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Abstract We study the low temperature behavior of path integrals for a simple one-
dimensional model. Starting from the Feynman–Kac formula, we derive a new functional
representation of the density matrix at finite temperature, in terms of the occupation times
for Brownian motions constrained to stay within boxes with finite sizes. From that repre-
sentation, we infer a kind of ergodic approximation, which only involves double ordinary
integrals. As shown by its applications to different potentials, the ergodic approximation
turns out to be quite efficient, especially in the low-temperature regime where other usual
approximations fail.

1 Introduction

The knowledge of the density matrix at finite temperature T for few interacting particles, is
important for studying equilibrium properties of quantum many-body systems. In this con-
text, the Feynman–Kac (FK) representation of the density matrix in terms of path integrals
[1–4] is particularly useful. On the one hand, it has been used for deriving exact analytical
expressions for simple models (see e.g. [5]). On the other hand, beyond the well-known
Wigner-Kirkwood expansion [6–9] around the classical limit, various approximations, non-
perturbative in �, have been introduced within that framework: for instance, the celebrated
semi-classical approximation [1, 11] or the variational approach of Feynman and Klein-
ert [10].

The FK representation is described in Sect. 2. For the sake of pedagogy, we consider
a single particle in one dimension submitted to a stationary potential. Furthermore, the in-
fimum of the corresponding spectrum is assumed to be a bound state. The mean spatial
extension of the Brownian paths, which intervene in the FK representation, is controlled by
the thermal de Broglie wavelength of the quantum particle. At high temperatures, Wigner–
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Kirkwood �
2-expansions around the classical limit, which have been derived long ago in

other frameworks, are easily recovered since path extension vanishes. At finite temperatures,
non-perturbative effects in � can be accounted for through various approximations [10, 11],
which are briefly described. When temperature goes to zero, the asymptotic structure of the
density matrix, provided by the groundstate contribution in its spectral expression, does not
clearly emerge from its FK representation. In fact, in that temperature regime, the average
extension of paths diverge, whereas the main contribution to the functional integral arises
from paths with a finite extension, of the order of the localization length of the ground state:
contributions of such minority paths are significantly different from the average contribu-
tion. Most of our knowledge is negative, i.e. tells us which trajectories are not important [12],
so, in some sense, we will try to have a positive attitude [13].

In this paper, we derive a new functional representation of the density matrix, which is
more suitable than the genuine FK formula for tackling the low-temperature regime (see
Sect. 3). The starting central observations are described in Sect. 3.1. First, in the FK func-
tional integral, only marginal paths with finite extensions, i.e. large deviations with respect
to the average, contribute when T goes to zero. Second, many of such paths with quite differ-
ent jagged shapes, provide similar contributions, mainly determined by the corresponding
local occupation times. Thus, it is quite natural to collect paths into sets defined by their
spatial extension and their local occupation times. That procedure allows us to transform
exactly FK representation (2) into the so-called box formula (13). That formula is defined
via the introduction of paths constrained to stay in a box with size � and characterized by an
intermediate flight time s (in β� units with β = 1/kBT ). It involves a double ordinary in-
tegral over � and s, combined to functional integrals over local occupation times associated
with the constrained paths. As required, box formula (13) provides a better understanding
of the low-temperature behavior of the density matrix than FK representation (2). When
T vanishes, leading contributions obviously arise from typical sizes � much smaller than
de Broglie wavelength. In a forthcoming paper, we will argue how groundstate quantities
emerge from box formula (13), by using scaling properties of the probability distribution
function (PDF) of occupation times at low temperatures.

Beyond its conceptual interest for understanding low-temperature behaviors of path in-
tegrals, box formula (13) also allows us to derive new approximations. This is illustrated
in Sect. 4, where we present the so-called ergodic approximation. That approximation re-
sults from the truncation to first order of cumulant expansions of the functional averages.
It amounts to replace each local occupation time associated with a given constrained path,
by its average over the corresponding PDF. This can be viewed as some kind of ergodic
hypothesis, because the imaginary-time average of the potential experienced by the particle
along that path, is then replaced by a spatial average with a measure defined by the mean
occupation-time. Ergodic expression (16) involves only an ordinary double integral over �

and s, so the tremendous difficulty of computing a functional integral is circumvented. The
key ingredient, namely the mean occupation-time (in units of 1/�), depends on three dimen-
sionless variables. Using its low and high temperature behaviors derived analytically, we
propose simple tractable expressions for that quantity, which turn out to be quite accurate at
any temperature.

Section 5 is devoted to the applications of the ergodic approximation to various sim-
ple forms of the potential. First, we determine the asymptotic analytical forms of the ap-
proximate density matrices at both low and high temperatures. When T diverges, Wigner–
Kirkwood expansion is partially recovered. When T vanishes, the main features of the exact
behaviors are well reproduced. The approximate density matrices then do factorize as a
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product of a Boltzmann factor associated with a given energy, times a function of posi-
tion only: this provides satisfactory approximate expressions for the groundstate energy and
wavefunction. Second, numerical calculations are performed at finite intermediate temper-
atures. As expected from the previous analytical results, the ergodic approximation turns
out to be quite reasonably accurate over the whole range of considered temperatures, and
discrepancies with numerically exact results1 do not exceed a few percent in most cases.
Moreover, it significantly improves over the well-known semi-classical approximation, in
particular at low temperatures (except for the harmonic potential of course). Also, further
applications and extensions of the ergodic approximation to other potentials and two- or
three-dimensional systems with one or two particles, are briefly discussed.

Let us mention that various computationally exact methods have been derived for cal-
culating path integrals with an arbitrary high accuracy. A first type of such methods starts
with Trotter formula, and rely on the use of simple thermal propagators (see e.g. [14]), com-
bined to Monte Carlo sampling of multi-dimensional integrals and other algorithmic tricks
[15, 16]. Quantum Monte Carlo methods extend those approaches to many-body systems,
for which they have provided remarkable results (see e.g. [16–18]). Another type of compu-
tationally exact methods follows from Ito–Nisio theorem [19] and involve decompositions
of Brownian paths on suitable basis.

Eventually, we emphasize that our approach is not intended to provide numerically exact
results. The ergodic formula (16) enters in the class of simple approximation schemes, like
those described above [10, 11], which account for non-perturbative quantum effects. Its main
advantages rely on both an analytical control of low-temperature behaviors, and an accurate
description over a wide temperature-range via numerical calculations easily performed by
a pocket calculator. In the framework of the many-body problem, this should be useful for
various purposes, like fast and reliable estimates of first quantum virial coefficients in low-
fugacity expansions, or tractable modelizations of two-body effective interactions. Also,
use of the ergodic approximation for few-body density matrices in quantum Monte Carlo
methods, might improve the accuracy and convergence of the corresponding calculations.

