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Abstract. The Vlasov equation is well known to provide a good description
of the dynamics of mean-field systems in the N → ∞ limit. This equation has
an infinity of stationary states and the case of homogeneous states, for which
the single-particle distribution function is independent of the spatial variable,
is well characterized analytically. On the other hand, the inhomogeneous case
often requires some approximations for an analytical treatment: the dynamics
is then best treated in action–angle variables, and the potential generating
inhomogeneity is generally very complex in these new variables. We here
treat analytically the linear stability of toy models where the inhomogeneity is
created by an external field. Transforming the Vlasov equation into action–angle
variables, we derive a dispersion relation that we accomplish solving for both the
growth rate of the instability and the stability threshold for two specific models:
the Hamiltonian mean-field model with additional asymmetry and the mean-field
φ4 model. The results are compared with numerical simulations of the N -body
dynamics. When the inhomogeneous state is a stationary stable one, we expect to
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observe in the N -body dynamics quasi-stationary states, whose lifetime diverges
algebraically with N .
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1. Introduction

Long-range forces can be found in a wide variety of physical systems, including self-
gravitating systems, Coulomb systems, wave–plasma interactions and two-dimensional
hydrodynamics. The interest in studying long-range forces has been revived in the last
decade, not only because of the broad domain of physical systems involving such forces,
but also because of the presence of unusual phenomena, both at equilibrium and out of
equilibrium. Let us mention negative specific heat, temperature jumps, broken ergodicity
and quasi-stationary states. Reviews and books have been recently published in this
field [1]–[6].

A particular, but interesting, case is the one of mean-field interactions, for which
each particle is directly coupled to all the others with equal strength, whatever their
distance. Although this is an idealization, it serves as a useful approximation and appears,
in addition, to give at least a good trend. Moreover, there are physical situations in
which particles are all in interaction via a field, whose dynamics is in turn determined
by the motion of the particles themselves: this is for example the case for wave–particle
interactions in plasmas [7], free electron lasers [8], collective atomic recoil lasers [9] and
traveling wave tubes [10]. This self-consistent effect can also be obtained in systems
composed only of particles by introducing a coupling to an order parameter, as is done
for the Hamiltonian mean-field (HMF) model [11]–[13], which has been widely studied in
recent years as a paradigm for systems with long-range interactions [1].

The kinetics of models with N particles and only mean-field interactions is exactly
described, in the infinite-N limit, by the Vlasov equation [14, 15]. This equation exhibits
an infinity of stationary solutions and its dynamical evolution starting from a generic
initial state can be extremely complex. Focusing on stationary states, their stability
has been studied using different methods, but mainly by restricting the analysis to
homogeneous stationary states, that are characterized by a single-particle distribution
function which is independent of the spatial variable. These states are of major interest
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in kinetic theory, because they often constitute the ‘supposed’ physical equilibrium state.
For instance a globally neutral plasma has an equilibrium which is also locally neutral,
giving a homogeneous charge distribution. If perturbed, this state is expected to be stable,
showing a relaxation back to the homogeneous state ruled by Landau damping [16]–[18].
This phenomenology is also observed in the HMF model [19], for which the homogeneous
state is stable above a given energy threshold, which depends on the initial momentum
distribution.

However, below this energy, the homogeneous state is unstable and one observes a
dynamical evolution towards inhomogeneous states, whose stability properties are much
more difficult to determine. Inhomogeneous states appear for example in gravitational
dynamics [20], because of the attractive nature of the Newton force. Their stability
has been studied in the context of the Vlasov equation, yet the necessity to resort to
action–angle variables [21] makes the problem analytically tricky. Apart from numerical
approaches (see e.g. [22]), one can project the dynamics onto a Fourier basis, yet at
a cost of performing infinite sums [25, 26]; then, only a truncation can yield tractable
results. Such a technique was also used in the context of plasmas [23, 24], where the
waves often generate inhomogeneous states; expanding the dynamics along modes, such
as Hermite polynomials [27], requires anyway a truncation in the sums. Analytical results
were also obtained for BGK modes, whose stability properties were connected, in the small
inhomogeneity limit, to those of homogeneous states [28, 29]. Later on, the unstable nature
of periodic BGK modes under specific perturbations was rigorously shown [30, 31], but the
problem remains open for other kinds of systems and perturbations. More recently, some
general criteria were proposed for deriving the stability of inhomogeneous states [32, 33].

Some toy models were also studied whose states are naturally inhomogeneous: this
is typically the case for systems where an external potential is present in addition to the
self-consistent one [34]–[37]. A first interesting model [34]–[36], [38] is the mean-field ϕ4

model: an Ising-like spin variable is represented by a scalar field in one dimension, acted
upon externally by a double-well potential which selects two states; the mean-field term
of the Hamiltonian is a quadratic coupling of the scalar field at two different lattice sites.
A second interesting model is a generalized version of the Hamiltonian mean-field (HMF)
model to which an anisotropic external potential is added [37].

