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Recently, Mallier and Maslowe [Phys. Fluids A 5, 1074 (1993)] found an exact nonlinear
solution of the inviscid, incompressible, two-dimensional Navier—Stokes equations, representing
an infinite row of counter-rotating vortices, which extended the previous Kelvin—Stuart vortices.
The aim of this work is to establish explicit sufficient conditions for the nonlinear stability of this
solution. The result is derived with the energy-Casimir stability method as a function of the
parameters of the solution and the domain size. The size of the domain over which the street of

vortices is unstable is exhibited.

In the case of inviscid and incompressible fluid, the
vorticity equation for two-dimensional motion of the fluid
is of the form:

do
=10} (1)

where i is the streamfunction, ® = — Ay the vorticity, ¢ the
time and {,} the usual Poisson bracket. The solution of Eq.
(1), introduced by Mallier and Maslowe,’ that we would
like to discuss is
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which describes a stationary pattern in the form of a street
of counter-rotating vortices, arranged periodically along
the x-axis at a distance equal to 7. A typical aspect of the
solution is shown in the Fig. 1 for £=0.9. The parameter ¢
characterizes the density of vorticity: when e= + 1, we re-
cover the point vortices solution and when =0 we have
1=0. Thus, as ¢ ranges from 0 to 1, the flow represented
by Eq. (2) ranges from the fluid at rest, to the flow due to
a set of point vortices on the x-axis.

This solution has to be connected to the row of iden-
tical vortices, which was introduced by Stuart? and which
are the streamlines of the celebrated “Kelvin—Stuart’s cat’s
eyes.” The solution (2), because it is an exact consequence
of certain equations, is of theoretical and illustrative value,
and especially, it would be of great interest to know from a
stability analysis whether this solution is stable in a finite
domain. Indeed, the analytical expressions of the identical
or counter-rotating street vortices are specially relevant for
the studies of the stability or instability of experimental
fluid flows.? In the two already mentioned limiting cases,
the answer is simple. On the one hand, the fluid at rest
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(e=0) is clearly stable; and on the other hand, the flow
due to a set of point counter-rotating vortices (|e|=1) is
unstable.*> The aim of this paper is to establish explicit
sufficient stability conditions for all values of ¢.

In order to study the nonlinear stability of the counter-
rotating vortices in a domain D of the plane R?, we will use
the total energy on this domain, which takes the form:®
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where n is the outward unit normal of the boundary 3D
and ds the scalar infinitesimal arc element. As the fluid is
inviscid, this quantity is conserved, and more generally,
one can show also,’ that the functionals Cpy(w)
= [ p®(w)dx dy, called Casimir, are also conserved for
any function ® in R. To establish sufficient conditions for
the nonlinear stability, we will employ convexity properties
of Hy=H+Cy, to find an explicit norm. We get

1
He(w)= fD (iw(—Vz)_lw—i—d)(co))dx dy
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and integrating twice by parts and using the boundary con-
ditions, it reads

DHo(0,)80= fb () +0" (0))60 dx dy.  (5)
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FIG. 1. Streamlines of the solution (2) for £=0.9. The dashed lines
correspond to the negative contour lines and the full lines to the positive
ones.

Let us choose the function ® so that DHg(w,)=0.
As the solution (2) satisfies! the sinh-Gordon
equation A= —((1—€?)sinh 24)/2, we have
¥(w,) =3 Arcsinh(2w,/(1 — £°)). Therefore, we obtain

A
<1>(/1)=f0 —P(s)ds

1 24 ’ 422
= —= /llog ) + ] 2+1
2 =) "Va-&9
(1—e%)* (1-¢)
2
— A%+ 2 + 2 (6)
Differentiating this twice, we get D" (A)

= — 2{A?+[(1—£>)?/4]} ' € 0; it means that the function
& is concave in R, but ®” is unbounded from below. To
study the stability of the solution in a finite domain, con-
sider a finite perturbation dw. The quantity

