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We apply the Hilbert transform to the physics of internal waves in two-dimensional fluids. Using
this demodulation technique, we can discriminate internal waves propagating in different directions:
This is very helpful in answering several fundamental questions in the context of internal waves. We
focus more precisely in this paper on phenomena associated with dissipation, diffraction, and
reflection of internal waves. © 2008 American Institute of Physics. �DOI: 10.1063/1.2963136�

I. INTRODUCTION

The synthetic schlieren technique1 is a very powerful
method to get precise and quantitative measurements for
two-dimensional �2D� internal waves in stratified fluids.
Such a technique was very effectively used to get quantita-
tive insights while studying different mechanisms for inter-
nal waves. Let us just mention the emission, propagation,
and reflection of internal waves2–8 or the generation and re-
flection of internal tides.6–9 However, when considering in-
ternal waves generated by an oscillating body or by an os-
cillating flow over a topography, the analysis is drastically
complicated by the possibility of different directions of
propagation associated with a single frequency; such a prob-
lem arises also when multiple reflections occur at bound-
aries.

We present in this article a method to discriminate the
different possible internal waves associated with one given
frequency �. These waves can be discriminated by their
wavevectors k= �kx ,kz� according to the sign of both compo-
nents, kx and kz. The transformation we present here not only
offers an analytical representation of the wavefield, which
allows us to extract the envelope and the phase of the waves,
but allows also to isolate a single wave beam. This method is
based on the Hilbert transform �HT� previously applied to
problems dealing with propagating waves but adapted here
to 2D phenomena.

The method is used here to tackle several fundamental
issues in order to bring new insights. It is important to em-
phasize that we used a source of monochromatic internal
plane waves to facilitate the comparison with theoretical re-
sults.

The paper is organized as follows. In Sec. II, we present
the HT. In Sec. II D, we present its application to the classi-
cal oscillating cylinder experiment, with a special emphasis
on the insights provided by the HT. In Sec. III, we study
three different physical situations that can be nicely solved
with this technique. The dissipation length is studied in Sec.
III A, the backreflection on a slope in Sec. III B, while Sec.
III C focuses on the diffraction mechanism. Finally Sec. IV
concludes the paper.

II. PRINCIPLE OF THE HILBERT TRANSFORM

A. Presentation of the variables

Before explaining a simple example of the different
steps necessary to apply the HT, let us briefly recall the dif-
ferent properties of internal gravity waves. We consider a 2D
�x ,z� experimental situation and denote t the time variable, g
the gravity, and ��x ,z� the density. In a linearly stratified
fluid such that �� /�z�0 and within the linear approxima-
tion, it is well known10 that the same wave equation,

��tt + N2�xx = 0, �1�

is valid for the field ��x ,z , t�, which stands for either the
streamfunction, both velocity components, the pressure, or
the density gradients. The constant

N =�−
g

�

��

�z
, �2�

which characterizes the oscillation of a fluid particle within a
linearly stratified fluid, is the so-called Brunt–Väisälä fre-
quency. Looking for propagating plane wave solutions,

� = �0ei��t−k·x�, �3�

where x= �x ,z� and k= �kx ,kz�, one gets the dispersion rela-
tion

�2 = N2 kx
2

kx
2 + kz

2 = N2 sin2 � �4�

if one introduces � as the angle between the wavevector and
the gravity. In this unusual dispersion relation, it is apparent
that changing the sign of the frequency � or the sign of any
component kx ,kz of the wavevector has no consequences. So
four possible wavevectors are allowed for any given positive
frequency, which is smaller than the Brunt–Väisälä fre-
quency.

The synthetic schlieren technique gives quantitative
measurements of the horizontal and vertical density gradients
�x�x ,z , t� and �z�x ,z , t�, respectively. As anticipated,
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both quantities verify Eq. �1�. In the remainder of this sec-
tion, we work on a field U�x ,z , t�, which might be either
�x�x ,z , t�, �z�x ,z , t�, or a velocity component as obtained in
particle image velocimetry experiments.

