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Abstract. We study long-range interacting systems perturbed by external
stochastic forces. Unlike the case of short-range systems, where stochastic forces
usually act locally on each particle, here we consider perturbations by external
stochastic fields. The system reaches stationary states where the external forces
balance the dissipation on average. These states do not respect detailed balance
and support non-vanishing fluxes of conserved quantities. We generalize the
kinetic theory of isolated long-range systems to describe the dynamics of this
non-equilibrium problem. The kinetic equation that we obtain applies to plasmas,
self-gravitating systems, and to a broad class of other systems. Our theoretical
results hold for homogeneous states, but may also be generalized to apply to
inhomogeneous states. We obtain an excellent agreement between our theoretical
predictions and numerical simulations. We discuss possible applications to
describe non-equilibrium phase transitions.
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1. Introduction

Most physical systems are out of equilibrium either because of coupling to thermal baths
at different temperatures or because of external forces that break detailed balance. The
study of non-equilibrium stationary states is an active area of research in modern statistical
mechanics. It is indeed a lasting challenge to achieve for non-equilibrium systems a level
of theoretical understanding similar to the one established for equilibrium systems [1]–[3].

In this letter, we consider systems of particles interacting through two-body non-
integrable potentials, also called long-range interactions. Examples include plasmas and
self-gravitating systems (globular clusters, galaxies), where particles interact through
repulsive or attractive Coulomb and attractive Newton potentials, respectively. Our work
also applies to a large class of models with non-integrable interactions, such as spins,
vortices in two dimensions, and others, which have been studied extensively in recent
years [4]–[8].

Systems with non-integrable potentials are often forced through external stochastic
fields. For example, globular clusters are affected by the gravitational potential of their
galaxy, thereby producing a force that fluctuates along their physical trajectories. In
addition, galaxies themselves feel the random potential of other surrounding galaxies, and
their halos are subjected to transient and periodic perturbations due, for example, to the
passing of dwarfs or to orbital decay [9]. Plasmas may also be subjected to fluctuating
interactions imposed by environmental electric or magnetic fields [10]. These physical
situations often lead to a stationary state where the power injected by the external
random fields balances on average the dissipation. To the best of our knowledge, such
non-equilibrium stationary states in systems with non-integrable potentials have not been
studied before, and this work provides a first step in this direction.

Unlike systems with short-range interactions, stochastic perturbations in long-range
interacting systems often act coherently on all particles and not independently on each
particle. Moreover, unlike short-range systems, it is not natural to consider long-range
systems as being coupled to thermal baths at the boundaries. Thus, the non-equilibrium
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stationary states that we study are rather different from the ones in systems with short-
range interactions. These states do not verify detailed balance and support non-zero fluxes
of conserved quantities, which are basic ingredients of non-equilibrium stationary states.

Theoretical results on isolated systems with long-range interactions include the kinetic
theory description of relaxation toward equilibrium. In plasma physics, this approach leads
to the Lenard–Balescu equation or to the approximate Landau equation [11, 12]. These
equations, or some of their approximations, are grouped as the collisional Boltzmann
equation in the astrophysical context. The main theoretical result of this letter is a
generalization of the kinetic theory to describe non-equilibrium stationary states, valid
for small external perturbations and spatially homogeneous stationary states.

The non-equilibrium kinetic equation that we obtain describes the temporal evolution
of the one-particle distribution function. When the system is not far from equilibrium, it
is natural to expect that the system settles into a stationary state. We find that in such
a state, the one-particle momentum distribution is non-Gaussian. The kinetic equation
describes the evolution of the kinetic energy, and its prediction of the stationary state
compares very well with N -body numerical simulations.

2. Stochastically forced long-range interacting systems

Consider a system of N particles interacting through a long-ranged pair potential. The
Hamiltonian of the system is

H =

N∑

i=1

p2
i

2
+

1

2N

N∑

i,j=1

v(qi − qj), (1)

where qi and pi are, respectively, the coordinate and the momentum of the ith particle,
while v(q) is the two-body interaction potential. The particles are taken to be of unit
mass. In this paper, for simplicity, we consider the qis to be scalar periodic variables of
period 2π; generalization to qi ∈ R

n, with n = 1, 2 or 3, is straightforward.
In self-gravitating systems, since the dynamics is dominated by collective effects, it

is natural and usual to rescale the time in such a way that the parameter 1/N multiplies
the interaction potential [13]. In plasma physics, the typical number of particles with
which one particle interacts is given by the coupling parameter Γ = nλ3

D, where n is the
number density and λD is the Debye length. It is then usual to rescale the time such that
the inverse of a power of Γ multiplies the interaction term [11]. These reasons justify the
rescaling of the potential energy by 1/N in equation (1), known as the Kac scaling in
systems with long-range interactions [14].