2 Path Integral Framework

In this Section, we first define the model and then introduce the FK representation of the
corresponding density matrix. Next, we briefly recall the efficiency of FK formula for de-
scribing the high-temperature regime, and we argue about its drawbacks for analyzing low-
temperature behaviors.

We consider a quantum non-relativistic particle of mass m in one dimension z with
Hamiltonian H = −�

2/(2m)Δ + V (z). The matrix elements of Gibbs operator ρ =
exp[−βH ] with β = 1/(kBT ), define the so-called density matrix ρ(x, y,β) = 〈x|ρ|y〉.
The partition function Z(β) = Trace[ρ] is well behaved for a confining potential such that
V (z) → ∞ when |z| → ∞. The normalized probability density to find the particle at posi-
tion x then reduces to Ψ (x,β) = ρ(x, x,β)/Z(β). For a potential which vanishes at infinity
in an integrable way, we introduce the virial coefficient B(β) = Trace[ρ − ρ0] where ρ0

is the free density matrix, as well as the normalized deviation to the uniform free density

1Such results are inferred from the spectral representation on the one hand, and from a transfer-matrix diag-
onalization method specific to one-dimensional systems on the other hand.
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Φ(x,β) = [ρ(x, x,β) − ρ0(x, x,β)]/B(β).2 For further purposes, it is also convenient to
introduce the spectral representation of the density matrix

ρ(x, y,β) =
+∞∑

k=0

φk(x)φ∗
k (y) exp(−βEk), (1)

where φk is the k-th eigenstate of H with energy Ek . It is understood that, for the continuous
part of the spectrum, the discrete sum in the r.h.s. of (1) is replaced by an integral over the
energies of diffusion states.

Path integrals were first introduced for representing the matrix elements of the evolu-
tion operator exp(−iH t/�) associated with Schrödinger equation [1]. It was soon real-
ized that a similar path integral representation for matrix elements of Gibbs operator at
inverse temperature β can be inferred via the formal substitution t → −iβ�. In that gen-
uine representation of ρ(x, y,β), paths can be rewritten within the parametrization ω(u) =
(1 − s)x + sy +λDξ(s), where s = u/(β�) is the dimensionless time in β� units, while ξ(s)

is a Brownian bridge satisfying boundary conditions ξ(0) = ξ(1) = 0 and λD = (β�
2/m)1/2

is the de Broglie wavelength. This provides the so-called Feynman–Kac formula [2–4]

ρ(x, y,β) = exp[−(x − y)2/(2λ2
D)]√

2πλD

×
∫

Ω

DW(ξ) exp

(
−β

∫ 1

0
dsV ((1 − s)x + sy + λDξ(s))

)
(2)

where Ω = {ξ(·)} is the infinite set of realizations of the Brownian bridge process, while
DW(ξ) is the normalized Gaussian Wiener measure defined by its first two moments,
〈ξ(s)〉Ω = 0 and 〈ξ(s1)ξ(s2)〉Ω = min(s1, s2)(1 − max(s1, s2)). Wiener measure is intrinsic
to Brownian motion and does not depend on any physical parameter. Mass m of the parti-
cle, as well as Planck’s constant � only intervene in the de Broglie wavelength λD , which
controls the size of quantum fluctuations, as shown by specifying (2) to diagonal elements,
i.e.

ρ(x, x,β) = 1√
2πλD

∫

Ω

DW(ξ) exp

(
−β

∫ 1

0
dsV (x + λDξ(s))

)
. (3)

In time-average
∫ 1

0 dsV (x + λDξ(s)), particle experiences the potential around position x

on a length scale obviously determined by λD , as illustrated in Fig. 1. Notice that, besides its
interest for analytical or numerical calculations (see below), Feynman–Kac representation
is also quite useful for mapping a quantum system into a classical one [20–23].

At high temperatures, de Broglie wavelength is small, so only paths which remain
close to reference position x contribute significantly to ρ(x, x,β) in (3). Therefore, the
time-average of V along path x + λDξ(s) can be performed by replacing V (x + λDξ(s))

by its Taylor series around V (x). This generates quantum corrections to classical form
exp[−βV (x)]/(√2πλD) because λD is proportional to �. Thanks to Wick’s theorem, we

2Virial coefficient B occurs in low-fugacity expansions of thermodynamical quantities for a many-body sys-
tem made with two-body interactions V (xi − xj ). Deviation Φ then determines leading particle correlations
at low densities.
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Fig. 1 (Color online) Typical path which starts and ends at position x, along which particle experiences
potential V . Dashed lines indicate the two edges of a fictitious box determined by the extremal deviations ξ1
and ξ2 of the path. Typical sizes of ξ1 and ξ2 are of order one

easily retrieve the well-known Wigner–Kirkwood expansion in powers of �
2

ρ(x, x,β) = e−βV (x)

√
2πλD

[
1 − β2

�
2

12m

d2V

dx2
+ β3

�
2

24m

(
dV

dx

)2

+ · · ·
]
, (4)

which was derived long ago by using the Wigner-distribution formalism (see e.g. Ref. [9]).
Previous method might be used for calculating higher-order terms beyond �

2-correction
(terms up to order �

6 have been already determined in the literature [24]). Moreover, it
clearly emphasizes that expansion (4) is appropriate when the de Broglie wavelength is
much smaller than the typical length of variation of the potential.

When the temperature decreases, the de Broglie wavelength increases, so Wigner–
Kirkwood expansion is no longer applicable. At the analytical level, exact evaluations of
the corresponding path integrals are not accessible in general, except for some simple mod-
els [5]. Non-perturbative effects in � can be partially accounted for through various meth-
ods. The celebrated semi-classical approximation is based on an expansion with respect to
the deviation of an arbitrary path with respect to the classical trajectory. The truncation of
that expansion up to second order leads to a Gaussian functional integral, which is exactly
computed in terms of the classical action and its derivatives [11]. A second method relies
on the introduction of auxiliary harmonic potentials with adjustable frequencies [10]. Such
frequencies are then determined by a variational criterion which follows from Jensen in-
equality. The reliability of those methods remains questionable since they do not involve
any small control-parameter like (4). Nonetheless, for numerical purposes, their accuracy
may be satisfactory, at least at not too low temperatures.