In this paper we focus on the above mentioned toy models, and show that one can
treat exactly the stability of inhomogeneous states. The Vlasov equation will be rewritten
in action–angle variables [39]–[41] and we will focus on those inhomogeneous stationary
states whose single-particle distribution function does not depend on the angle variable,
i.e. those that are homogeneous in angle. We will derive a general stability criterion which,
besides giving the value of the threshold energy (action) at which these stationary states
destabilize, will allow us to obtain the growth rate of the instability.

In section 2 we will introduce and discuss the Vlasov equation in action–angle variables
and we will derive the stability condition for inhomogeneous states and for generic mean-
field and external potentials. In sections 3 and 4 we shall apply the general method
introduced in section 2 to the specific cases of the anisotropic HMF model and of the
mean-field ϕ4 model, deriving explicit analytical expressions for the stability thresholds
and for the growth rates of the instability. These theoretical predictions will be then
compared with numerical simulations performed with N -body Hamiltonians. Finally, in
section 5, we will draw some conclusions and we will discuss some perspectives of this work.
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2. The Vlasov equation in action–angle variables and the stability relations

Let us consider N particles in one dimension whose positions and momenta are (qj , pj),
j = 1, . . . , N . They interact through the two-body (symmetric) potential v(qj, qk) and, in
addition, each particle is trapped into the external potential W (qj). Hamilton’s equations
for such a system are

q̇j = pj , (1)

ṗj = −W ′(qj) − ∂qjV [{qk}](qj), (2)

where V [{qk}](qj) = (1/N)
∑

k v(qj , qk) stands for the mean-field potential acting on
particle j. The 1/N term is a rescaling factor [42] which allows one to take the mean-
field limit discussed in [14, 15]. The prime will denote, from now on, the derivative with
respect to the position variable q. Equations (1) and (2) can be derived from the following
Hamiltonian:

H =
∑

j

(
p2

j

2
+ W (qj) +

1

2
V [{qk}](qj)

)
, (3)

where the (qj, pj) are couples of canonically conjugate variables. Let us introduce the
so-called empirical measure

f(q, p, t) =
1

N

N∑

j=1

δ(q − qj(t))δ(p − pj(t)). (4)

It can be shown [15] that, in the N → ∞ limit, the single-particle distribution function
f(q, p, t) obeys the following Vlasov equation:

∂tf + p∂qf − (W ′(q) + V ′[f ](q))∂pf = 0, (5)

where

V [f ](q, t) =

∫ ∫
dq′ dp′ f(q′, p′, t)v(q, q′), (6)

is the averaged mean-field potential. One can also show that the N -body dynamics is
well described by the Vlasov equation over times that are at least of order lnN [15]. This
makes the Vlasov framework a natural one for studying such systems when a large number
of particles is involved.

The Vlasov equation can also be written in Hamiltonian form using the following
functional:

H [f ] =

∫ ∫
dq dp f(q, p, t)

(
p2

2
+ W (q) +

1

2
V [f ](q)

)
. (7)

After having introduced the appropriate Poisson brackets for the functionals A[f ] and
B[f ]:

{A, B} =

∫ ∫
dq dp f(q, p, t)

(
∂

∂p

δA

δf

∂

∂q

δB

δf
− ∂

∂q

δA

δf

∂

∂p

δB

δf

)
, (8)

the dynamics of A[f ] is given by

∂tA = {H, A}. (9)
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If one rewrites the single-particle distribution function in the functional form f(q, p, t) =∫ ∫
dq′ dp′ f(q′, p′, t)δ(q − q′)δ(p − p′), one obtains the evolution equation

∂tf(q, p, t) +
∂h

∂p

∂f(q, p, t)

∂q
− ∂h

∂q

∂f(q, p, t)

∂p
= ∂tf(q, p, t) + {h[f ](q, p), f(q, p, t)} = 0 (10)

where h[f ](q, p) = p2/2 + W (q) + V [f ](q) and the brackets are now the standard Poisson
brackets. This equation is nothing but the Vlasov equation (5).

