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Abstract

A striking clustering phenomenon in the antiferromagnetic Hamiltonian mean-2eld model has
been previously reported. The numerically observed bicluster formation and stabilization is here
fully explained by a non linear analysis of the Vlasov equation. c© 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

The Hamiltonian mean 2eld model (HMF) [1] has attracted much attention in the
recent years as a toy model to study the dynamics of systems with long-range inter-
actions, and its relation to thermodynamics [2]. Its Hamiltonian describes an assembly
of fully coupled rotors

H =
N∑
i=1

p2
i

2
+

c
2N

N∑
i; j=1

cos(�i − �j) ; (1)

where �i is the angle of the rotor and pi its conjugate angular momentum. Since
we will use periodic boundary conditions, this model can be alternatively viewed as
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Fig. 1. Equilibrium density distribution for N = 104 particles and the energy per particle U � 10−5. The
diamonds are numerical data and the solid curve is a 2t taken from Ref. [3].

Fig. 2. Bicluster formation. Time is running in the upward direction and the system is started with a constant
particle density: the darker the grey, the bigger the density. One notices the very quick concentration of
particles, followed by the repeated appearance of “chevrons”, shrinking as time increases.

representing particles moving on a circle, whose positions are given by the �i. In this
paper, we consider the case in which the interaction among the particles is repulsive
(corresponding to the antiferromagnetic rotor model), i.e., c = 1. As 2rst noticed in
Ref. [1], this model has a very interesting dynamical behaviour. In contrast with sta-
tistical mechanics predictions, a bicluster forms at low energy for a special but wide
class of initial conditions (see Fig. 1 for the corresponding density pro2le). For any
initial spatial distribution of particles, the bicluster develops in time from a homo-
geneous density state as shown in Fig. 2, if the initial velocity dispersion is weak.
This clustering and the unexpected dependence on initial conditions were studied in
Ref. [3] but the phenomenon remained unexplained. In this paper, we give an expla-
nation of the incipient formation of the bicluster based on a fully analytical study of
the low temperature solutions of the Vlasov equation. We also show some connections
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of this problem with active transport in hydrodynamics [4–6], and the formation of
caustics in the Low of the Burgers equation.

2. Hydrodynamical description at zero temperature

We begin by performing 2rst the thermodynamic limit, N→∞, i.e., by writing the
Vlasov equation of Hamiltonian (1). Calling f(�; p; t) the one particle distribution
function, we have

@f
@t

+ p
@f
@�

− 1
2

∫ +∞

−∞
du

∫ 2

0
d�f(�; u; t) sin(�− �)@f

@p
= 0 : (2)

We can de2ne a density �, a velocity 2eld v, and a velocity dispersion �2 as follows:

�(�; t) =
∫ +∞

−∞
f(�; p; t) dp ;

�(�; t)v(�; t) =
∫ +∞

−∞
pf(�; p; t) dp ;

�2(�; t) =
1
�

∫ +∞

−∞
p2f(�; p; t) dp− v2(�; t) :

The numerics shows that the bicluster appears when the velocity dispersion is small.
We will then neglect �2, which corresponds to a zero temperature approximation. A
straightforward calculation reduces now the Vlasov equation to the hydrodynamical
equations for � and v
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+
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= 0 ; (3)
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∫ 2

0
d� �(�; t) sin(�− �) : (4)

The 2rst equation accounts for the mass conservation and the second one is the Euler
equation without pressure term. Hence, the dynamics of the model at zero tempera-
ture is mapped onto this active scalar advection problem [4–6], which we will now
solve approximately at short time. We 2rst linearize the above equations, assuming the
velocities are small and the density almost uniform. We are left with
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∫ 2

0
�(�; t) sin(�− �) ;

a system that we can solve by means of Fourier series. Assuming a vanishing initial
velocity 2eld, we get

�(�; t) =
√
2vm cos � cos!t ;

v(�; t) = vm sin � sin!t ; (5)
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where !=
√
2=2 is the plasma frequency. The amplitude vm and the longer wavelength

components of � in Eqs. (5) are 2xed by the initial condition. This linear analysis
describes very well the short time evolution of the system, a few plasma periods. Of
course this is not suMcient to explain the bicluster formation, but it will be useful to
carry out the non linear analysis, which relies on the existence of two time-scales in
the system.