B. A simple one-dimensional example

We present here, in the first stage, how to compute the

complex-valued field Ũ�x ,z , t� such that U�x ,z , t� will corre-

spond to its real part Re�Ũ�x ,z , t��. In order to do so, we
demodulate the signal by applying the HT. To avoid misun-
derstandings, let us note that the HT is sometimes the name

of the operation that associates the real-valued field Im�Ũ� to

the real-valued field U, such that the complex number Ũ can
be fully reconstructed. In this article, we call HT �or complex
demodulation� the operation associating the complex-valued

field Ũ with the real field U. This demodulation technique
has been previously used to compute local and instantaneous
amplitudes, frequencies, and wavenumbers11–13 but, to the
best of our knowledge, the present study is the first applica-
tion in the context of internal gravity waves.

As an introductory example, let us consider a simple
signal in one spatial dimension constructed as the superposi-
tion of two wave beams propagating in the vertical direction
z with the same frequency and the same wavenumber kz,

U�z,t� = A cos��t − kzz� + B cos��t + kzz� . �5�

As z is the vertical component, the first term corresponds to
a wave propagating upward, whereas the second one corre-
sponds to a wave propagating downward. For the sake of
simplicity, we further suppose that the amplitudes A and B
are constant in space and time. Rewriting the cosines as the
sum of exponentials with complex arguments and decompos-
ing according to a Fourier transform in time, we have

U�z,t� = Û1ei�t + Û2e−i�t, �6�

where Û1= �Ae−ikzz+Beikzz� /2 and Û2 is the complex conju-

gate of Û1. So if we filter out the negative frequencies in
Fourier space and multiply by a constant factor of 2, we are
left with

Ũ�z,t� = Aei��t−kzz� + Bei��t+kzz�. �7�

The real-valued signal U�z , t� has been transformed into the

complex-valued signal Ũ�z , t� such that U�z , t�=Re�Ũ�z , t��.
With that complex signal at hand, it is now easy to separate
the two wave beams by looking at the Fourier transform in
space,

Ũ�z,t� = �Aei�t�e−ikzz + �Bei�t�eikzz. �8�

Isolating the positive �negative� values of the wavenumber kz

will isolate the wave propagating toward positive �negative�
z. It is important to stress that this second stage is only pos-

sible because Ũ is a complex-valued signal and not a real-
valued one: Its Fourier transform is therefore not the sum of

two complex conjugated parts on positive and negative fre-
quencies.

C. The two-step procedure for two-dimensional
waves

Let us now be precise on how we operate on real experi-
mental data involving two spatial dimensions.

The first step, called demodulation, is obtained by per-
forming sequentially the three following operations:

�i� A Fourier transform in time of the field U�x ,z , t�,
�ii� a wide or selective band-pass filtering in Fourier

space around the positive fundamental angular fre-
quency �=2�f , where we have introduced f , the tem-
poral frequency measured in hertz, and

�iii� the inverse Fourier transform generating the complex

signal Ũ�x ,z , t�.

On step �ii�, which removes exactly half the energy of the
signal, we also perform a multiplication by a factor of 2 to

preserve the amplitude of the signal and to have U=Re�Ũ�.
It is crucial to realize that four different traveling waves

are mixed in this complex signal,

Ũ�x,z,t� = Ã�x,z,t� + B̃�x,z,t� + C̃�x,z,t� + D̃�x,z,t� , �9�

with

Ã�x,z,t� = A�x,z,t�exp i��t − kxx − kzz� , �10�

B̃�x,z,t� = B�x,z,t�exp i��t − kxx + kzz� , �11�

C̃�x,z,t� = C�x,z,t�exp i��t + kxx − kzz� , �12�

D̃�x,z,t� = D�x,z,t�exp i��t + kxx + kzz� . �13�

Note that in Eqs. �10�–�13�, we have considered the wave-
numbers kx and kz to be positive in order to more easily
identify the direction of propagation.