When temperature goes to zero, λD diverges, so most paths explore a rather large region
not restricted to the neighborhood of reference position x. A direct analysis of FK expres-
sion (3) then becomes quite cumbersome. In particular, ρ(x, x,β) must behave as

ρ(x, x,β)
β→+∞∼ |φ0(x)|2 exp[−βE0], (5)

which immediately follows from spectral representation of density matrix (1). The factor-
ization of position and temperature dependencies in (5) does not come out easily from FK
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formula (3), where both position and temperature are coupled in an absolutely non-trivial
way.

3 Box Formula

3.1 The Central Observations

For fixing ideas, let us consider a symmetric potential V (z) with a minimum located at
z = 0. On the one hand, low-temperature behavior (5) of the corresponding density matrix
is mainly determined by the local shape of V (z) over finite length scale a0, which charac-
terizes the spatial extension of the groundstate wave function φ0(x). On the other hand, for
typical paths with size of order λD , time-average potential

∫ 1
0 dsV (x + λDξ(s)) becomes,

roughly speaking, of order
∫ λD

0 dzV (z)/λD when λD is sufficiently large. At low temper-

atures, β
∫ 1

0 dsV (x + λDξ(s)) does not behave as a constant times β in general. Thus,
low-temperature behavior (5) is not provided by typical paths. That argument can be im-
plemented through semi-quantitative estimations in some specific cases. For a confining
potential which diverges as |z|n (n > 0), contributions of typical paths to (3) then behave
(discarding multiplicative powers of β) as exp(−cβ1+n/2) with some positive constant c.
For integrable potentials, such contributions become of order exp(−c/β1/2). In both cases,
typical contributions are exponentially smaller than leading Boltzmann factor exp[−βE0].

The previous analysis suggests that, at low temperatures, leading contributions to the
r.h.s. of (3) arise from paths with a spatial extension of order a0, i.e. from quite small
Brownian bridges with size |ξ(s)| of order a0/λD . For such paths, time-average potential∫ 1

0 dsV (x + λDξ(s)) is of order V (a0), so the corresponding Boltzmann factor indeed is of
order exp[−βE0]. Notice that, paths with very different shapes give raise to similar contribu-
tions, since the Wiener weights of the associated Brownian bridges remain of order (roughly
speaking) exp(− ∫ 1

0 ds(ξ̇ (s))2/2) ∼ exp(−a2
0/λ

2
D) ∼ 1. Consequently, when the temperature

decreases, only a very tiny subset of paths gives a relevant contribution to the r.h.s. of (3).
In other words, important paths are not any more typical but, on the contrary, they can be
viewed as large deviations. This explains why direct numerical evaluations of (3) become
rather difficult: the subset of important paths remains, in some sense, hidden in the entire
configurational space.

In order to extract from (3) the relevant contributions at low temperatures, it is tempting
to collect all paths with the same finite spatial extension, and then to sum over all possible
extensions. That procedure is not easy to carry out directly in the r.h.s. of (3), within a
suitable partition of functional integration space over Brownian bridges. As described below,
it is more convenient to transform first the density matrix within the operator representation,
by introducing an auxiliary Hamiltonian which confines the particle inside a box with size �.

3.2 The Auxiliary Hamiltonian Approach

Let us introduce the auxiliary Hamiltonian H� = H 0 +V +V�, where H 0 denotes the kinetic
Hamiltonian. The additional potential V� is defined by

V�(z) = V0[1 − Θ(z + �) + Θ(z − l)], (6)

where Θ is the Heavyside function, while V0 denotes barrier height (V0 > 0). That poten-
tial tends to confine the particle inside a box with extension �. The auxiliary Hamiltonian
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reduces to the genuine one when � goes to infinity. In that limit, for x kept fixed, diagonal
part 〈x|ρ�|x〉 of density matrix ρ� = exp[−βH�] goes to 〈x|ρ|x〉.

The identity,

〈x|ρ|x〉 = 〈x|ρL|x〉 +
∫ ∞

L

d�〈x|∂�[ρ�]|x〉 (7)

which is valid for any reference extension L and for any height V0 of the confining potential
is quite useful for our purpose. We set L = |x|, and we consider an infinitely high potential
barrier V0. Under that limit, 〈x|ρL|x〉 goes to zero because the probability for the particle to
stay on the boundary vanishes for infinitely high walls. By using Dyson formula for ∂�[ρ�],
we then obtain

ρ(x, x,β) = lim
V0→∞

βV0

∫ ∞

|x|
d�

∫ 1

0
ds[ρ�(x, �,β[1 − s])ρ�(�, x,βs)

+ ρ�(x,−�,β[1 − s])ρ�(−�, x,βs)]. (8)

Expression (8) must be considered with some caution because when V0 diverges the different
integrands vanishes. In order to control limit V0 → ∞, we rewrite the integrands in terms of
constrained density matrix ρ0

� of the free particle submitted to confining potential V�. After
defining

g±(x, �, s, β) = lim
V0→∞

(2π)1/2λD(βV0)ρ
0
� (x,±�,βs)ρ0

� (±�, x,β(1 − s)), (9)

we transform (8) into

ρ(x, x,β) =
∫ +∞

|x|
d�

∫ 1

0
ds

g−(x, �, s, β)√
2πλD

〈
exp

[
−βs

∫ 1

0
duV (z(u))

]〉

Ω−
s

×
〈
exp

[
−β(1 − s)

∫ 1

0
duV (z(u))

]〉

Ω−
1−s

+
∫ +∞

|x|
d�

∫ 1

0
ds

g+(x, �, s, β)√
2πλD

〈
exp

[
−βs

∫ 1

0
duV (z(u))

]〉

Ω+
s

×
〈
exp

[
−β(1 − s)

∫ 1

0
duV (z(u))

]〉

Ω+
1−s

. (10)

Notation 〈.〉ω denotes an average over a constrained Brownian process which belongs to a
set ω. Paths z(u) are expressed in terms of Brownian bridges according to z(u) = x(1 −
u) ± u� + √

sλDξ(u) for Ω±
s . Moreover those paths must stay inside the box [−�,+�], so

that constraint defines the corresponding sets Ω±
s . The statistical weight of a path in such

a constrained average is its associated Wiener measure DW(ξ). For the sake of notational
convenience, we do not explicitly write the dependencies on both x and � of Ω±

s .
The physical interpretation of functions g± clearly emerges from (10), if we specify that

general formula to the particular case V (z) = 0. Such functions are the (normalized) statisti-
cal weights of the constrained sets Ω± = Ω±

s ∪Ω±
1−s , i.e. the sum of statistical weights of all

paths touching the boundaries of the box at time s (see Fig. 2). Therefore, in the following,
we set g±(x, �, s, β) = g(Ω±). Analytical calculations of those weights are performed in
Appendix, by using the spectral representation of ρ0

� .
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Fig. 2 (Color online) Typical
paths which start and end at
position x. Solid and dashed lines
represent paths which belong to
Ω+ and to Ω− respectively

The first step of our rewriting of Feynman–Kac representation, is achieved through for-
mula (10). Paths are indeed collected together according to their extension ±�. Notice that
the touching time, s, is also crucial for defining the corresponding proper partition of the
genuine integration space over all unconstrained paths.