Hy(80)=Hg(w,+80) —Hyp(w,) — DHy(0,)8w

1
_ f (5 50(V?) 180+ D (0,4 6e)
D
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is a nonlinear constant of motion since we have chosen ®

so that DHg(w,) =0. To establish the Lyapunov stability

estimates with H, we will modify the function ® to a func-

tion @, which gives DHg(®,) =0 and, which has its sec-

ond derivative bounded above and below on the L? norm.
From Eq. (2), we obtain
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since the extremal values are obtained for (x,p)=/(0,0)
and (m,0) respectively. Thus, from the expression of ®”,
we see that on the interval [®pmi; s@maxls

1
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ie.,
I 1—¢
'—-m <P (we)<—m<0. (10)

Note that this equation is not valid for the extreme cases
el =1. _

Let us construct the function @ in such a way that it
coincides with @ on the interval [, ;®0max], and with

~ 1—-& \A?
B(1)=— (l—m)?+aii+ﬁi (11)

+6e°+¢€
on the two intervals ]— c0,0y;,] and [@mpax,+ co[. The
constants o, and B, are determined from continuity cri-
teria, so that ® is a C>-function. _
By construction, the function (—®) is convex, i.e.,

1—&2  (bw)?
1+6e2+e* 2

<= B (w,480) +B(w,) +' (0,)50

_ 1 (5w)? b
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With the use of (7), we get

1—¢?

2 2y —1
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and, keeping in mind that ( —flg(co) ) is a conserved quan-
tity and that (VH~tis negative, we obtain

—2H5(80) = —2Hz(80,)
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where Sawyg is the initial value of perturbation.
Finally
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or, on the domain D, if one notes k2, the minimal eigen-
value of the operator (—V?), we obtain®

J' 8 (V?) ™18 dx dy> —k 2| |8w] |32 (16)
D
just by setting
+
do= 2 cf; (7
=0

where the functions ®; are an L2 orthonormal basis of
eigenfunctions.

Since A is time invariant, the a priori estimaie provide
suitable norms bounding the growth of disturbances, pro-
vided that Eq. (13) is satisfied. We obtain therefore the
nonlinear stability condition

(1-¢% =2 1180112 1 5 2
(Tr6ten —fmin|l 1001 [2<Gr—05 ] 180l [

(18)

Consider for the domain D a rectangular box, with length
27N in the x-axis and 2¢in the p-axis; the minimal eigen-
value of the operator (—V?) is k,znin=(l/N2)+('n'2/¢4),
since the eigenfunctions, vanishing on the boundary, are
F(x,y)=cos(x/N)sin(my/£). We can then write the fol-
lowing theorem.

The Mallier-Maslowe solution of the bidimensional
Euler equation is nonlinearly stable in the L? norm on
vorticities for perturbations of the initial vorticity which
preserve the flow rate (= constant on the bound-
aries) and the  circulations, in the domain
D={(x,y)/x€[0,2N7),ye[— £+ ]} provided that £ and
£ satisfy the following condition:

o |{14-6¢ +€ 1
e W

Therefore we exhibit a transverse size of the domain D
over which the street of vortices is unstable.

The implication of this conditional stability is that the
violation of the convexity conditions for the the given flow
is a necessary condition for its instability. Figure 2 presents
the stability region of the counter-rotating vortices in the
plane (Ze) for N=1. One can check that the particular
case, where the fluid is at rest (¢=0) is always stable, since
the condition goes to infinity. On the other hand, one notes
that the point vortices (6= ) are always unstable. The
figure shows also that the solution is unstable for all values

(19)
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FIG. 2. Domain of stability of a pair of counter-rotating vortices (N=1)
in the plane (£,£). £is the transverse size of the box and & characterizes
the density of vorticity. The solid line is defined by Eq. (19).

of ¢ if Zis infinite. We emphasize that, contrary to the case
of identical Stuart vortices,’ the analytical calculations are
here tractable in a rectangular box, and not in a hypothet-
ical one, which follows the streamlines.

In conclusion, in this work, we derive explicitly the
nonlinear stability condition for the counter-rotating vor-
tices solutions in a rectangular box. This work should lead
to a better understanding of the role of the nonlinearity in
the instability of electromagnetically forced counter-
rotating vortices® when the viscosity is present. Work along
this line is in progress.
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