Although the four waves oscillate in time at the same
frequency �, they do not propagate in the same direction
because of the different signs in front of the wavenumbers kx

and kz �cf. Fig. 1�. Note that amplitudes A–D might depend
on space and time: Dissipation is a good example. However,
scales on which they vary must be much larger than scales
�−1, kx

−1, and kz
−1, around which the demodulation is per-

formed.
In the second step, we isolate the four waves A–D from

each other using the complex-valued field Ũ�x ,z , t�. To do
so, we apply another filtering operation in Fourier space but
this time in the wavenumber directions kx and kz associated
with spatial directions x and z. Again, this filtering is only
possible on a complex field, i.e., after the HT has been per-
formed. The goal of this additional filtering is only to select
positive or negative wavenumbers, but one might also take

086601-2 Mercier, Garnier, and Dauxois Phys. Fluids 20, 086601 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



advantage to apply a more selective filter to remove spurious
details and noise at other wavenumbers.

The two steps we have detailed involved successively a
Fourier transform in time and then in space directions. Of
course, it is equivalent to operate first in a space direction
and then in time and in the other space direction. The best
choice is in fact imposed by the Fourier transform resolution,
i.e., the first Fourier transform has to be performed in the
direction with the largest number of experimental points.

According to the schematic in Fig. 1, we then get a
single wave corresponding to a specific direction of the
wavevector where A�x ,z , t� is the complex-valued amplitude
of the wave traveling to the right in the x direction and trav-
eling up in the z direction. B–D are the complex-valued am-
plitudes of the three other possible waves. In the experi-
ments, one has to measure first the frequency � and the
wavenumbers kx and kz, but we note that they are the same
over all spatiotemporal data corresponding to a given experi-
ment. The envelopes A–D contain information not carried by
the fast frequencies � and fast wavenumbers kx and kz, such
as amplitude envelopes of the beams and local wavenumber
modulations. We will carefully study these quantities.

In summary, the demodulation technique extracts from
the experimental signal the complex quantity

��x,z,t� = ���X,Z,T��exp�i	��x,z,t�� , �14�

where � stands for A, B, C, or D. The argument of the ex-
ponential, 	�, is the fast-varying phase corresponding to
wave �, rotating at the experimental signal frequency while
containing slow modulations.

In practice, the complex demodulation of the initial spa-
tiotemporal signal U�x ,z , t� results in four sets of four fields
�local and instantaneous�:

�i� The amplitude ���x ,z , t��,
�ii� the frequency ��x ,z , t�=�	� /�t,
�iii� the wavenumber in the x direction, kx�x ,z , t�

=�	� /�x, and
�iv� the wavenumber in the z direction, kz�x ,z , t�=�	� /�z.

Note that the wavenumbers and the frequency have to be
calculated from the phase field.

Let us finally emphasize that, the Fourier transform be-
ing bijective only when applied to infinite or periodical sig-
nals, it is important to filter the data first in time in order to
benefit from the sharpness of time spectra obtained after
long-time data acquisitions; in the second step, the Fourier
transform in space is applied, allowing to separate waves A,
B, C, or D.

The application of the HT to the study of internal waves
can provide very interesting results and answer questions
that remained unsolved. The main idea is to isolate the dif-
ferences between internal wave beams propagating up or
down and to the left or to the right. However, before consid-
ering such situations, we study in Sec. II D how this method
might be applied to a simple 2D situation, which has been
intensively studied already.