3.3 Introduction of Averages Over Occupation Times

In a second step, we introduce the so-called occupation time, defined for each given path
z(u) in Ω±

s by

θz(x
′) =

∫ 1

0
duδ(x ′ − z(u)). (11)

The quantity θz(x
′)dx ′ is the total time passed in a neighborhood dx ′ of position x ′ by the

particle when it follows Brownian path z(u). Of course, the total time passed in the whole
box is always equal to 1, i.e.

∫ +�

−�
dx ′θz(x

′) = 1. Time-averaged potential along path z(u) is
then expressed in terms of occupation time via the obvious identity

∫ 1

0
duV (z(u)) =

∫ +�

−�

dx ′θz(x
′)V (x ′), (12)

valid for any path z(u).
According to identity (12), Boltzmann factors involved in averages 〈· · ·〉Ω±

s
in the r.h.s.

of (10), only depend on the occupation time θz(x
′). As illustrated in Fig. 3, various differ-

ent paths may provide the same occupation time. As quoted in Sect. 3.1, their statistical
weights are close together, so their contributions to 〈· · ·〉Ω±

s
are almost identical. Thus, it

is now tempting to collect all paths which provide the same occupation time θ(x ′), via the
introduction of the corresponding density measure DΩ±

s
[θ ]. After expressing averages over

constrained paths, as averages over occupation times with (normalized) measure DΩ±
s
[θ ],

we eventually obtain the box formula
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Fig. 3 (Color online) Three
different paths which start at x

and end at +�, while the
corresponding occupation times
are identical

ρ(x, x,β) =
∫ +∞

|x|
d�

∫ 1

0
ds

g(Ω−)√
2πλD

∫
DΩ−

s
[θ ] exp

[
−βs

∫ +�

−�

dx ′θ(x ′)V (x ′)
]

×
∫

DΩ−
1−s

[θ ] exp

[
−β(1 − s)

∫ +�

−�

dx ′θ(x ′)V (x ′)
]

+
∫ +∞

|x|
d�

∫ 1

0
ds

g(Ω+)√
2πλD

∫
DΩ+

s
[θ ] exp

[
−βs

∫ +�

−�

dx ′θ(x ′)V (x ′)
]

×
∫

DΩ+
1−s

[θ ] exp

[
−β(1 − s)

∫ +�

−�

dx ′θ(x ′)V (x ′)
]
. (13)

If statistical weights g(Ω±) are analytically known (see Appendix), explicit expressions
for density measures DΩ±

s
[θ ] are not available. Such probability densities result from the

summation of Wiener measures over all Brownian paths inside Ω±
s which provide the same

occupation time. That procedure is quite difficult to handle in closed analytical forms, and
only the moments of DΩ±

s
[θ ] can be computed explicitly. Nevertheless, box formula (13)

turns out to be quite useful for various purposes, as suggested by the following simple com-
ments and arguments.

Contrary to the case of the genuine Feynman–Kac representation, leading contributions
at low temperature merely emerge from box formula (13). Indeed, for x of order a0, boxes
with size � of order a few a0 do provide contributions of order exp(−βE0), because weight
factors g(Ω±) are of order exp(−π2λ2

D/(8�2)) for � � λD (see Appendix), while products
of averages of Boltzmann factors over occupation times are of order exp(−β

∫ �

0 dx ′V (x ′)/�).
That rough analysis will be implemented in a forthcoming paper, where we show more
precisely how low temperature behavior (5) arises from scaling properties of distributions
DΩ±

s
[θ ] in the regime � � λD .

If Brownian paths are quite noisy, the corresponding occupation times may have rather
regular shapes. This is illustrated in Fig. 4(a), which shows a regular path on the one hand, an
a very jagged one on the other hand: both paths provide occupation times with regular shapes
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Fig. 4 (Color online) Panel (a) presents two different paths which start at position x at time u = 0 and end
at � for time u = 1. Panel (b) shows their corresponding occupation times θz(x

′)

displayed in Fig. 4(b) (notice that the corresponding contributions to Boltzmann factors are
of course different). That observation leads to a first type of approximations based on simple
modelizations of distributions DΩ±

s
[θ ] within restricted sets of elementary functions which

represent the various occupation times (they will be described elsewhere). A second type of
approximations is based on the truncation of cumulant expansions, where key ingredients do
exhibit regular behaviors with respect to spatial positions. One of them is presented further
in Sect. 4.

4 Ergodic Approximation

4.1 Truncation of the Cumulant Expansion

Formally, averages over distributions DΩ±
s
[θ ] involved in the r.h.s. of box formula (13) can

be represented by their infinite cumulant expansions. A natural approximation consists in
truncating that expansion up to its first term, i.e. we replace the averages

∫
DΩ±

s
[θ ] exp

[
−βs

∫ +�

−�

dx ′θ(x ′)V (x ′)
]

(14)

by

exp

(
−βs

∫ +�

−�

dx ′〈θ(x ′)〉Ω±
s
V (x ′)

)
. (15)

We call that lowest order approximation ergodic, since it would be exact if paths were ex-
periencing all parts of the potential with a probability independent of time. It amounts to
replace (imaginary) time averages of the potential by spatial averages with a measure de-
fined by mean occupation-time 〈θ(x ′)〉Ω±

s
. Inserting (15) into (13), we obtain the subsequent
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ergodic approximation for density matrix,

ρerg(x, x,β) =
∫ +∞

|x|
d�

∫ 1

0
ds

g(Ω−)√
2πλD

× exp

[
−β

∫ +�

−�

dx ′(s〈θ(x ′)〉Ω−
s

+ [1 − s]〈θ(x ′)〉Ω−
1−s

)V (x ′)
]

+
∫ +∞

|x|
d�

∫ 1

0
ds

g(Ω+)√
2πλD

× exp

[
−β

∫ +�

−�

dx ′(s〈θ(x ′)〉Ω+
s

+ [1 − s]〈θ(x ′)〉Ω+
1−s

)V (x ′)
]
. (16)

Notice that Jensen inequality ensures ρerg(x, x,β) ≤ ρ(x, x,β).