We perturb the system (1) by the action of the stochastic field F (qi, t). The resulting
equations of motion are

q̇i =
∂H

∂pi

, and ṗi = −∂H

∂qi

− αpi +
√

α F (qi, t), (2)

where α is the friction constant, and F (q, t) is a statistically homogeneous Gaussian
process with zero mean and variance given by

〈F (q, t)F (q′, t′)〉 = C(|q − q′|)δ(t − t′). (3)
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The hypothesis that the Gaussian fields are statistically homogeneous, i.e., the correlation
function depends solely on |q− q′|, holds for any perturbation which does not break space
homogeneity. Such a hypothesis will also be essential for the following discussions where
we consider homogeneous stationary states. Now, C(q) represents correlation, and is
therefore a positive-definite function [15]. Its Fourier components are thus positive:

ck ≡ 1

2π

∫ 2π

0

dq C(q)e−ikq > 0, C(q) = c0 + 2
∞∑

k=1

ck cos(kq). (4)

It will be convenient to use the following equivalent Fourier representation of the Gaussian
field F (q, t):

F (q, t) =
√

c0 X0 +

∞∑

k=1

√
2ck[cos(kq) Xk + sin(kq) Yk], (5)

where Xk and Yk are independent scalar Gaussian white noises satisfying 〈Xk(t) Xk′(t′)〉 =
δk,k′δ(t − t′), 〈Yk(t) Yk′(t′)〉 = δk,k′δ(t − t′), and 〈Xk(t) Yk′(t′)〉 = 0.

Using the Itō formula [16] to compute the time derivative of the energy density
e = H/N and averaging over noise realizations give

〈
de

dt

〉
+ 〈2ακ〉 =

α

2
C(0), (6)

where κ =
∑N

i=1 p2
i /(2N) is the kinetic energy density. The average kinetic energy density

in the stationary state is thus 〈κ〉ss = C(0)/4.
In the dynamics (2), the fluctuations of the intensive observables due to stochastic

forcing are of order
√

α, while those due to finite-size effects are of order 1/
√

N . Moreover,
the typical timescale associated with the effect of stochastic forces is 1/α (see, e.g.,
equation (6)), while the one associated with relaxation to equilibrium due to finite-size
effects is of order N , see [4, 5].

In the following, we analyze the dynamics (2) in the joint limit N → ∞ and α → 0.
While the first limit is physically motivated on the grounds that most long-range systems
indeed contain a large number of particles, the second one allows us to study non-
equilibrium stationary states for small external forcing. Moreover, for small α, we will be
able to develop a complete kinetic theory for the dynamics.

For simplicity, we discuss in this letter the continuum limit Nα 	 1, when stochastic
effects are predominant with respect to finite-size effects. Generalization to other cases
(Nα of order one, or Nα 
 1) is straightforward, as discussed in the conclusion.

3. Kinetic theory

A natural framework to study the dynamics (2) is the kinetic theory. We now describe
the theoretical approach to derive this theory, while some of the technical results will be
explicitly obtained in a longer paper [17]. The central result is the kinetic equation (10)
below, which describes the time evolution of the single-particle distribution function.

We consider the Fokker–Planck equation associated with the equations of
motion (2). It describes the evolution of the N -particle distribution function
fN (q1, . . . , qN , p1, . . . , pN , t) (after averaging over the noise realization, fN is the probability
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density to observe the system with coordinates and momenta around the values
{qi, pi}1≤i≤N at time t). This equation can be derived by standard methods [16].
We get

∂fN

∂t
=

N∑

i=1

[
−pi

∂fN

∂qi
+

∂(αpifN )

∂pi

]

+
1

2N

N∑

i,j=1

∂v(qi − qj)

∂qi

[
∂

∂pi

− ∂

∂pj

]
fN +

α

2

N∑

i,j=1

C(qi − qj)
∂2fN

∂pi∂pj

. (7)

We have proved by analyzing the so-called potential conditions [18] for this Fokker–Planck
equation that a sufficient condition for the stochastic process (2) to verify detailed balance
is that the Gaussian noise is white in space, that is, ck = c for all k. This condition is not
satisfied for a generic correlation function C. Steady states are then true non-equilibrium
ones, with non-vanishing currents and a balance between external forces and dissipation.