D. The classical oscillating cylinder experiment
as a first example

The first example one might consider is the simple ex-
periment of a cylinder oscillating up and down at a given
frequency �. Initiated by the Görtler experiment,14 this setup
was later popularized by Mowbray and Rarity15 and recently
generalized to a three-dimensional situation.16

The experiment we will describe was realized in a tank
of 120
50
10 cm3 filled with linearly stratified salt water.
Quantitative internal wave visualization was obtained by
synthetic schlieren,1 which measures the horizontal and ver-
tical density gradient perturbations referred to as �x�x ,z , t�
and �z�x ,z , t� in the following. If one considers an oscillating
cylinder in a 2D stratified fluid, the four internal wave beams
emitted have four wavevectors differing from each other by
the sign of their projections onto �Ox� and �Oz�, as summa-
rized in Fig. 1�b�.

The complex demodulation of the wavefield in time first
is presented in Fig. 2. Such a picture clearly emphasizes that
four different beams are generated by the oscillating cylin-
der, all of them being tilted with an angle � with respect to
the gravity, � being given by the dispersion relation �4�.

After an additional filtering along the z coordinate first
and then along the x coordinate, four different beams can be
isolated as presented in Fig. 3. Although some boundary ef-
fects can be detected at locations corresponding to disconti-
nuities in space due to the cylinder, explaining the intense
yellow areas along the horizontal and vertical axes, it is im-
portant to stress that there is no ambiguity concerning the
field treated. Moreover, these side effects might be corrected

(b)

(a)

FIG. 1. These pictures emphasize the four different traveling waves that
might propagate in a stratified fluid. The top panel corresponds to the wave-
numbers in the Fourier space while the bottom panel corresponds to those in
the direct space. The top panel defines the four different domains A–D
corresponding to different signs of the wavenumber in the x and z space
directions. The bottom panel presents also a synthetic view of the four
internal wave beams emitted, in a 2D stratified fluid, by a vertically oscil-
lating body located at the origin. For each beam, the phase velocity c	 is
parallel to the wavevector k but orthogonal to its associated group velocity
cg. Note that, for example, the beam propagating in the bottom-right domain
of the bottom panel corresponds to a wavevector with both positive compo-
nents, explaining that this domain is labeled A, according to Eq. �10�.
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by applying the HT in space only to a selected domain in-
stead of considering the full window of observation also con-
taining the cylinder here.

We will now present two interesting points that have not
been addressed in previous literature �for recent results see
Refs. 6 and 17� while studying the wavefield emitted by an
oscillating cylinder.

Figure 4�a� presents a zoom on the phase of the beams
emitted to the right of the cylinder �right side of Fig. 2�: It is
clear that there is no direct link between the phase evolution
of the downward and upward propagating waves. Such an
image will be very helpful when we will analyze the spatial
structure of the emitted phase for the diffraction phenomenon
in Sec. III C.

Figure 4�b� shows the evolution of the transverse spatial
spectrum of the downward propagating wave to the right. It
has been obtained by extracting the transverse profiles �along
�O��� at the circles located on the axis of propagation of the
wave �O�� and shown in Fig. 4�a�. This picture reveals not
only the decrease in the amplitude due to dissipation �see

Sec. III A for a complete analysis� but also the gradual shift
toward smaller values of the wavenumbers, i.e., toward
larger wavelengths.18

In summary, the use of the HT allows one to separate
rather easily all the waves emitted from the cylinder and to
have a very precise definition of the phase of the wavefield,
a quantity of importance to describe the wave spectra. We
use in Sec. III these properties to address questions still
pending.

III. APPLICATIONS

In the remainder of the article, we study internal wave
beams emanating from a “pocket size” version of the internal
plane wave generator that we have recently developed.19 All
experiments were realized in a tank of 80
42.5
17 cm3

filled with linearly stratified salt water. Horizontally oscillat-
ing plates of thickness of 6 mm create a sinusoidal envelope
of amplitude a0=5 mm and wavelength e=3.9 cm, �ke

=2� /e�. The oscillating frequency � defines through the

FIG. 3. �Color online� Real part of the horizontal density gradient �x presented in Fig. 2 after spatial filtering. The four different pictures correspond to the
four possible waves described in Fig. 1�a�.