4.2 Mean Occupation Time in Terms of Brownian Green Functions

The average occupation time can be obtained within two different methods: either by using
operator algebra or, in a more physical way, by using Brownian motion properties, as shown
below. First we compute the mean occupation time around position x ′, over Brownian paths
at inverse temperature β ′ which start from xi at time u = 0 and end at xf for time u = 1.
Those Brownian paths are constrained within the interval [−�,+�], and they define a set
ω = {z(u) = xi(1 − u) + xf u + λξ(u)} with λ2 = β ′

�
2/m.

Introducing the constrained probability density fω(z,u) to find the Brownian particle at
the position z for time u, the mean occupation time reads

〈θ(x ′)〉ω =
∫ 1

0
dufω(x ′, u). (17)

The probability density fω(x ′, u) can be generated by using the Green function Gω(z,

t |z0, t0) of the diffusion equation, solved with Dirichlet boundary conditions Gω(±�,

t |z0, t0) = 0 and initial condition Gω(z, t0|z0, t0) = δ(z − z0). That Green function reduces
to

Gω(z, t |z0, t0) = 1

�

∞∑

n=1

ψn(z0/�)ψn(z/�) exp

[
−(t − t0)

λ2

�2

π2

8
n2

]
, (18)

with ψn(z/�) = sin [nπ(z + �)/(2�)]. Since Brownian motion is a Markov process, the con-
strained probability density fω(x ′, u) is then

fω(x ′, u) = Gω(x ′, u|xi,0)Gω(xf ,1 − u|x ′,0)

Gω(xf ,1|xi,0)
. (19)

Using scaling and symmetry properties of the Green function, we obtain

〈θ(x ′)〉Ω∓
s

= 1

�
Φ

(
±x

�
,±x ′

�
,
λD

√
s

�

)
, (20)

where Φ is a dimensionless function derived by using expressions (17), (18) and (19) (see
below). Inserting those expressions of mean occupation times for various sets Ω±

s into (16),
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the ergodic form of the density matrix is rewritten as

ρerg(x, x,β)

=
∫ +∞

|x|
d�

∫ 1

0
ds

g(Ω−
s )√

2πλD

exp

(
−βs

∫ +1

−1
dα′Φ

(
x

�
,α′,

πλD

√
s

2�

)
V (α′�)

)

× exp

(
−β[1 − s]

∫ +1

−1
dα′Φ

(
x

�
,α′,

πλD

√
1 − s

2�

)
V (α′�)

)

+
∫ +∞

|x|
d�

∫ 1

0
ds

g(Ω+
s )√

2πλD

exp

(
−βs

∫ +1

−1
dα′Φ

(
−x

�
,α′,

πλD

√
s

2�

)
V (−α′�)

)

× exp

(
−β[1 − s]

∫ +1

−1
dα′Φ

(
−x

�
,α′,

πλD

√
1 − s

2�

)
V (−α′�)

)
(21)

with g(Ω∓
s ) = g(±x, �, s, β). In (21), all quantities are explicitly known in terms of sim-

ple series involving Gaussian and trigonometric functions. Box weight g(x, �, s, β) is com-
puted in Appendix, while a similar expression is derived for Φ in the next subsection (see
formula (22)). Within the ergodic approximation, we are left with the evaluation of two
ordinary integrals, which is of course much easier than a direct evaluation of the genuine
functional integrals.

4.3 Analytical Estimations for Φ at Low and High Temperatures

Use of simple summation formulas [25] provides the general form

Φ(α,α′, y) =
∑∞

n=1 exp[− y2

2 n2]ψn(α
′)[nψn(α)ψn(α

′) + 2
y2 An(α,α′)]

∑∞
n=1 ψn(α)n exp[− y2

2 n2]
, (22)

with

An(α,α′) = π

8

[
(1 − α − 2α′) sin

[
n

π

2
(α + α′ + 2)

]

+
(

1 + α − 2α′ − 2
α − α′

|α − α′|
)

sin

[
n

π

2
(α − α′)

]]
. (23)

In formula (21), third variable y of the function Φ is proportional to λD/�. Thus the low and
high temperature regimes correspond to the limits y → ∞ and y → 0 respectively. In the
following, we derive asymptotic formulas for Φ in those two limits.

The asymptotic form of Φ when y → ∞ is obtained by keeping only terms n = 1 in
formula (22). This leads to

Φ(α,α′, y) = cos2

(
πα′

2

)[
1 + π

4y2
(α′ − 1) tan

(
π

2
α′

)]

+ cos2

(
πα′

2

)[
(Mα,α′ − 1) tan

(
π

2
Mα,α′

)

+ (1 + mα,α′) tan

(
π

2
mα,α′

)]
π

4y2

+ O(exp[−y2/2]), (24)
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Fig. 5 (Color online)
Dimensionless function
Φ(α,α′,2) for α = −0.99
(circles), α = 0 (plus signs) and
α = 0.99 (squares). Solid lines
follow from the numerical
calculation of expression (22),
while points correspond to
asymptotic formula (24)

where mα,α′ = min(α,α′) and Mα,α′ = max(α,α′). Notice that the leading the term is nor-
malized to unity (in other words, the leading term satisfies the normalization condition of Φ).
Figure 5 shows the comparison between asymptotic expression (24) and the exact formula
(22) evaluated numerically. Asymptotic formula is really accurate for any α, even for y close
to unity.

In order to obtain the small-y behavior of Φ , the Poisson transform (46) is applied to (22).
We find

Φ(α,α′, y) = 1

2
+ 1

2

(1 − α) + (1 − α)
∑

n�=0 exp[− π2

y2 n(2n − α − 1)]
(1 + α) + ∑

n�=0(1 + α + 4n) exp[− π2

y2 n(1 + α + 2n)]

+
∑

n�=0 n exp[− π2

2y2 (α′ + α − 2n)(α′ − 1 − 2n)]
(1 + α) + ∑

n�=0(1 + α + 4n) exp[− π2

y2 n(1 + α + 2n)]

−
∑

n�=0 n exp[− π2

2y2 (α′ − α − 2n)(1 + α′ − 2n)]
(1 + α) + ∑

n�=0(1 + α + 4n) exp[− π2

y2 n(1 + α + 2n)] (25)

for α′ < α, while

Φ(α,α′, y) = 1

2
− 1

2

{
(1 + α) − 2 exp

[
− π2

2y2
(α′ − α)(1 + α′)

]

+ (1 + α)
∑

n�=0

exp

[
−π2

y2
n(2n − α − 1)

]}

×
{
(1 + α) +

∑

n�=0

(1 + α + 4n) exp

[
−π2

y2
n(1 + α + 2n)