It is straightforward to check that the Boltzmann–Gibbs equilibrium distribution
fBG(q, p) = Z−1 exp(−βh(q, p)), with β an arbitrary constant and Z a normalization
constant, is a stationary solution of this equation (i.e. ∂tfBG = 0). In fact, all distributions
that depend on (q, p) only through h are stationary. The existence of an infinity
of stationary distributions is actually responsible for the peculiar out-of-equilibrium
regimes in which N -body long-range systems get trapped over very long times [1]. More
specifically, starting from a generic unstable distribution, a long-range system typically
relaxes towards a ‘quasi-stationary’ state, which can be significantly different from the
Boltzmann–Gibbs equilibrium. Quasi-stationary states (QSS) can be interpreted as
stable stationary states of the Vlasov equation in the N → ∞ limit. The relaxation
to statistical equilibrium occurs on much longer time scales, that were observed to diverge
either algebraically [19] or logarithmically [37] with N , depending on whether the ‘quasi-
stationary’ state corresponds to a stable or an unstable stationary state of the Vlasov
equation. Relaxation to equilibrium is not due to collisions but due to finite-N effects
(also called ‘granularity’), which can be modeled by convenient kinetic equations, like
Landau or Lenard–Balescu equations [1, 17, 18]. Stable stationary states of the Vlasov
equation are therefore of paramount importance for understanding the dynamics of long-
range systems. It is therefore crucial to determine the general conditions for stationarity
and stability, for both homogeneous and inhomogeneous states.

Let us consider the stationary state f0(q, p). If one focuses on the Lagrangian
trajectory of a single particle, one immediately realizes that it is a constant energy
trajectory of the energy functional

h[f0](q, p) =
p2

2
+ W (q) + V [f0](q), (11)

which is a straightforward consequence of equations (1) and (2). Hence, it is convenient to
cast the dynamics into the appropriate variables associated with this trajectory, namely
the ‘action–angle’ variables

J(h) =
1

2π

∮
p(h, q′) dq′ =

1

2π

∮ √
2 (h − W (q′) − V [f0](q′)) dq′ (12)

φ = ω

∫ q

0

dq′√
2(h − W (q′) − V [f0](q′))

, (13)

where the frequency ω is given by

ω =

(
1

2π

∮
dq′√

2(h − W (q′) − V [f0](q′))

)−1

=
∂h

∂J
. (14)

It is important to note that the conjugate variables (J,φ) are not action–angle stricto
sensu: since Vlasov dynamics is infinite dimensional and only a specific set of conserved
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quantities can be typically identified (e.g. the Hamiltonian, total momentum, the Casimirs∫ ∫
dqdp C(f(q, p)), with C an analytic function), its integrability is not generic [43]. The

term action–angle variables comes from the fact that the dynamics of a Lagrangian test
particle is integrable if the single-particle distribution function is stationary. Indeed, for a
stationary distribution f0, the potential V [f0] is constant in time. Therefore, the dynamics
of the test particle is that of a one-degree-of-freedom system with the associated conserved
quantity h[f0], and hence integrable. A dependence of the potential on time caused by
a non-stationary distribution f(q, p, t) would introduce an extra 1/2 degree of freedom,
thus breaking integrability a priori.

In this single-particle framework and for stationary distributions, the energy h
depends only on the action J , so a particle evolves on a trajectory of constant ‘action’
J at the constant action-dependent angular speed φ̇ = ∂Jh(J) = ω(J). The change of
variables (q, p) → (φ, J) being canonical, the corresponding Poisson brackets, which apply
to functions of the phase space, are equivalent:

{a, b}q,p = ∂pa∂qb − ∂qa∂pb = {a, b}φ,J = ∂Ja∂φb − ∂φa∂Jb. (15)

Using this equivalence and the condition ∂φh = 0, the Vlasov equation (5) for f0 can
be recast in the following form:

∂Jh(J)∂φf0 = ω(J)∂φf0 = 0. (16)

Hence, the stationarity condition, ∂tf0 = 0, leads to f0 = f0(J). This means in particular
that the stationary distributions are those that are homogeneous in angle, with any
distribution in action J . Such a result highlights the relevance of action–angle variables
for the analysis of Vlasov stationary dynamics, but also for the study of QSS.

We shall now consider a perturbation δf around f0, that is f(φ, J) = f0(J)+δf(φ, J).
The linearity of the potential V with respect to the distribution, as emphasized by its
definition in equation (6), implies that V [f ] = V [f0] + V [δf ]. Using property (15) for
the Vlasov equations (5) and (10) and neglecting second-order terms in δf leads to the
linearized Vlasov equation

∂tδf + ω(J)∂φδf − (∂pf0)V
′[δf ](φ, J) = 0, (17)

where the factor ∂pf0 should be expressed in terms of (φ, J) and the derivative of V is
with respect to q, and then it is also expressed in terms of (φ, J). The study of this
equation in full generality would imply the solution of an initial value problem using a
Laplace–Fourier transform and then a transformation back to action–angle variables using
a Bromwich contour [17, 18]. We will be less ambitious here and we will focus on the study
of an eigenmode δf(φ, J ; t) = eλtf̄(φ, J) with the eigenvalue λ determining the stability
properties. Inserting this ansatz solution in equation (17), one gets

(λ + ω(J)∂φ)f̄ − (∂pf0)V
′[f̄ ](φ, J) = 0. (18)