Similarly to the Liouville equation for Hamiltonian systems, the N -particle Fokker–
Planck equation is a very detailed description of the system. Using kinetic theory,
we want to describe the evolution of the one-particle distribution function f(z1, t) =∫ ∏N

i=2 dzi fN (z1, . . . , zN , t) (we use the notation zi = (qi, pi) whenever convenient). Note
that the normalization is

∫
dz f(z, t) = 1.

In plasmas and self-gravitating systems, due to the long-range nature of the
interactions, the one-particle distribution function is not affected by the two-particle
distribution function at leading order in 1/N , and, therefore, its evolution is described at
leading order by the Vlasov equation. Finite-size effects, however, induce weak correlations
whose effects on the long-time evolution of the one-particle distribution can be computed
self-consistently in the framework of the kinetic theory by using perturbation theory. A
complete treatment of the problem leads to the Lenard–Balescu equation [11, 12]. In
a similar way, for our problem, the evolution will be described at leading order by the
Vlasov equations due to the long-range nature of the interactions. Weak stochastic forces
lead to weak correlations that affect the long-time evolution. This case can be treated by
following a generalized kinetic approach, as we now describe.

Substituting in the N -particle Fokker–Planck equation (7) the reduced distribu-

tion function fs(z1, . . . , zs, t) =
∫ ∏N

i=s+1 dzi fN(z1, . . . , zN , t), and using standard tech-
niques [19], we get a hierarchy of equations, similar to the BBGKY hierarchy. We
split the reduced distribution functions into connected and non-connected parts, e.g.,
f2(z1, z2, t) = f(z1, t)f(z2, t) + αg(z1, z2, t), and then neglect the effect of the connected
part of the three-particle correlation on the evolution of the two-particle correlation func-
tion. This scheme is consistent at leading order in the small parameter α, and is the
simplest closure scheme for the hierarchy. For simplicity, we moreover assume that the
system is homogeneous: f depends on p, and g depends on |q1 − q2|, p1 and p2, only. The
first two equations of the hierarchy are then

∂f

∂t
− α

∂

∂p
[pf ] − α

2
C(0)

∂2f

∂p2
= α

∂

∂p

∫
dq dp2 v′(q)g(q, p, p2, t), (8)
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and

∂g

∂t
+

[
p1

∂g

∂q1
− ∂f

∂p

∣∣∣∣
p1

∫
dq3 dp3 v′(q1 − q3)g(q3 − q2, p3, p2, t)

]
+ {1 ↔ 2}

= C(q1 − q2)
∂f

∂p

∣∣∣∣
p1

∂f

∂p

∣∣∣∣
p2

, (9)

where the symbol {1 ↔ 2} means an expression obtained from the bracketed one by
exchanging 1 and 2, while the prime denotes differentiation.

To obtain from these equations a single kinetic equation for the distribution function
f , we have to solve equation (9) for g as a function of f and plug the result into the right-
hand side of equation (8). From these two equations, we readily see that the two-particle
correlation g evolves over a timescale of order one, whereas the one-particle distribution
function f(p, t) evolves over a timescale of order 1/α. We use this timescale separation,
and compute the long-time limit of g from equation (9) by assuming f to be constant.
This procedure is equivalent to making the Bogoliubov hypothesis for deriving the kinetic
theory of isolated long-range systems. For the timescale separation to be valid, it is also
required that the one-particle distribution function f(p, t) is a stable solution of the Vlasov
equation at all times.

The solution of equations of the type (9) is quite technical (see the long appendix
in Nicholson’s book [11]). Equation (9) differs from the corresponding equation for an
isolated long-range system in that the term on the right-hand side is different in the two
cases, and cannot be solved by methods known in the literature. The main technical
achievement that aided this work was being able to solve equation (9). In a future
paper [17], we will give the details of the solving procedure. In brief, the method relies
on making a parallel between the Lyapunov equations for infinite-dimensional Ornstein–
Uhlenbeck processes and their general solutions, and equation (9). Using this method, we
get the desired kinetic equation:

∂f

∂t
− α

∂(pf)

∂p
− α

∂

∂p

[
D[f ]

∂f

∂p

]
= 0, (10)

where

D[f ](p) =
1

2
C(0) + 2π

∞∑

k=1

vkck

∫ ∗
dp1

[
1

|ε(k, kp)|2 +
1

|ε(k, kp1)|2
]

1

p1 − p

∂f

∂p

∣∣∣∣
p1

.