]}−1
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Fig. 6 (Color online) Dimensionless function Φ(α,α′,1.5) (left panel) and Φ(α,α′,0.5) (right panel) for
α = −0.99 (square), α = 0 (cross) and α = 0.5 (circle). The solid lines follow from numerical calculations
of formulas (25–26), while symbols correspond to small-y asymptotic formula

+
∑

n�=0 n exp[− π2

2y2 (α′ + α − 2n)(α′ − 1 − 2n)]
(1 + α) + ∑

n�=0(1 + α + 4n) exp[− π2

y2 n(1 + α + 2n)]

+
∑

n�=0(1 − n) exp[− π2

2y2 (α′ − α − 2n)(1 + α′ − 2n)]
(1 + α) + ∑

n�=0(1 + α + 4n) exp[− π2

y2 n(1 + α + 2n)] (26)

for α′ > α. For y small, numerical estimates of those expressions are obtained by truncating
all sums to terms n = ±1. They are compared with exact formulas (25–26) in Fig. 6 and are
quite accurate for any α, and even for y close to unity. In the very high temperature regime
and for almost all values of α, Φ is close to Θ(α − α′)/(1 + α).

5 Applications of the Ergodic Approximation to Symmetric and Monotonic Potentials

In the remainder of the paper, we will restrict ourselves to a potential such that V (−x) =
V (x), V ′(x) ≥ 0 for x ≥ 0, and either V (x) → ∞ or V (x) → 0− when x → ∞. Let us focus
at first on the following question: does the ergodic approximation lead to reliable estimates
in the low temperature regime?

5.1 Low Temperature Regime

Inserting the asymptotic expressions (24) and (45) for Φ and g respectively into for-
mula (21), we find the low-temperature behavior of the ergodic density matrix,

ρerg(x, x,β)
β→∞∼

∫ +∞

|x|
d�

π2λ2
D

8�4
sin2

[
π(x + �)

2�

]
exp[−βE(�)]

× (exp[−ϕ+(�, x/�)] + exp[−ϕ−(�,−x/�)]), (27)
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with

E(�) = π2
�

2

8m�2
+

∫ +1

−1
dα′ cos2

(
πα′

2

)
V (α′�), (28)

ϕ±(�,α) = 2m�2

π�2

[
2
∫ 1

0
dα′V (α′�) sin(πα′)α′ −

∫ 1

α

dα′V (α′�) sin(πα′)
]

+ 2m�2

π�2
α tan

(
πα

2

)

×
[∫ 1

0
dα′V (α′�) cos2

(
πα′

2

)
− 1

α

∫ α

0
dzV (α′�) cos2

(
πα′

2

)]
.

(29)

Positivity of ϕ± enforces the convergence of the integral in the r.h.s. of (27) (contributions
from boxes with large sizes � do vanish in an integrable way). Expression (27) can still
be simplified in the low temperature regime (β → ∞), by using the saddle point method.
Either the divergence of potential V (z) for z large, or

∫ ∞
−∞ dzV (z) < 0, ensure the existence

of a value �0 which minimizes the function E(�). We emphasize that �0 depends, of course,
on the potential, and is attained in integral (27) only for values of x such that |x| < �0.
Assuming that the second derivative of E is well defined at �0, we can apply the saddle
point method for |x| < �0. This provides the general result

ρerg(x, x,β)
β→∞∼ n(x)Γ (β) (30)

for |x| < �0. In (30), n(x) is the unnormalized density

n(x) = 1

�0
sin2

[
π(x + �0)

2�0

]
(exp[−ϕ+(�0, x/�0)] + exp[−ϕ−(�0,−x/�0)]), (31)

while the temperature dependence is entirely embedded into

Γ (β) = π2λD

8�0

√
2π�2

m�4
0E

′′(�0)
exp[−βE(�0)]. (32)

We stress that temperature and position dependencies are factorized in formula (30), like
in the exact low-temperature behavior (5). Although the temperature dependence of the er-
godic density matrix is not entirely correct (because of the presence of factor λD in Γ (β)),
the quantity E(�0) can be identified as the ergodic groundstate energy: indeed, it controls
the exponential decay of ρerg(x, x,β) when β → ∞. Below, we show, through several ex-
amples, that E(�0) is a good approximation for the real groundstate energy.

For |x| > �0, the saddle point �0 is outside the integration range of (27). In that case,
ρerg(x, x,β) could be evaluated by expanding the involved integrand for � close to |x|. Of
course, for a given β , if x becomes sufficiently large, ρerg(x, x,β) tends to the classical
Boltzmann factor which, by the way, vanishes exponentially fast.

Now, we turn to specific forms of V (x). First, let us consider confining potentials
V (z) = anz

n/n, where n is an even integer and an > 0. The associated Schrödinger equa-
tion depends only on the two parameters �

2/m and an. Only one typical energy εp =
(�2/m)n/(n+2)a

2/(n+2)
n and one typical length �p = [�2/(man)]1/(n+2) can be built in terms
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of those parameters. Therefore, the energy and the spatial extension of the ground state are
proportional to those typical energy and length respectively. Formula (30) can be used to
compute the ergodic density matrix elements in the low temperature regime for |x| < �0.
Function E(�) reads

E(�) = π2
�

2

8m�2
+ an�

n

n
Rn, (33)

where Rn = ∫ 1
−1 dz cos2(πz/2)zn is a pure numerical coefficient. The minimum of above

expression, reached for �0 = �p(π2/4Rn)
1/(n+2), is

E(�0) = an�
n

0 Rn

[
1

2
+ 1

n

]
. (34)

We also find

ϕ±(�0, x/�0) = π

2nRn

[
2
∫ 1

0
dz sin(πz)zn+1 −

∫ 1

x/�0

dz sin(πz)zn

]

+ π

2nRn

(
x

�0

)
tan

(
πx

2�0

)

×
[∫ 1

0
dz cos2

(
πz

2

)
zn − �0

x

∫ x/�0

0
dz cos2

(
πz

2

)
zn

]
(35)

which provides n(x). Two important comments are in order. The scaling properties of the
groundstate energy and extension are indeed recovered within the ergodic approximation.
Table 1 presents a comparison with the numerical resolution of Schrödinger equation. The
agreement, already good for low values of the exponent n, becomes better when n increases.
This could be expected a priori, because the ergodic approximation becomes exact for an
infinite square well potential. Comparisons for the groundstate pdf are presented in Fig. 7:
the agreement is impressive.

