diffusion law

〈(θ(τ) − θ(0))2〉 τ→+∞∝ τ1+ 5
2+ν . (53)

This is the first prediction of a superdiffusive behavior at large times for the HMF model.

5.2. Neutrally anomalous diffusion for stretched exponential f0(p)
For stretched exponential distributions f0(p) similar to (28), we derived in Sec. 3 that α =
3ν/(2 + ν) and that p(x) exhibits asymptotically the logarithmic behavior (29). Using result
(49), we thus obtain

〈p(τ)p(0)〉 τ→+∞∝ (ln τ)2/δ

τ
. (54)

This proves the existence of long-range temporal momentum autocorrelation for stretched
exponential distributions f0(p). Figure 2 shows a numerical evidence of such a behavior for
a Gaussian distribution function, obtained by a numerical integration of the Fokker-Planck
equation (20)

As in the case of distributions with algebraic tails, the diffusion of angles is anomalous since
the Kubo integral (52) diverges. Nevertheless, the extremely small anomaly (logarithmic) for
distribution functions with stretched exponential tails explains the difficulty, and consequently
the debate, to detect numerically anomalous diffusion [33, 9].

Let us emphasize that the algebraic behavior of the momentum autocorrelation and the
anomalous diffusion for angles also occur for the Gaussian distribution which corresponds to
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the special case δ = 2. As gaussian distributions correspond to equilibrium distributions in the
microcanonical and the canonical ensembles, it is important to realize that above results are
valid both for equilibrium and out-of-equilibrium initial conditions.

6. Conclusion
In this paper, we have analytically exhibited algebraic decay of the momentum autocorrelations
and anomalous diffusion of the angles, by considering the microscopic dynamics of the HMF
model. We have in particular shown that the coefficient for the algebraic laws depends on the
tails of the distributions functions f0(p) for the bath of particles. We have computed explicitly
these exponents for algebraic and stretched exponential tails.

Numerical results reported in Ref. [11] have also shown algebraic momenta correlations.
Here we have given an explanation of such a behavior without invoking non extensive statistical
mechanics. Besides the prediction of algebraic behavior, it would be of course very interesting
to compare the exponents to these numerical simulations. However a direct comparison is
unfortunately not possible, as the bath distribution is not reported in Ref. [11].

In the general case, a comparison of the predictions of anomalous diffusion for angles with
direct numerical computation of the HMF dynamics is a tough task because of the scaling with
N of the time dependance of the autocorrelation function. However, work along this line is in
progress.

Finally, as we have obtained a typical example of anomalous diffusion by characterizing
analytically the second moment directly from the microscopic dynamics, it would be very
interesting to pursue this study for the higher moments 〈(θ(τ) − θ(0))2n〉. The evolution of
the exponent of the algebraic time evolution as a function of the index n would be a very
interesting quantity to characterize [4] the dynamics.
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