(11)

Here, vk is the kth Fourier coefficient of the pair potential v(q), the quantity ck is defined
in equation (4), while

∫ ∗
indicates the Cauchy integral, and the dielectric function ε is

ε(k, ω) = lim
η→0+

[
1 − 2πivkk

∫
dp

1

−i(ω + iη) + ikp

∂f

∂p

]
. (12)

The kinetic equation (10) is the central result of this letter.
This kinetic equation has the form of a non-linear Fokker–Planck equation, since the

diffusion coefficient D[f ](p) itself is a function of the unknown distribution function f .
As equation (11) shows, this coefficient has two parts, namely, (i) a linear part, C(0)/2,
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Figure 1. (a) Kinetic energy density 〈κ〉 and (b) 〈p4〉 as a function of αt, for
the values C(0) = 1.5 and c1 = 0.75. The data for different N and α values
are obtained from numerical simulations of the stochastically forced HMF model,
and involve averaging over 50 histories for N = 104 and 103 histories for N = 103.
The data collapse implies that α is the timescale of relaxation to the stationary
state. The inset shows the data without time rescaling by α.

which is due to the mean-field effect of the stochastic forces, and (ii) a non-linear part
due to correlations induced in the system by the stochastic forces. The contributions of
different modes of the stochastic force are independent of each other, that is, contributions
proportional to ck do not couple with vk′ with k �= k′.

For consistency, the prediction of the evolution of the kinetic energy from the kinetic
equation has to agree with equation (6). We have checked this by using equations (10)
and (11), and proving that the integrals in the non-linear part of the diffusion coefficient
give no contribution to the kinetic energy.

As already mentioned, and as is evident from equation (10), the timescale for
the kinetic evolution is 1/α. This has been checked by performing direct numerical
simulations, see figure 1 and section 4. Thus, α can be eliminated from the kinetic
equation (10) by a redefinition of time. Therefore, even for vanishingly small values of
α, if a stationary distribution exists, it will be at distance of order one from a Gaussian
momentum distribution.

While a linear Fokker–Planck equation with non-degenerate diffusion coefficient can
be proven to converge to a unique stationary distribution [18], this is not true in general
for non-linear Fokker–Planck equations such as equation (10). We expect that if the
system is not too far from equilibrium, the kinetic equation will have a unique stationary
state. Far from equilibrium, the kinetic equation could lead to very interesting dynamical
phenomena, such as bistability, limit cycle or more complex behaviors. The main issue
is then the analysis of the evolution of the kinetic equation. Although some methods to
study this type of equation exist [20], in order to provide some preliminary answers, we
have devised a numerical iterative scheme to compute some of the stationary states of the
kinetic equation (10). We now describe the scheme.

A linear Fokker–Planck equation whose diffusion coefficient D(p) is strictly positive
admits a unique stationary state

fss(p) = A exp

[
−

∫ p

0

dp′
p′

D(p′)

]
. (13)
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For a given distribution fn(p), we compute the diffusion coefficient Dn(p) from
equation (11), and then fn+1 using Dn and equation (13). This procedure defines
an iterative scheme. Whenever convergent, this scheme leads to a stationary state of
equation (10). Each iteration involves integrations, so we expect the method to be robust
enough when starting not too far from an actual stationary state. However, we have no
detailed mathematical analysis yet.

In section 4, we discuss numerical results on N -particle simulations, and the
computation of stationary states from the iterative method mentioned above.

4. The stochastically forced HMF model

Until now, we have presented our theoretical analysis for a general two-particle interaction
v(q). In order to perform simple numerical simulations, we now consider the case of the
stochastically forced attractive Hamiltonian mean-field (HMF) model, which corresponds
to the choice v(q) = 1 − cos q.

The HMF model serves as a paradigm to study long-range interacting systems, and
describes particles moving on a circle under deterministic Hamiltonian dynamics [21, 22].
This model has been studied a lot in recent times. It displays many features of generic
long-range interacting systems, such as the existence of quasistationary states [4, 22].
In equilibrium, the system displays a second-order phase transition from a high-energy
homogeneous phase to a low-energy inhomogeneous phase at the energy density ec = 3/4.

Since the Fourier transform of the HMF interparticle potential is, for k �= 0, vk =
−[δk,1 + δk,−1]/2, where δk,i is the Kronecker delta, we see from the kinetic equation (10)
that only the stochastic force with wavenumber k = 1 contributes to the non-linear part of
the diffusion coefficient; all the other stochastic forces give only a mean-field contribution
through the term C(0). Thus, the two parameters that dictate the evolution of the
stochastically forced HMF model are C(0) and c1. From (6), we know that C(0) = 4〈κ〉ss
is proportional to the kinetic energy in the final stationary state. Moreover, equation (4)
implies that c1 ≤ C(0)/2.