Second, we consider a modified Pöschl–Teller potential namely V (x) = −V0/

[√2 cosh(x/ lp)]2 with V0 > 0. The spectrum of the corresponding Hamiltonian is exactly
known. In particular, the groundstate energy is given by E0 = −(V0/2)(

√
1 + 2γ /π2 −√

2γ /π)2 with γ = π2
�

2/(8ml2
pV0). Parameter γ −1 controls the strength of the confine-

ment: for γ −1 sufficiently small, the groundstate is the sole bound state, while the number
of bound states increases when γ −1 increases. Now, the ergodic energy reads

E(�0) = V0

(
γ

(
lp

�0

)2

−
∫ 1

0
dz

cos2(πz/2)

cosh2(z�0/lp)

)
, (36)

Table 1 Comparison of the ergodic groundstate energy E(�0) derived by using formula (34), to the exact re-
sult E0 (obtained by numerically solving Schrödinger equation). Integer n is the exponent of the anharmonic
potential

n 2 4 6 8 10

E(�0)−E0
E0

13% 12% 10% 7.5% 6%
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Table 2 Comparison of the ergodic groundstate energy E(�0) derived by using formula (36), to the exact
result E0

γ 0.01 0.1 1 5 10

E(�0)−E0
E0

1.33% 4.8% 20% 43% 50%

where �0 is the unique solution of

γ

(
lp

�0

)3

=
∫ 1

0
dz

cos2(πz/2) tanh(z�0/lp)

cosh2(z�0/lp)
. (37)

In Table 2 we compare E(�0) to E0 for different values of γ . Figure 8 shows the correspond-
ing comparisons for the groundstate pdf’s. For values of γ smaller than 1, ergodic energies
stay close to the exact values and ergodic groundstate pdf’s are quite good. Even for val-
ues of γ of order 1, the main shape of the groundstate pdf remains well approximated. If
we set γ → ∞ by taking the double limit lp → 0 and V0 → ∞ with V0lp = C fixed, then
V (x) reduces to the singular potential −Cδ(x). In that rather unfavorable case, the discrep-
ancy between E(�0) and E0 becomes of order 60 percent. However, notice that the ergodic
approximation does predict the existence of a bound state, contrarily to semi-classical esti-
mations.

From the low-temperature behavior of the semi-classical density matrix [11], we extract
the semi-classical groundstate energy Esc = V (0) + �ω0/2 with ω0 = [d2V/dx2(0)/m]1/2.
That simple formula can be interpreted by noticing that the semi-classical approximation
then amounts to replace the genuine potential by its harmonic local form near its minimum
at x = 0. For considered anharmonic potentials, Esc vanishes because ω0 = 0, so the semi-
classical approximation completely fails at low temperatures. For the modified Pöschl–Teller
potential, Esc becomes exact when the confinement is strong, i.e. when γ → 0, in agreement
with the fact that the semi-classical approximation turns to be exact for a harmonic poten-
tial. Above a given value of γ , Esc becomes positive so the semi-classical approximation
erroneously predicts that all bound states disappear.

5.2 Intermediate and High Temperature Regimes

At intermediate temperatures, formula (21) is implemented through simple numerical eval-
uations of ordinary integrals. As shown below, the ergodic approximation is particularly
efficient in that regime or, in other words, it provides a good interpolation between the exact
behaviors at high and low temperatures. Here, we consider both global and local quanti-
ties, namely internal energy U = −∂β(log(Z(β)) and probability density function (PDF)
Ψ (x,β) = ρ(x, x,β)/Z(β) for confining potentials (V (x) → ∞) on the one hand, virial
coefficient B(β) and deviation Φ(x,β) = [ρ(x, x,β) − (

√
2πλD)−1]/B(β) for hole poten-

tials (V (x) → 0−) on the other hand. Comparisons are made with either numerically exact
results or other familiar approximations.

The ergodic approximation appears to be rather accurate for estimating the considered
thermodynamic quantities. There always exists a large-temperature domain where the er-
godic approximation is significantly better than other considered approximations. Above
temperature domain becomes larger when the anharmonicity of the potential increases. Fig-
ures 9 and 10 show results for respectively, the anharmonic potential V (x) = a4x

4, and the
modified Pöschl–Teller potential with γ = 1 .



J Stat Phys (2007) 128: 1391–1414 1409

F
ig

.8
(C

ol
or

on
lin

e)
Pr

ob
ab

ili
ty

de
ns

ity
fu

nc
tio

n
of

th
e

gr
ou

nd
st

at
e

fo
r

m
od

ifi
ed

Pö
sc

hl
–T

el
le

r
po

te
nt

ia
l.

T
he

so
lid

lin
es

re
pr

es
en

t
th

e
ex

ac
t

gr
ou

nd
st

at
es

pd
f,

w
hi

le
po

in
ts

co
rr

es
po

nd
to

th
ei

r
er

go
di

c
ap

pr
ox

im
at

io
n



1410 J Stat Phys (2007) 128: 1391–1414

F
ig

.9
(C

ol
or

on
lin

e)
R

el
at

iv
e

er
ro

r
fo

r
in

te
rn

al
en

er
gy

(l
ef

t
pa

ne
l)

an
d

m
ea

n-
sq

ua
re

er
ro

r
fo

r
th

e
pr

ob
ab

ili
ty

de
ns

ity
fu

nc
tio

n
Ψ

(r
ig

ht
pa

ne
l)

,a
s

fu
nc

tio
ns

of
th

e
te

m
pe

ra
tu

re
fo

r
th

e
po

te
nt

ia
l
V

(x
)
=

a
4
x

4
.

C
ir

cl
es

co
rr

es
po

nd
to

th
e

er
go

di
c

ap
pr

ox
im

at
io

n,
sq

ua
re

s
re

fe
r

to
W

ig
ne

r–
K

ir
kw

oo
d

ex
pa

ns
io

n
tr

un
ca

te
d

up
to

or
de

r
�

2
,

cr
os

se
s

de
sc

ri
be

th
e

se
m

i-
cl

as
si

ca
la

pp
ro

xi
m

at
io

n
an

d
di

am
on

ds
ar

e
th

e
cl

as
si

ca
lv

al
ue

s.
Q

ua
nt

ity
Δ

0,
1

is
th

e
en

er
gy

ga
p

be
tw

ee
n

th
e

gr
ou

nd
st

at
e

an
d

th
e

fir
st

ex
ci

te
d

on
e



J Stat Phys (2007) 128: 1391–1414 1411

F
ig

.1
0

(C
ol

or
on

lin
e)

R
el

at
iv

e
er

ro
r

fo
r

vi
ri

al
co

ef
fic

ie
nt

(l
ef

tp
an

el
)

an
d

m
ea

n-
sq

ua
re

er
ro

r
fo

r
th

e
pr

ob
ab

ili
ty

de
ns

ity
fu

nc
tio

n
Φ

(r
ig

ht
pa

ne
l)

,a
s

fu
nc

tio
ns

of
th

e
te

m
pe

ra
tu

re
fo

r
th

e
γ

=
1

m
od

ifi
ed

Pö
sc

hl
–T

el
le

r
po

te
nt

ia
l.

