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Recently, Mallier and Maslowe [Whys. Fluids A 5, 1074 (1993)] found an exact nonlinear 
solution of the inviscid, incompressible, two-dimensional Navier-Stokes equations, representing 
an infinite row of counter-rotating vortices, which extended the previous Kelvin-Stuart vortices. 
The aim of this work is to establish explicit sufficient conditions for the nonlinear stability of this 
solution. The result is derived with the energy-Casimir stability method as a function of the 
parameters of the solution and the domain size. The size of the domain over which the street of 
vortices is unstable is exhibited. 

In the case of inviscid and incompressible fluid, the 
vorticity equation for two-dimensional motion of the fluid 
is of the form: 

where $I is the streamfunction, o= - A$ the vorticity, t the 
time and {,} the usual Poisson bracket. The solution of Eq. 
( l), introduced by Mallier and Maslowe,’ that we would 
like to discuss is 
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which describes a stationary pattern in the form of a street 
of counter-rotating vortices, arranged periodically along 
the x-axis at a distance equal to a-. A typical aspect of the 
solution is shown in the Fig. 1 for .s=O.9. The parameter E 
characterizes the density of vorticity: when E= f 1, we re- 
cover the point vortices solution and when E=Q we have 
$=O. Thus, as E ranges from 0 to 1, the flow represented 
by Eq. (2) ranges from the fluid at rest, to the flow due to 
a set of point vortices on the x-axis. 

This solution has to be connected to the row of iden- 
tical vortices, which was introduced by Stuart’ and which 
are the streamlines of the celebrated “Kelvin-Stuart’s cat’s 
eyes.” The solution (2)) because it is an exact consequence 
of certain equations, is of theoretical and illustrative value, 
and especially, it would be of great interest to know from a 
stability analysis whether this solution is stable in a finite 
domain. Indeed, the analytical expressions of the identical 
or counter-rotating street vortices are specially relevant for 
the studies of the stability or instability of experimental 
fluid flow~.~ In the two already mentioned limiting cases, 
the answer is simple. On the one hand, the fluid at rest 

(E=O) is clearly stable; and on the other hand, the flow 
due to a set of point counter-rotating vortices ( 1 E 1 = 1) is 
unstable.4” The aim of this p a p er is to establish explicit 
sufficient stability conditions for all values of E. 

In order to study the nonlinear stability of the counter- 
rotating vortices in a domain D of the plane R’, we will use 
the total energy on this domain, which takes the form? 

H(w) = 

1 
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(3) 

where n is the outward unit normal of the boundary LID 
and ds the scalar infinitesimal arc element. As the fluid is 
inviscid, this quantity is conserved, and more generally, 
one can show also,’ that the functionals C,(w) 
= S Da (w)dx dy, called Casimir, are also conserved for 
any function Q in R. To establish sufficient conditions for 
the nonlinear stability, we will employ convexity properties 
of Ha = H+ CQ to find an explicit norm. We get 

1 
Hdw) = 2w(-V2)-‘w+@(w) 

s (a@ , gds (4) 

and integrating twice by parts and using the boundary con- 
ditions, it reads 

DH,(w,)Sw= 
s 

(qbe) +@‘(w,) 16~ dx dv. (5) 
.D 
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FIG. 1. Streamlines of the solution (2) for .~=0.9. The dashed lines 
correspond to the negative contour lines and the full lines to the positive 
ones. 

Let us choose the function Q> so that D&(w,) ~0. 
As the solution (2) satisfies’ the smh-Gordon 
equation A$= - (( 1 -.c’)sinh 2$)/2, we have 
$(w,) =f Arcsinh(2w/( 1 - e2)>. Therefore, we obtain 

(6) 

Differentiating this twice, we get v(a) 
= - 2{,12 + [ ( 1 -E’-> 2/4]}- ’ Q 0; it means that the function 
Q, is concave in R, but a” is unbounded from below. To 
study the stability of the solution in a finite domain, con- 
sider a finite perturbation SW. The quantity 

&m4 =H,(w,+So) -H*(w,) -DH*(o,)Sw 

-@(we) -DD(w,)Sw (7) 

is a nonlinear constant of motion since we have chosen Cp 
so that D&,(w& =O. To establish the Lyapunov stability 
estim$es with H, we will modify the function Q, to a func- 
tion Q’, which gives DH+(w,) =0 and, which has its set- 
ond derivative bounded above and below on the L’ norm. 

From Eq. (2), we obtain 

(l--e2) 
W,in = - ~ sinh(4 Arcth E) 2 
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since the extremal values are obtained for (xg) = (0,O) 
and (r,O) respectively. Thus, from the expression of Q”, 
we see that on the interval [ti,in,W,,], 

<@“(Omin)=Qn(CD,,), (9) 

I.e., 

2 

-&.) c~~~(o,)<-1+16~~+h4<o’ (10) 
Note that this equation is not valid for the extreme cases 
I&I =l. 