Assuming a non-zero ω (the frequency ω typically only vanishes on the separatrices of the
single-particle phase space), the above equation turns into

∂φ

(
eλφ/ω(J)f̄

)
− eλφ/ω(J)

ω(J)
(∂pf0)V

′[f̄ ](φ, J) = 0. (19)
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After integration over the angle φ, and assuming that the integration constant vanishes,
one gets

f̄ − e−λφ/ω(J)

ω(J)

∫ φ

0

dφ′ eλφ′/ω(J)(∂pf0)(φ
′, J)V ′[f̄ ](φ′, J) = 0. (20)

This equation can be fully cast into action–angle variables using the following relation:

∂f0

∂p
(q, p) =

∂J

∂p

∂f0(J)

∂J
=

∂h

∂p

∂J

∂h
f ′

0(J) =
p

ω
f ′

0(J), (21)

which, inserted into equation (20), results in the following dispersion relation:

f̄ − f ′
0(J)

e−λφ/ω(J)

ω2(J)

∫ φ

0

dφ′ p(φ′, J) eλφ′/ω(J) V ′[f̄ ](φ′, J) = 0. (22)

It is convenient to express the integral in this latter equation in terms of the position
variable q′. Indeed, using equation (13), the differential dφ′ can be calculated as a function
of q′ at constant action J , which means along a single-particle trajectory. One gets

dφ′ =
ω dq′√

2 (h − W (q′) − V [f0](q′))
=

ω

p
dq′ , (23)

which allows one to put equation (22) into the following form:

f̄ − f ′
0(J)

e−λφ/ω(J)

ω(J)

∫ q

0

eλφ′/ω(J) V ′ [f̄
]
(q′) dq′ = 0, (24)

in which the integration is performed at constant action J . The interest of this alternative
formula is that it may be easier to solve in some cases. In particular, if one focuses on
the stability threshold, given by taking λ = 0, the integral over q′ can be performed
straightforwardly and equation (24) can be rewritten as

f̄ =
f ′

0(J)

ω(J)
V [f̄ ](q), (25)

where q is, in general, a function of both action and angle.
Since all functions in angle are 2π-periodic, it is common to project the dispersion

relation in a Fourier basis [39, 41]. However, since in equation (22) both the p term and
the potential V [f̄ ] have generically a non-trivial dependence on the angles, one ends up
with expressions where all Fourier modes are coupled. The modes are decoupled only
when momentum does not depend on angle, which is the case for homogeneous states, for
which the momentum coincides with the action (modulo a sign).

In what follows we will discuss a method which allows us to compute the stability
threshold and the growth rate λ without resorting to a Fourier expansion. The method
is, however, not generic and its application depends on the specific form of the interaction
potential. We will therefore discuss two examples separately.
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3. The HMF model with additional asymmetry

Introduced in [37], the HMF model with additional cosine on-site potential is a
generalization of the paradigmatic HMF model [11]–[13]. Besides the mean-field term
v(qj , qk) = − cos (qj − qk), an external potential W of amplitude κ is present:

W (qj) = κ cos2 qj . (26)

The Hamiltonian (7) reads

H [f ] =

∫ ∫
dq dp f(q, p)

[
p2

2
+ κ cos2 q − 1

2

∫ ∫
dq′ dp′ f(q′, p′) cos (q − q′)

]
. (27)

At variance with the HMF model case, the spatially homogeneous state is no longer a
stationary state of the Vlasov equation, due to the presence of the on-site potential.

Using formula (22), one easily gets the dispersion relation for this model:

f̄ − f ′
0(J)

eλφ/ω(J)

ω2(J)

∫ φ

0

dφ′ p(φ′, J)eλφ′/ω(J)[Mx[f̄ ] sin(q(φ′, J)) − My[f̄ ] cos(q(φ′, J))] = 0,

(28)

where

M[f ] = Mx[f ] + iMy[f ] =

∫ ∫
dq dpf(q, p) cos q + i

∫ ∫
dq dpf(q, p) sin q (29)

stands for the magnetization. For the sake of simplicity, q, q′ and p′ will respectively refer
to q(φ, J), q(φ′, J) and p(φ′, J) in the remainder of this section. Equation (28) can be
solved by multiplying each term by either cos q or sin q, and then integrating over phase
space. One gets the following equations:

Mx[f̄ ](1 − Iλ
X,Y [f0]) + My[f̄ ]Iλ

X,X [f0] = 0, (30)

−Mx[f̄ ]Iλ
Y,Y [f0] + My[f̄ ]

(
1 + Iλ

Y,X [f0]
)

= 0, (31)

where

Iλ
X,Y [f0] =

∫
dJ

f ′
0(J)

ω(J)

∮
dφ e−λφ/ω(J) X(q)

∫ q

0

dq′ eλφ′/ω(J) Y (q′), (32)

and the label X (resp. Y ) stands for the cos (resp. sin) function. The integration
∮

is
performed over a single-particle trajectory.