FIG. 2. �Color online� Saint Andrew’s cross obtained with a cylinder of radius R=1.5 cm oscillating vertically with an amplitude of 1.5 mm at a frequency
�=0.28 rad s−1 in a stratified fluid with Brunt–Väisälä frequency N=1.0 rad s−1. The picture presents the real part �left panel� and amplitude �right panel� of
the HT, corresponding to the experimental horizontal density gradient �x filtered in time.

086601-4 Mercier, Garnier, and Dauxois Phys. Fluids 20, 086601 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



dispersion relation �4� the angle of propagation of the beam
with respect to the gravity. Such a device was shown to be
extremely effective to generate nice plane wave beams in
linearly stratified fluids.19

A. Dissipation of internal waves

The first physical situation we consider is the dissipation
of internal waves within a laboratory tank. The linear viscous
theory developed by Thomas and Stevenson20 first and by
Hurley and Keady21 afterwards has been tested with good
accuracy.2,17,22 The damping of the averaged spectrum with
time has also been studied typically in the case of attractors
because a steady state is obtained due to a balance between
amplification at reflection and viscous damping.18,23 In Fig.
4�b�, the damping of the spectrum along the axis of propa-
gation can also be analyzed similarly. Nevertheless, these
approaches are integral ones over all wavenumbers, and the
viscous damping has not been tested on a monochromatic
internal wave. Moreover, the HT is an excellent tool to mea-
sure the dissipation effects.

The structure expected24 for a viscous internal plane
wave is

���,�,t� = �0e−��ei��t−k��, �15�

where � is the longitudinal coordinate while � corresponds to
the transversal one. The quantity

� =
�k3

2N cos �
=

�k3

2N�1 − �2/N2
�16�

corresponds to the inverse dissipation length. Thanks to the
analytical representation of the internal waves using the HT,
it is easy to get the envelope of a monochromatic internal
wave and thus quantify how it decreases through viscous
dissipation. Results shown below correspond to three differ-
ent stratifications.

For each frequency, the envelope of the emitted beam is
extracted: A typical result is shown in Fig. 5�a�. The loga-
rithm along the � coordinate is then plotted versus the longi-
tudinal coordinate � for different � values, as illustrated in
Fig. 5�b�. The dissipation rate according to the direction of
propagation is then obtained by the averaged linear fit over
the different profiles extracted.

Repeating the above procedure for several frequencies,
one gets the evolution of the dissipation length ����. It is,
however, important to realize that, the propagation being
tilted with respect to the vertical plane of emission, the forc-
ing of the internal plane wave generator does not create a
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FIG. 4. �Color online� �a� Phase of the density gradient �x�x ,z , t� after step
1, zoomed on the right-hand side of Fig. 2. The cylinder is represented in
black. Note also the definition of the variables � and �, respectively, along
and transversal to the propagation. �b� Evolution of the transverse spatial
spectrum along the axis of propagation �O��. Amplitudes have been normal-
ized by the maximum value of the spectrum closest to the cylinder at �
=5 cm.

(a)

0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

ξ (cm)

lo
g

(ψ
/ψ

0)

averaged slope = −0.058 cm−1

(b)

FIG. 5. �Color online� �a� Envelope of the HT of the downward field
�x�x ,z , t� �A and C� for an oscillating frequency f =0.033 Hz and a Brunt–
Väisälä frequency N=0.66 rad s−1. The diagonal black line indicates the
location of one of the regularly extracted profiles. All other ones are parallel
to this one. �b� The logarithm of extracted profiles together with the aver-
aged linear fit.
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wave whose wavelength is e. A projection of the wave-
length on the direction perpendicular to propagation has to
be taken into account: The wavevector of the propagating
internal wave is therefore k=ke /cos �, so that we have the
following relation:

� =
�ke

3

2N cos4 �
, �17�

which can be rewritten in the more convenient form

N� =
�ke

3

2

1

�1 − x2�2 �18�

by introducing x=� /N. It is thus generic to plot the attenu-
ation rate � times the Brunt–Väisälä frequency N as a func-
tion of the ratio x=� /N for different values of N, as pre-
sented in Fig. 6. Using the value of the viscosity �
=1.0510−6 m2 s−1, only one free parameter remains, the
wavevector ke=2� /e.