• The inverse of the plasma frequency, which is intrinsic and of order one.
• The timescale connected to the energy of the system of order 1=

√
U .

If the energy is suMciently small, the two time-scales are very di.erent, and it becomes
possible to use averaging methods. We introduce the long time-scale �= �t, with � =
vm=

√
2 (vm is directly related to the energy per particle U ), and we write

v(�; t) = vm sin � sin!t + �u(�; �) : (6)

We have also to estimate the force in the non linear regime. As a zeroth order approx-
imation, we use the expression given by the linear analysis. Since the force depends
only on the 2rst Fourier component of the density (due to the special form of the
Hamiltonian), this approximation amounts to suppose that the sinusoidal behaviour of
this 2rst component, found in the linear regime (5), remains valid in the non-linear
regime. This may appear very crude, but the numerics shows on the contrary that it
is a quite good approximation. This fact deserves a comment. Exploiting an analogy
with the plasmas studied in Ref. [7], our system may be seen as a bulk of particles
interacting with waves sustained by the bulk itself. Here, there is one wave, material-
ized by the small oscillations in the density and the velocity 2eld found in the linear
approximation. Since at small energy the phase velocity of the wave (of order one like
the plasma frequency) is much higher than the velocities of the bulk particles (of order√
U ), the wave has almost no interactions with these particles, and stands forever. This

gives a qualitative explanation of the fact that the linear approximation for the force
in Euler Eq. (4) is so accurate. We introduce now expression (6) into Eq. (4). The
terms of 2rst order in � on the l.h.s. cancel the force in the r.h.s. The second order
terms gives
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sin �
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+ u cos �
)√

2 sin!t = 0 : (7)

Averaging over the short time scale, we get
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@�

+ u
@u
@�

=−1
2
sin 2� : (8)

This is a spatially forced Burgers equation without viscosity which describes the motion
of Luid particles in a potential given by V (�)=1=4 cos 2�. The double well shape of this
potential is responsible for the bicluster formation: particles will tend to spend more
time in the bottom of the wells. This equation may be solved using the method of
characteristics, which presents a great advantage: the characteristics are the Lagrangian
trajectories of the Euler equation, so that they are an approximation to the particles
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Fig. 3. Comparison between real trajectories of the particles (upper 2gure), and characteristics of Eq. (8)
(lower 2gure). One can see the two 2rst appearances of the “chevrons”. Two phenomena are not captured
by the characteristics: the small and fast oscillations of the real trajectories which have been averaged out,
and the presence of untrapped particles, close to the saddle-points of the e.ective cos 2� potential.

trajectories of the real Hamiltonian system. Since the characteristic equation is nothing
but the equation of a pendulum

d2�
d�2

+
1
2
sin 2�= 0 ; (9)

the Hamiltonian trajectories of the particles can be approximated by pendulum trajec-
tories (see Fig. 3).
We can also explain now the periodic recurrence and the shape of the “chevrons”

(Fig. 2): they are zones of in2nite density corresponding to the envelopes of the
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Fig. 4. Evolution of density for short times (level curves). The analytical formula for the “chevrons” (10)
is superimposed (bold curves). U � 10−4 without adjustable parameter.

characteristics, so called caustics. Their approximate equation is

�˙
(t − (2n− 1)ts)

3=2

√
n

; (10)

where n is the number counting successive “chevron” appearences in time; the compar-
ison with the numerics is drawn on Fig. 4. The 1=

√
n factor accounts for the shrinking

of the “chevrons”. Similar caustics are encountered in astrophysics, to explain the large
scale structure of the universe: clusters and super clusters of galaxies are believed to
be reminiscent of three dimensional caustics arising from the evolution of an initially
slightly inhomogeneous plasma [8,9].

3. Conclusions

The surprising formation and stabilization of a bicluster in the HMF model [1] is
now understood. The small collective oscillations of the bulk of particles create an
e.ective double-well potential, in which the particles evolve. This may be viewed as
a nice example of active transport of the density 2eld [4–6], which can be studied
analytically. Lastly, we get an insight on the striking inLuence of initial conditions:
when the initial thermal agitation is too strong, the description of the system by density
and velocity 2elds breaks down. A peculiar behaviour of the trajectories evolving
from initial conditions with a small velocity dispersion may be a somewhat general
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phenomenon for systems with long-range interactions; indeed such features have been
very recently observed for a self-gravitating system in 1D [10].
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