Inhomogeneous stationary states of the Vlasov equation correspond to solutions of
the linear system of equations (30)–(31) with non-vanishing (Mx, My). They can be found
only when the determinant vanishes. This condition allows us to rewrite the dispersion
relation in the form

(1 − Iλ
X,Y [f0])(1 + Iλ

Y,X [f0]) + Iλ
Y,Y [f0]I

λ
X,X [f0] = 0. (33)
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Figure 1. Waterbags in action–angle (panel (a)) and in (q, p) space (panel (b)).
The waterbags have increasing boundary energies U = 0.2, 0.4 and 0.55 and
they are represented by filled contours of lighter and lighter gray as the energy
is increased. The dashed line corresponds to the separatrix, which has energy
Us = 0.3 and action Js = 0.5.

The numerical resolution of this equation can be performed by using the explicit
expressions for the action–angle coordinates [45], for a particle of energy h and position
q:

Jin(h) =
2
√

2κ

π

[
E

(
h

κ

)
−

(
1 − h

κ

)
K

(
h

κ

)]
φin(q, h) =

π

2

√
κ

h

F (q, h/κ)

K (h/κ)
(34)

Jout(h) =
2
√

2h

π
E

(κ
h

)
φout(q, h) =

π

2

F (q, κ/h)

K (κ/h)
, (35)

where the label in/out stands for inside/outside of the separatrix of the potential κ cos2 q,
while E , K and F are elliptic integrals of the first kind.

In order to compute the growth rate Re(λ) from equation (33) it is necessary to
choose a specific unperturbed stationary distribution f0(J). We here consider ‘waterbag’
distributions in action–angle space that are homogeneous in angle: these are two-level
distributions, which are non-zero and homogeneous between two lines of constant action
J = J1 and J = J2:

f0(J) =
1

2π(J2 − J1)
(Θ(J − J1) −Θ(J − J2)), (36)

where the first factor guarantees the normalization of the density f0, while Θ is the
Heaviside step function. Moreover, we here focus on waterbags delimited by a given
energy U , i.e. we consider all trajectories with energies h ≤ U (so J2 = J2(U) and J1 = 0),
such as those represented in figures 1(a) and (b). It is interesting to note that, since the
change of variables (q, p) ↔ (φ, J) is canonical, f0(q, p) is also a two-step distribution with
the boundary given by the curve h(q, p) = U . It should be pointed out that, although the
action fixes the energy unequivocally, a trajectory of given energy is always split in two:
those with positive and negative momentum p for U > Us = 0.3, the separatrix energy, and
the ones with 0 < q < π and π < q < 2π for U < Us. This has the consequence that, when
performing integrations over the action–angle space, the two trajectories give separate
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Figure 2. Growth rate Re(λ) (full line) of the instability of the inhomogeneous
waterbag states obtained by solving equation (33) for waterbags with boundary
energy U . The crosses are the results of numerical simulations of the N -body
Hamiltonian. The agreement between theory (which describes the N → ∞ limit)
and numerics (performed at N = 3 × 105) is reasonably good apart from the
region near the separatrix energy Us = 0.3 and the one near the critical energy
Uc = 0.498, which is theoretically determined by solving equation (42).

contributions. Related to this remark is for example the evaluation of the normalization
of f0: the total area of the waterbag is indeed 2 × 2π(J(U) − J(0)) = 4πJ(U).

For the waterbag initial conditions, the integral in equation (32) reads

Iλ
X,Y [f0] =

1

2π(J2 − J1)

[
1

ω(J1)

∮
dφ e−λφ/ω(J1)X(q)

∫ q

0

dq′ eλφ′/ω(J1)Y (q′)

− 1

ω(J2)

∮
dφ e−λφ/ω(J2)X(q)

∫ q

0

dq′ eλφ′/ω(J2)Y (q′)

]
. (37)

The numerical solutions of equation (33), using equation (37), are then compared
with the results of simulations performed with the N -body Hamiltonian using a sixth-
order integration scheme [46] with time step 0.1. Figure 2 shows the growth rate Re(λ)
obtained theoretically (full line) as a function of the boundary energy U . The growth
rate is determined numerically by fitting an exponential to the short-time increase of the
magnetization. One notices the existence of a threshold energy Uc = 0.498 (determined
more precisely in the following), which separates a region where the waterbag is stable
(U > Uc) from one where the waterbag is unstable (U < Uc, Re(λ) > 0). When the
waterbag is stable, the N -body dynamics shows a QSS regime with zero magnetization
but with an inhomogeneous distribution of particles in the q spatial coordinate. Let us
remark that the theoretical results show a divergence of Re(λ) at the separatrix energy
U = Us = 0.3 where the frequency ω(Js) = 0: this divergence is not reproduced by the
N -body dynamics. Moreover, in the N -body dynamics, the threshold energy is found
to be around U ≈ 0.44, well below the theoretical value. Indeed, in the energy region
0.44 < U < Uc the growth of the magnetization is spoiled by finite-N effects, and its
exponential character is no longer clear. However, the energy Uc is really the one where
we numerically observe a destabilization of the zero-magnetization state.
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The critical energy Uc beyond which the waterbags become stable can be explicitly
derived using equation (33) and by imposing λ = 0. Let us first note that, in this
equation, the last term vanishes, since both I0