The above procedure leads to the result e=3.55 cm
�+0.20 /−0.16� cm, in good agreement with the value ob-
tained from the transverse beam structure. Surprisingly these
values are slightly different from the one imposed by the
internal plane wave generator. Figure 6, which presents the
best fit, attests the good agreement with experimental results.
The model seems particularly accurate for frequencies � suf-
ficiently small compared to the cut-off frequency N.

B. Backreflected waves on a slope

We have also used the HT to identify a possible backre-
flected wave when an incident internal wave beam is reflect-
ing on a slope of angle � with the horizontal.29 After reflec-
tion, as shown by Fig. 7, two beams inclined with an angle �
with respect to the horizontal might be emitted from the
slope. One of these beams has been experimentally reported
several times,2,4–6 contrary to the second one, which is
aligned with the incident beam but propagating in the oppo-

site direction and represented by the dashed arrow in Fig. 7.
This additional beam was considered by Baines25,28 and
Sandstrom26 when theoretically studying the effect of bound-
ary curvature on the reflection of internal waves. Let us ex-
perimentally prove that no backreflection occurs at planar
surfaces.

It is clear that if it exists, the amplitude of the backre-
flected beam has to be much smaller than the incident one, as
usual techniques were unable either to identify it or to ex-
clude it. This is the reason why we have performed several
experiments of an incident beam impinging onto a slope,
away from critical incidence but also close to it �see Table I
for values of control parameters�. Analysis of one case with
��� is presented in Fig. 8. The backreflected beam in that
case should be a D wave according to classification �9�.
However, Fig. 8 shows absolutely no evidence of it, and only
a B component is visible. Nevertheless, as the HT along the
x coordinate has not been performed to avoid the introduc-
tion of spurious boundary effects, it is still possible to argue
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FIG. 6. �Color online� N� as a function of � /N for three different stratifi-
cations: stars, squares, and circles correspond to experiment with N=0.66,
0.68, and 0.76 rad s−1. The solid curve corresponds to the best value for
fitting the data, e=3.55 cm, while the dashed �dotted� line corresponds to
the lower �upper� bound e=3.39 cm �e=3.75 cm�.

(b)

(a)

FIG. 7. �Color online� The principle of the possible backreflection problem
for an incident internal wave beam. Panel �a� shows the ��� case, while �b�
presents the opposite case, ���.

TABLE I. Summary of experimental runs with all control parameters: The
angle of energy propagation �, the angle of the slope �, �=�−�, and the
Brunt–Väisälä frequency N.

Run 1 2 3 4 5

� �deg� 14.0 7.0 11.4 15.1 25.0

� �deg� 25.5 14.5 14.5 14.5 14.0

� �deg� −11.5 −7.5 −3.1 0.6 11.0

N �rad s−1� 0.42 0.58 0.58 0.58 0.42
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that the D wave might be localized where the B wave could
shadow it. However, as this spatial domain remains ex-
tremely small, it is therefore very unlikely.

Varying the angle � of the waves around �, the slope
angle, no trace of backreflected intensity is apparent even
close to critical conditions �=�. In order to give a definitive
answer, we have also considered the case ��� �see Fig.
7�b��. In that case, the backreflected beam would be the only
one to propagate upward, while the classically reflected
beam would be a C wave, propagating downward.