If c1 = 0, the kinetic equation reduces to a linear Fokker–Planck equation with
diffusion coefficient C(0)/2. This equation also describes the HMF model coupled to
a Langevin thermostat, studied in [23, 24]. As the kinetic equations are the same, the
dynamics coincide at leading order in α. However, we know that at higher orders, detailed
balance is broken in our case, whereas it holds for the Langevin dynamics.

In the case c1 = 0, the homogeneous stationary states of the kinetic equation have
Gaussian momentum distribution f(p). As has been studied thoroughly in the context
of canonical equilibrium of the HMF model, these states are stable for kinetic energies
greater than 1/4, i.e., for C(0) > 1.

For values of C(0) and c1 such that C(0) > 1 and c1 
 C(0), we then expect the
stationary states to be close to homogeneous states with Gaussian momentum, so that the
numerical iterative scheme to locate stationary states of the kinetic equation is expected
to converge for well-chosen initial conditions. We have checked the convergence for the
set of values of c1 used in the simulations reported in this letter.

To check the theory, we have performed numerical simulations of the stochastically
forced HMF model. In figure 1, we show the evolution of the kinetic energy and
〈p4〉 = (1/N)

∑N
i=1 p4

i , and compare them with theoretical predictions. In the latter case,
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Figure 2. The panel on the left shows the stationary momentum distribution f(p)
for α = 0.01, C(0) = 1.5, and c1 = 0.75. The data denoted by crosses are results
of N -body simulations of the stochastically forced HMF model with N = 10000,
while the black broken line refers to the theoretical prediction from the kinetic
theory. For comparison, the red continuous line shows the Gaussian distribution
with the same kinetic energy (stationary state at C(0) = 1.5, c1 = 0). The panel
on the right shows the diffusion coefficient D[f ](p) for the stationary momentum
distribution f(p) for different values of C(0) and c1.

we have compared the long-time asymptotic value with the kinetic theory prediction for
the stationary state, computed using the iterative scheme. In both cases, we observe a
very good agreement between the theory and simulations.

For a more accurate comparison, we have obtained the stationary momentum
distribution from both N -body simulations and the numerical iterative scheme. The
comparison between the two is shown in figure 2, left panel, where we also show the
Gaussian distribution with the same kinetic energy. The agreement between theory and
simulations is excellent.

5. Conclusions

In this work, we studied the effect of external stochastic fields on Hamiltonian long-range
interacting systems by generalizing the kinetic theory of isolated long-range systems. Our
theoretical results are general, being applicable to any long-range interparticle potential,
space dimensions and boundary conditions. In this letter, we demonstrated an excellent
agreement between the theory and numerical simulations for one representative case.

Here, we discussed the kinetic theory in the limit Nα 	 1. The extension to general
values of Nα is straightforward: because of the linearity of the equations of the BBGKY
hierarchy, the finite-N and stochastic effects give independent contributions. The kinetic
equation at leading order of both stochastic and finite-size effects is

∂f

∂t
= Lα[f ] + LN [f ], (14)

where Lα is the operator described in equation (10) and LN (of order 1/N) is the Lenard–
Balescu operator [11]. For instance, in the case Nα 
 1 and in dimensions greater than
one, the operator LN is responsible for the relaxation to Boltzmann equilibrium after a
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timescale of order N , whereas the smaller effect of Lα selects the actual temperature after
a longer timescale of order 1/α.

We note that an equivalent approach to derive the kinetic theory is to
write an evolution equation for the noise-averaged empirical density ρ(p, q, t) =

(1/N)
∑N

i=1〈δ(qi(t) − q)δ(pi(t) − p)〉, by analogy with the Klimontovich approach for
isolated systems. The noise appears in the resulting equation as a multiplicative term.
This equation can be treated perturbatively, and may be shown to lead to the kinetic
equation (10).

Let us mention some open issues. For technical simplicity, we assumed a homogeneous
state in our approach. Recently, Heyvaerts [25] has generalized the Lenard–Balescu
equation to some non-homogeneous cases; his approach could be used to generalize
the theory developed here to inhomogeneous states. There is no difficulty in principle,
although actual computation could be more involved.

An interesting follow up to this work is to study the dynamics of the kinetic
equation (10), both analytically and numerically. This may unveil very interesting
behaviors, such as bistability or limit cycles. Bistability was observed in two-dimensional
turbulence with stochastic forcing [26], in a framework which has deep connection with
the one studied in this letter. One of the motivations for this work was to make a first
step in formulating a kinetic theory for the point vortex model and the Euler equations
in two-dimensional turbulence [8]. This subject will be the topic of further investigations.
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