X,X [f0] and I0
Y,Y [f0] yield an integral of

sin q cos q over a trajectory. Consequently, the product (1− I0
X,Y [f0])(1 + I0

Y,X [f0]) should

be zero. Then, considering that |p| =
√

2Uc

√
1 − (κ/Uc) cos2 q, integrating over q′, and

using equation (23) and then equation (12), we finally get

I0
X,Y [f0] =

2

4πωcJc

∮
dφ cos2 q (38)

=
1

2πJc

∮
dq

cos2 q

p
(39)

=
1

2

∮
|dq|cos2 q/

√
Uc − κ cos2 q

∮
|dq|

√
Uc − κ cos2 q

, (40)

I0
Y,X [f0] = −1

2

∮
|dq|sin2 q/

√
Uc − κ cos2 q

∮
|dq|

√
Uc − κ cos2 q

. (41)

Let us explain the meaning of the uncommon notation |dq|. When integrating over
segments of the single-particle trajectory where p is negative, q decreases. Thus, both
dq and p are negative, so their ratio or product is positive. The use of the differential |dq|
allows us to unify notation for both the cases in which p and dq are positive or negative.
The coefficient 2 in front of the first integral originates from the double boundary of the
waterbag, be it inside or outside the separatrix. It can be shown that both expressions (40)
and (41) are strictly decreasing functions of Uc. Moreover, integral (40) tends to 1 in the
Uc → κ limit, so 1 − I0

X,Y [f0] is always positive. The threshold of stability is thus given
by solving the implicit equation

∮
|dq| sin2 q√

Uc − κ cos2 q
= 2

∮
|dq|

√
Uc − κ cos2 q. (42)

The numerical resolution of the above equation for κ = 0.3 yields the value Uc ≈ 0.498,
in excellent agreement with the energy value at which Re(λ) vanishes (see figure 2).

We note that the above derivation of the threshold energy Uc corroborates the result
derived in [37], where the same result was obtained by developing the single-particle
distribution as a sum of derivatives of Dirac distributions. The truncation of the expansion
to the very first term allowed the authors of [37] to obtain the same implicit equation (42).
The approach presented here is more general, since it provides a dispersion relation for
any stationary distribution, and allows us to derive the stability condition without any
additional hypothesis.

We devote the final part of this section to the derivation of the growth rate of the
instability and of the threshold energy for the HMF model, in the limit where the on-site
potential is turned off (κ = 0). Although this result was already obtained [11, 44], its
derivation in this new context allows us to point out the connection between action–
angle variables (φ, J) and the canonical ones (q, p). In fact, when only the mean-
field potential couples the particles, the non-magnetized inhomogeneous stationary states
become homogeneous in q and, correspondingly, the action–angle variables reduce, modulo
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a sign, to the canonical coordinates

J =
1

2π

∮
p(h, q) dq = |p|, (43)

ω =
∂h

∂J
= |p|, (44)

φ = ω

∫ q dq′

p
= sgn(p) q. (45)

The presence of absolute values is due to the fact that the action–angle variables take into
account the direction of the motion along the trajectories, which are now ballistic. Then,
inserting the following relations:

∫ q

eλq′/p sin q′ dq′ =
eλq/p

1 + λ2/p2

(
λ

p
sin q − cos q

)
, (46)

∫ q

eλq′/p cos q′ dq′ =
eλq/p

1 + λ2/p2

(
sin q +

λ

p
cos q

)
, (47)

into equation (32), one can explicitly write the dispersion relation (33) as


1 + π

∫
dp

f ′
0(p)

p
(
1 + λ2

p2

)




2

+



λπ

∫
dp

f ′
0(p)

p2
(
1 + λ2

p2

)




2

= 0. (48)

The waterbag distribution is now homogeneous in q and symmetric in p:

f0(p) =
1

2π

1

2∆p
(Θ(p +∆p) −Θ(p −∆p)) , (49)

and its derivative is given by

f ′
0(p) =

1

2π

1

2∆p
(δ(p +∆p) − δ(p −∆p)) . (50)

The second quadratic term in equation (48) vanishes, and one obtains

0 = 1 + π

∫
dp

f ′
0(p)

p
(
1 + λ2

p2

) = 1 − 1

2∆p2
(
1 + λ2

∆p2

) . (51)

We finally obtain the complex growth rate

λ = ±
√

1
2 −∆p2, (52)

which shows that the waterbag is stable beyond the threshold energy Uc = 1/12, since
the energy of the system is given by U = ∆p2/6.