Let us construct the function (i; in such a way that it 
coincides with @ on the interval [W,in,Wmax], and with 

6,(a) = - (,;;?,$);+a*n+B, (11) 

on the two intervals ]- CO ,O&j and [w,,, , + CO [. The 
constants cz+. and fl, are determined from continuity cri- 
teria, so that Q is a C2-function. 

By construction, the function ( -6) is convex, i.e., 

1+6cz+.c4 2 

<-~(w,+So) +&&> +G’(w,)Sw 
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With the use of (7), we get 
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,. 

and, keeping in mind that ( -HG( w) ) is a conserved quan- 
tity and that (V’) - * is negative, we obtain 

-2I&(Sw) = -2&(Soo) 

( 14) 

where SW,, is the initial value of perturbation. 
Finally 
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~ - 2 J % @ ~ k~, -~  )  l  2  I IS ~ O IlL T  
or, o n  the d o m a i n  D, if o n e  notes  k2,i, the m in ima l  e igen -  
va lue  of the opera to r  (  - V ’), w e  ob ta in6  

s D  
6w(V2 ) -‘60dxdy>-k; ; l  IthI 1 ;~  

just by  sett ing 

S & l =  5  Cp i  (17)  
i = O  

w h e r e  the funct ions @ pi  a re  a n  L ” or thonorma l  bas is  of 
e igenfunct ions.  

S ince  fi is tim e  invar iant,  the a  pr ior i  est imate p rov ide  
su i tab le no rms  b o u n d i n g  the g rowth  of d is turbances,  p ro -  
v ided  that E q . (13)  is satisf ied. W e  obta in  therefore  the 
non l i near  stabil i ty cond i t ion 

( l -&2)  
(1  + 6 & c 4 )  

-k;;i2, 1  1  ISwl  & C & j  1  b ’o l &  

(18)  

Cons ide r  for the d o m a i n  D  a  rec tangu lar  box,  wi th length  
2 ? r N  in  the x-axis a n d  2 L ’in the y-axis; the m in ima l  e igen -  
va lue  of the opera to r  (  - V 2 >  is k2, in= (l/N’) +  (d/F), 
s ince the e igenfunct ions,  van ish ing  o n  the boundary ,  a re  
f(x,y)=cos(x/N)sin(?ry/~. W e  can  then  wri te the fol- 
l ow ing  theorem.  

T h e  Ma l l ie r -Mas lowe solut ion of the b id imens iona l  
Eu le r  equa t ion  is non l inear ly  s tab le in  the L 2  n o r m  o n  
vorticit ies for per turbat ions of the init ial vorticity wh ich  
p reserve  the f low rate ( $ =  constant  o n  the b o u n d -  
ar ies)  a n d  the circulat ions, in  the d o m a i n  
O={(x,y) /x~[O,2N?r] ,yE[-4+/J)  p rov ided  that E  a n d  
/satisfy the fo l lowing condi t ion:  

gzgTjr$.  (19)  

There fo re  w e  exhibi t  a  t ransverse s ize of the d o m a i n  D  
over  wh ich  the street of vort ices is unstab le.  

T h e  impl icat ion of this condi t iona l  stabil i ty is that the 
v io lat ion of the convexi ty  condi t ions for the the g iven  f low 
is a  necessary  condi t ion for its instabil i ty. F igure  2  presents  
the stabil i ty reg ion  of the counter- ro ta t ing vort ices in  the 
p l ane  (4~ )  for N =  1. O n e  can  check  that the par t icu lar  
case,  w h e r e  the f luid is at rest ( E  =  0 )  is a lways  stable,  s ince 
the condi t ion g o e s  to infinity. O n  the o ther  hand ,  o n e  notes  
that the po in t  vort ices ( E =  co  >  a re  a lways  unstab le.  T h e  
f igure shows  a lso  that the so lut ion is uns tab le  for al l  va lues  
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FIG. 2. D o m a i n  of stabi l i ty of a  pa i r  of counter- rotat ing vort ices ( N =  1 )  
in  the p lane  (4;~).  /is the t ransverse s ize of the box  a n d  E  character izes 
the densi ty  of vorticity. T h e  so l id  l ine  is de f ined by  Eq .  (  19) .  

of E  if & is  infinite. W e  emphas i ze  that, contrary to the case  
of ident ical  S tuart vort ices,” the analyt ical  ca lculat ions a re  
h e r e  t ractable in  a  rec tangu lar  box,  a n d  not  in  a  hypothet -  
ical  one ,  wh ich  fo l lows the st reaml ines.  

In conc lus ion,  in  this work,  w e  der ive  explicit ly the 
non l i near  stabil i ty cond i t ion for the counter- ro ta t ing vor-  
t ices solut ions in  a  rec tangu lar  box.  This  work  shou ld  l ead  
to a  bet ter  unders tand ing  of the ro le  of the nonl inear i ty  in  
the instabil i ty of e lect romagnet ica l ly  forced counter -  
rotat ing vort ices3 w h e n  the viscosity is present .  W o r k  a l ong  
this l ine is in  progress.  
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