Figure 9, corresponding to such a case, attests that there
is no wave propagating backward. We can therefore claim
that the backreflected beam is definitely not present when
internal waves reflect onto a slope. Concave or convex
slopes might lead to different results.25

C. Diffraction of internal waves

The diffraction of internal waves is the last issue we will
consider in this paper. Although it is not directly interesting
for oceanographic applications, it seems natural to ask27

what the equivalent of the Huygens–Fresnel principle is for
optical waves. Indeed, it has been established for centuries
that when a plane wave encounters a thin slit, optical waves
are re-emitted in all directions. How about internal waves?
To the best of our knowledge, there are neither theoretical
nor experimental results on this topic.

As the incident wave is impinging onto the slit with a
well defined frequency, it is clear that the transmitted waves
have to satisfy the dispersion relation �4�. However, as sche-
matically shown in Fig. 10�a�, two different beams might be
expected after the slit. In the case exemplified in this picture,
it is clear that most of the energy will be transmitted to the
waves propagating upward. Is it possible, however, to detect
whether part of the energy is emitted downward? The main
goal is therefore to be able to discriminate what is going out
of a slit with a width comparable to the wavelength of an
incoming internal plane wave.

In the experiments, the stratification is linear with N
=0.45 rad s−1, while the incoming beam has a frequency �
=0.196 rad s−1 and a wavelength =3.2 cm. Since the
source is the internal plane wave generator, we are reminded
that it corresponds to a vertical wavelength of z=3.6 cm.
The slit of varying width a is made of two sliding plastic
plates of thickness of 1 cm and is represented by a thick
vertical white line in Figs. 10–12 since no signal can be
obtained in this region with the synthetic schlieren technique
because of the sides of the slits. Below we present results
corresponding to widths of the slit of a=6, 4, 3, and 2 cm.
Note that for a=1 cm, no signal was obtained after the slit,
which means that its intensity was below the noise level �if
there was anything to measure�.

Figures 11 and 12 present the results for a=4 cm and

FIG. 8. �Color online� Horizontal density gradient �x. �Left� Downward �A and C� and �right� upward �B and D� waves reflecting on a slope ��=14° � in
�N2 rad2 s−2. The frequency of the waves was � /N=0.43 with the Brunt–Väisälä frequency N=0.42 rad s−1.

FIG. 9. �Color online� Horizontal density gradient �x. �Left� Downward waves �A and C� and �right� upward waves �B and D� reflecting on a slope
��=25.5° � in �N2 rad2 s−2. The frequency of the waves was � /N=0.24 with the Brunt–Väisälä frequency N=0.42 rad s−1.
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a=2 cm, emphasizing two different mechanisms for emis-
sions that correspond to a� and a�. Note that both pic-
tures present zooms close to the slit to better appreciate the
interesting region.

In the first case, it is apparent that most of the intensity is
in the beam emitted in the same direction as the incoming
wave �upward propagation here�. Furthermore, this beam
seems very similar to the incoming plane wave: One notes
indeed that the wavelength is identical before and after the
slit. Moreover the continuity of the phase is nicely shown by
the right panel of Fig. 11. Nevertheless, the edges of the slit
are also a source emitting downward propagating beams

since waves can be seen on both sides of the slit. It seems
logical since the incoming plane wave creates an oscillating
flow close to the slit, inducing a wavefield similar to the one
of an oscillating body in a fluid at rest. It is finally important
to notice that the spatial structure of the phase of the com-
plete wavefield is different from the one observed in Fig. 4
for an oscillating cylinder. The emission of the upward and
downward propagating waves by the slit is consistent since
there is no discontinuity in the spatial structure of the phase.

In the second case, a=2 cm, presented in Fig. 12 with a
slit smaller than the wavelength, the mechanism is different.
It seems that the only property similar to the incoming plane
wave in the two beams transmitted through the slit is the
frequency. Both transmitted beams have comparable intensi-
ties. The spatial structure of the phase presents a discontinu-
ity strongly reminiscent of the wavefield emitted by an os-
cillating body as shown by Fig. 4.