Figure 3 shows the comparison of this analytical prediction with the numerical results
obtained for the N -body simulations of the HMF model; the agreement is excellent.
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Figure 3. Growth rate Re(λ) of the instability (full line) as a function of the
energy U for the HMF model (model (27) with κ = 0), as obtained analytically
using formula (52). The crosses are the results of exponential fits of the short-time
evolution of the magnetization for the N -body HMF Hamiltonian.

4. The mean-field ϕ4 model

The second example that we consider is the mean-field ϕ4 model introduced by Desai and
Zwanzig [38]. It is a system where the particles are trapped in an external double-well
potential, and are in addition coupled via an infinite-range force. It is described by the
following Hamiltonian:

H [f ] =

∫ ∫
dq dp f(q, p)

[
p2

2
+

(
q4

4
− (1 − θ)

q2

2

)
− θ

2
q

∫ ∫
dq′ dp′f(q′, p′)q′

]
. (53)

Notice that positive (resp. negative) values of the parameter θ correspond to attractive
(resp. repulsive) mean-field forces. We have used the same parameterization as was
introduced in [38], which can be shown to be minimal by conveniently rescaling the
variables and time. The magnetization M is now defined as M [f ] =

∫ ∫
dqdp f(q, p) q,

so the mean-field potential is given by V [f ](q) = −(θ/2)qM [f ], whereas the external
potential is W (q) = q4/4 − (1 − θ)q2/2. It displays a double well for θ < 1 and a single
well otherwise. The solution in the canonical ensemble has been recently derived in [34],
emphasizing that the system exhibits a second-order phase transition. When θ = 1/2, the
critical temperature has been found to be Tc ) 0.264, corresponding to a critical energy
U∗

c = Tc/2 ) 0.132. The model has also been solved in the microcanonical ensemble
and the entropy as a function of energy and magnetization has been derived using large
deviations [1, 35, 36], giving equivalent results. However, it has been shown that, in the
microcanonical ensemble, the magnetic susceptibility can be negative [36, 1].

For this system, the dispersion relation (24) takes the following form:

f̄ + θM [f̄ ]f ′
0(J)

e−λφ/ω(J)

ω(J)
q

∫ q

0

eλφ′/ω(J)dq′ = 0. (54)

The magnetization M [f̄ ] can be factored out by multiplying this latter expression by q
and by integrating it over the phase space. One gets

1 + θ

∫
dJ f ′

0(J)

∮
dφ

e−λφ/ω(J)

ω(J)
q2

∫ q

0

eλφ′/ω(J) dq′ = 0. (55)
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Figure 4. Left panel: representation in the (q, p) plane of the waterbags in action–
angle form. The boundary energies are U = −0.035, 0.05 and 0.2 for lighter
and lighter gray levels. The dashed line corresponds to the separatrix, which has
energy h = 0. Right panel: growth rate Re(λ) (full line) computed by numerically
solving equation (55). The crosses represent the short-time exponential rate of
growth of the magnetization obtained in numerical simulations of the N -body
Hamiltonian with N = 106.

Before proceeding to the numerical solution of the above dispersion relation, let us
explicitly derive the expression that allows us to obtain the stability threshold by setting
λ = 0 in the previous formula. The last integral in equation (55) gives trivially q, while
dφ/ω can be rewritten as dq/p thanks to equation (23). One finally gets

1 + θ

∫
dJ f ′

0(J)

∮
q2

p
dq = 0. (56)

Let us now restrict to those stationary distributions for which the mean field vanishes,
i.e. M [f0] = 0. This case includes those distributions that are symmetric with respect to
q = 0. For purposes of clarity, we shall also restrict to waterbag distributions that have a
boundary energy U > 0, i.e. f0(J) is constant for all actions 0 < J < J(U) and zero for
J > J(U). Waterbags with both positive and negative boundary energy U are shown in
figure 4.