C
ir

cl
es

co
rr

es
po

nd
to

th
e

er
go

di
c

ap
pr

ox
im

at
io

n,
sq

ua
re

s
re

fe
r

to
W

ig
ne

r–
K

ir
kw

oo
d

ex
pa

ns
io

n
tr

un
ca

te
d

up
to

or
de

r
�

2
an

d
di

am
on

ds
ar

e
th

e
cl

as
si

ca
lv

al
ue

s.
Q

ua
nt

ity
Δ

0,
1

is
th

e
en

er
gy

ga
p

be
tw

ee
n

th
e

gr
ou

nd
st

at
e

an
d

th
e

fir
st

ex
ci

te
d

on
e



1412 J Stat Phys (2007) 128: 1391–1414

Either the Wigner–Kirkwood expansion or the semi-classical approximation become
well-suited when the temperature increases. Does the ergodic approximation provides sat-
isfactory results in the high temperature regime? More precisely, what part of the Wigner–
Kirkwood expansion is accounted for within that approximation? We obtain, in that regime,

ρerg(x, x,β)
β→0∼ e−βV (x)

√
2πλD

[
1 − β

d2V

dx2

λ2
D

12
+

(
β

dV

dx

)2
λ2

D

24
A0 + o(λ2

D)

]
, (38)

with the pure numerical coefficient

A0 = −1

2
+ 3

√
2π

∫ 1

0
ds

(
s

1 − s

)3/2

×
∫ ∞

0
dzz2 erfc2

(
z√
2s

)
exp

(
−z2(2s − 1)

2s(1 − s)

)

+ 3
√

2π

∫ 1

0
ds

∫ ∞

0
dzz2 erfc

(
z√
2s

)
erfc

(
z√

2(1 − s)

)
� 0.8. (39)

Thus, the ergodic approximation does provide the leading classical term, while part of the
�

2-correction is also correctly reproduced. At that order �
2, the discrepancy of (38) with

exact expansion (4), arises from correlations between occupation times which are not taken
into account in the ergodic approximation. Moreover, A0 is indeed smaller than 1 in agree-
ment with inequality ρerg(x, x,β) ≤ ρ(x, x,β). Eventually, the ergodic approximation turns
out to be also quite reasonable at high temperatures.

5.3 Further Applications and Extensions

For a single particle, the ergodic approximation can been also applied to other one-
dimensional potentials of interest (Morse, double well, periodic, . . .), with possible simple
modifications of box formula (13). For instance, for asymmetric Morse potential defined for
x > 0 (V (x) = ∞ for x < 0), the confining box is chosen as [0, �] of course. According
to preliminary calculations, accuracy of the ergodic approximation is comparable to that
observed above.

The extension of the ergodic approximation to two- or three-dimensional potentials re-
quires the derivation of suitable box formulas similar to (13). A first possible route starts
with an auxiliary Hamiltonian which tends to confine the particle inside a disk or a sphere
with radius �. This provides an exact formula identical to (13), except for an additional or-
dinary integral over the angle(s) of the boundary touching point. The corresponding ergodic
approximation involves an occupation-time average, which is easily expressed in terms of
the known free Green functions with Dirichlet boundary conditions on a disk or on a sphere.

For two particles with an interaction potential V (r1, r2) = V (r1 − r2) which depends
only on their relative position r1 − r2, thanks to the trivial motion of their mass center we
are left with the previous case of a single particle in an external potential V (r). For other
cases, like two interacting particles in an external potential or three interacting particles, box
formulas could also be derived in the same spirit as (13). Nevertheless, the corresponding
ergodic approximation should become rather difficult to numerically handle because of the
increasing number of intricated ordinary integrals.
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Appendix Statistical weights of boxes

Eigenstates and eigenvalues of the auxiliary Hamiltonian H 0
� are obtained by solving the

Schrödinger equation

d2φ0
�

dz2
= 2mV0

�2

[
1 − Θ(z + �) + Θ(z − �) − E

V0

]
φ0

� (z). (40)

After introducing dimensionless function ψ(z) = √
�φ0

� (z) and setting En = π2
�

2n2/

(8m�2) = E1n
2 for the n-th eigenvalue in the large-V0-limit, a straightforward calculation

leads to

ψn(z
�)

V0→∞∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
E1
V0

n, if z = −�,

sin
[

nπ
2�

(z + �)
]
, ∀z ∈]−�,+�[ ,

(−1)(n−1)
√

E1
V0

n, if z = �.

(41)

By using spectral decomposition (1), we eventually obtain the following expression for the
statistical weight functions

g ± (x, �, s, β) = √
2π

π2λ3
D

8�4
S±

g

(
x

�
,
πλD

√
s

2�

)
S±

g

(
x

�
,
πλD

√
1 − s

2�

)
, (42)

where

S±
g (α, y) =

∞∑

n=1

n(∓1)n−1 sin

[
n

π

2
(α + 1)

]
exp

[
−y2

2
n2

]
. (43)

Those two functions satisfy the equality g+(x, �, s, β) = g−(−x, �, s, β), the normalization
condition

∫ ∞

|x|
d�

∫ 1

0
ds[g−(x, �, s, β) + g+(x, �, s, β)] = 1, (44)

and their asymptotic form merely is

g ± (x, �, s, β)
λD��∼ √

2π
π2λ3

D

8�4
sin2

[
π(x + �)

2�

]
exp

[
−π2λ2

D

8�2

]
(45)

in the low temperature regime. The asymptotic expression of g± in the high-temperature
regime is derived from the Poisson transform of expression (43). According to Poisson for-
mula, if the Fourier transform of a function f exists, then, for all values of Δy

Δy

∞∑

n=−∞
f (nΔy) =

+∞∑

m=−∞

∫ +∞

−∞
dzf (z) e−im2πz/Δy. (46)

Application of that transformation to expression (43) provides

g−(x, �, s, β) = g+(−x, �, s, β)

λD��∼
√

2

π

�2

λ3
D

1√
s(1 − s)

(1 + x/�)2

s(1 − s)
exp

[
− �2

2λ2
D

(1 + x/�)2

s(1 − s)

]
(47)

in the high temperature regime.
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