To have a global view of the physics of internal plane
wave diffraction, we finally present in Fig. 13 the vertical
spatial spectra associated with the transmitted waves �up-
ward and downward� taken at 1.5 cm after the slit for all
values of the width a, in comparison with the spectrum of the
incoming wave. The amplitudes of the Fourier components
have been normalized by the maximum amplitude �Aincoming�
of the incoming wave spectrum measured 4 cm before the
slit. Several comments are in order. A clear shift in the peak
toward larger values of the wavenumbers is visible when the
width of the slit decreases. The spectra are also clearly en-
larged. This is consistent with the previous remark that for a
large slit, the transmitted wave beam is very similar to the
incident one. The spectra of the downward beam are visible
in the negative k half-plane. In the large cases, a=3 and 4,
they are wide and with a small amplitude, attesting that most
of the incident energy is transmitted upward, i.e., directly. On
the contrary, in the thin slit case, a=2, the amplitudes for
downward and upward propagating waves are comparable. It
is difficult to propose a more quantitative discussion since
the dissipation of the spectra is important.

In summary, the analysis of these spectra confirms that
when the slit is sufficiently “large,” the emitted beam has a
vertical wavenumber similar to the incoming one although
the spectrum is slightly wider. On the contrary, when the slit
is “small” enough, both beams have similar spectra and am-
plitudes.

(b)

(a)

FIG. 10. �Color online� Panel �a� presents the principle of the diffraction
problem for an incident internal wave beam. Panel �b� shows the horizontal
density gradient U field in �N2 rad2 s−2 for an incoming internal plane
wave, corresponding to a wavelength =3.6 cm on a 4 cm wide slit. The
dotted square corresponds to the region presented in Figs. 11 and 12.

FIG. 11. �Color online� Large slit case. HT of the gradient density field �x in �N2 �rad s−1�2 filtered at �=0.196 rad s−1 for a=4 cm with kz�0 �left panel�,
kz�0 �center panel�, and phase of the complete field with all values of kz �right panel�.

086601-8 Mercier, Garnier, and Dauxois Phys. Fluids 20, 086601 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



Finally, we can conclude that the change in the type of
waves emitted after the slit is due to the possibility of spatial
forcing of the phase by the incoming plane wave. The latter
involves a typical length, the inverse of the vertical number
kz, which in the present experiment is nothing but the wave-
number forced by the generator. It appears that a criterion for
a change in behavior occurs when the spatial evolution of the
phase is small compared to the temporal one, leading to
kza��T, i.e., kza�2�. In the present case, it leads to a
�e=3.6 cm. The main question remaining is to find a pre-
cise criterion to discriminate when spatial forcing of the
phase occurs or not. This phenomenon of phase forcing
might be related to circular oscillations of a cylinder in a
stratified fluid, which leads to two preferential emission �two
beams instead of four�.30,31

IV. CONCLUSION

In this article, we have applied the complex demodula-
tion, also called HT. This transformation is shown to be very
powerful when adapted to internal waves in two dimensions.
The experimental investigation of attenuation, reflection, and
diffraction of internal plane waves generated using a new
type of generator has brought answers to several theoretical
assumptions never confirmed.

The attenuation of internal plane waves is in good agree-
ment with the linear viscous theory of internal waves. Fur-
thermore, the results obtained quantify the influence of the
wavelength since we consider monochromatic internal plane
waves.

Although the reflection of internal waves is a classic
phenomenon, some theoretical ideas remained assumptions,
and by looking for a hypothetical backreflected wave we can
now confirm that the backreflection is not present. Finally,
we study the problem of diffraction of internal waves as it
has not been investigated to our knowledge yet, and we ex-
hibit the diffraction pattern of an internal wave, which is
atypical due to the peculiar dispersion relation of internal
waves.
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