On introducing the following set of variables:

q = xq̄, (57)

q̄ =
√√

4h + (1 − θ)2 − (1 − θ), (58)

ρ =

√√
4h + (1 − θ)2 + (1 − θ)√
4h + (1 − θ)2 − (1 − θ)

, (59)

the momentum of a particle with positive energy h can be written as

p = ±
√

2(h − W (q)) = ± q̄2

√
2

√
(ρ2 − x2)(1 + x2). (60)
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Note that x varies in the range [−ρ; ρ], so the maximum position along a trajectory is ρq̄.
Now, the action–angles variables (12), (13) assume the following form:

J =
q̄3

2
√

2π

∮ √
(ρ2 − x2)(1 + x2) dx (61)

=
q̄3
√

2

3π

[
(ρ2 − 1)E (−ρ2) + (ρ2 + 1)K (−ρ2)

]
, (62)

ω−1 =

√
2

2πq̄

∮
dx√

(ρ2 − x2)(1 + x2)
=

2
√

2

πq̄
K (−ρ2), (63)

φ = ω

∫ q

0

dx√
(ρ2 − x2)(1 + x2)

= ωF

(
x

ρ
,−ρ2

)
. (64)

Using the following relation:

∮
q2

√
2(h − W (q))

|dq| =
√

2q̄

∮
x2dx√

(ρ2 − x2)(1 + x2)
(65)

= 4
√

2q̄
[
E (−ρ2) − K (−ρ2)

]
, (66)

one can show, taking also equations (62) and (63) into account, that

∮
q2

√
2(h − W (q))

|dq| =
12πJ

q̄2(ρ2 − 1)
− 4πq̄2ρ2

(ρ2 − 1)ω
. (67)

Considering that q̄2(ρ2 − 1) = 2(1− θ) and q̄2ρ2/(ρ2 − 1) = 2h/(1− θ), we eventually get
the following expression for the stability threshold:

1 +
2πθ

1 − θ

∫ ∞

J0

f ′
0(J)

(
3J − 4

h(J)

ω(J)

)
dJ = 0. (68)

Let us now consider the case of the waterbag defined by equation (36) with J1 = 0 and
J2 = J(U). The dispersion relation for this waterbag reads

1 − θ

1 − θ

(
3 − 4

U

ω(U)J(U)

)
= 0. (69)

Solving this latter equation numerically for θ = 1/2 gives the threshold energy Uc ) 0.144,
which turns out to be pretty close to the value of the statistical transition energy U∗

c

found in [34]. We can also solve the dispersion relation (55) numerically and obtain the
growth rate Re(λ). In figure 4 this growth rate is compared to a fit of the short-time
exponential growth of the magnetization obtained by integrating numerically the N -body
Hamiltonian. Unfortunately the agreement is only qualitative, although the stability
threshold is correctly reproduced.
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5. Concluding remarks

Systems with mean-field interactions are well described by the Vlasov equation in the
N → ∞ limit. An infinity of stationary states exists for such an equation and the study
of their stability is a subject of paramount importance. Many exact results concerning
homogeneous stationarity have appeared in the literature and several stability criteria
have been applied. Also inhomogeneous states have been treated, but the study of
their stability is more complex [32, 33, 37], [39]–[41]. Characterizing analytically the
stability of stationary solutions of the Vlasov equation will have an impact also on the
characterization of the slow convergence to equilibrium observed in systems with long-
range interactions [1]–[6], in particular on the study of quasi-stationary states (QSS),
which are ubiquitous long-lived states in the N -body dynamics of long-range systems. It
has been shown that the lifetime of QSS diverges algebraically with N in some simple
models and it has been conjectured that this can happen only when the QSS corresponds
to a stable stationary state of the Vlasov equation [1] (see also [47] for an interesting
mathematical result along these lines). Again, most of the studies on QSS are for the
homogeneous case.

In this paper, we have discussed a class of models where, besides the mean-field
interaction, particles are subjected to an external potential. The effect of the external
potential is that of creating an inhomogeneity in the spatial distribution. Hence, these
models are naturally endowed with inhomogeneous stationary states. Upon rewriting
the Vlasov equation in action–angle variables, we have shown that some of these
inhomogeneous stationary states in conjugate coordinates transform into homogeneous
stationary states that are homogeneous in angle. We have therefore applied the standard
tools of linear stability of the Vlasov equation to derive a dispersion relation, given in
formula (24), which is the key result of this paper. We have specialized this formula
for two models: the HMF model with additional asymmetry [37] and the mean-field ϕ4

model [34]–[36], [38]. For these two models it is possible to further simplify the dispersion
relation and to obtain implicit equations that, solved numerically, give both the growth
rate of the instability and the stability threshold. When the real part of the growth
rate vanishes, the state is a stable stationary state of the Vlasov equation. We have
checked these results against the numerical simulation of the Hamiltonian dynamics of the
corresponding N -body system. The stability thresholds are in general in good agreement
with the theoretical predictions, but for the growth rate the agreement is only qualitative
for the ϕ4 model. A case in which the growth rate turns out to be in perfect agreement
with the simulations is that of the HMF model [11]–[13].

Those inhomogeneous stationary states that are also stable are good candidates for
becoming QSS at finite N . We have therefore pointed out the existence of a new class
of inhomogeneous QSS, for which it will be possible in the future to study the law of
divergence of the lifetime with system size.
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