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Abstract 

The evolution towards equipartition in the/%FPU chain is studied considering as initial condition the highest frequency 
mode. Above an analytically derived energy threshold, this zone-boundary mode is shown to be modulationally unstable and 
to give rise to a striking localization process. The spontaneously created excitations have strong similarity with moving exact 
breathers solutions. But they have a finite lifetime and their dynamics is chaotic. These chaotic breathers are able to collect 
very efficiently the energy in the chain. Therefore their size grows in time and they can transport a very large quantity of 
energy. These features can be explained analyzing the dynamics of perturbed exact breathers of the FPU chain. In particular, a 
close connection between the Lyapunov spectrum of the chaotic breathers and the Floquet spectrum of the exact ones has been 
found. The emergence of chaotic breathers is convincingly explained by the absorption of high frequency phonons whereas 
a breather's metastability is for the first time identified. The lifetime of the chaotic breather is related to the free necessary 
for the system to reach equipartition. The equipartition time turns out to be dependent on the system energy density e only. 
Moreover, such time diverges as s -2 in the limit s --+ 0 and vanishes as s -I/4 for s ---> ~ .  © 1998 Elsevier Science B.V. 
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1. Introduction 

In 1955, in one of the first but well-known numerical simulations, Fermi, Pasta and Ulam (FPU) [ 1 ] have observed 

the  absence  of thermalization in a nonlinear lattice in which the energy was initially fed into the lowest frequency 

mode. Even if a lot of progress have been made [2] in the last 30 years on the study of the evolution towards 

energy equipartition among linear normal modes, several points are far from being clarified. For historical reasons, 

the evolution towards equipartition has been usually analyzed considering an initial state where all the energy of 
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the system was concentrated in a small packet of modes centered around some low frequency [2,3]. Only a few 
studies have been devoted to the evolution from an initial condition where all the energy was fed in the highest 
frequency mode [4,5]. From these analyses it turned out that this different initial condition leads to a completely 
new dynamical behavior in the transient time preceding the final equipartition. In particular, the main finding was 
the appearance of a sharp localized mode during the transient [4]. Moreover, the highest frequency mode turns out to 
be a linearly unstable periodic solution; thus, starting the orbit from this initial point in phase-space put the system 
on a hyperbolic point embedded into a chaotic layer. On the other hand, when low frequency modes are initially 
excited, instability arises because of the presence of thin chaotic layers near elliptic points [6]. Therefore, we expect 
that the timescales for the relaxation to the equipartition state and the physical picture of the evolution towards the 
final state should be strongly affected. 

In this paper, we present a detailed numerical and theoretical study of the dynamics of a fl-FPU model in the 
transient preceding equipartition, when only the highest frequency mode is initially excited. Employing the quite 
recent concept of breather excitations [7], we are able to give a more detailed explanation of some of the behaviors 
observed in [4]. In particular, we show that the existence of such localized modes during the transient is strongly con- 
nected to exact breather modes for the fi -FPU model ( for a review on breathers, see [8]). An important peculiarity of 
these excitations is that (contrary to exact breathers) they have a chaotic evolution in time, therefore we have termed 
them "chaotic breathers" (CBs). The fact that localized oscillating excitations (that can be identified as CBs) show 
up spontaneously [9,10] and persist in numerical simulations has suggested that they play an important role in the 
dynamics of Hamiltonian anharmonic systems. However, an important point that should be clarified is why these ob- 
jects emerge so easily in Hamiltonian systems. Since Hamiltonian dynamics is reversible, large packets should break 
up into smaller ones at the same rate that small ones merge into larger one; while in the formation of a CB the latter 
process seems to be favored. It is one of the purposes of this paper to give some clarification about these points and in 
particular to emphasize the importance of these localized excitations for the transition towards energy equipartition. 

Another important aspect that we discuss is the existence of scaling laws for the indicators characterizing the 
approach to the equipartition state. We notice that quite general scaling laws indeed exist in the thermodynamic 
limit. Moreover, the relevant quantity for the equipartition time turns out to be the energy density. 

We have organized the paper in the following way. The results of numerical simulations concerning the appearance 
of CBs are presented in Section 2. The consequences of the existence of CBs for the transition to equipartition are 
presented in Section 3 together with the observed scaling laws. The relation between CBs and exact breathers is 
discussed in detail in Section 4. Finally, Section 5 will deal with the mechanisms of creation and destruction of 
breathers. Some final remarks and conclusions are reported in Section 6. 

2. Modulational  instability and energy localization 

Denoting by u. (t) the position of the nth atom (n c [1, N]), the equations of motion of the fl-FPU chain read 

i~n = U n + l  -]- U n - 1  - -  2Un + fl [(Un+l -- Un) 3 - -  (Un - -  Un--1)3], (1) 

where fl = 0.1. The parameter fl can be absorbed with an appropriate rescaling of un, but we keep it not only for 
historical reasons, but also in order to make easier comparisons with results reported in previous papers. We have 
chosen periodic boundary conditions which allow the propagation of waves in the lattice. As recently shown in [11], 
the study of the evolution of traveling waves with wavelength of the order of the system size (i.e. "~ N) can give 
very useful information. In particular, the average lifetime of such waves is strictly related to the time necessary to 
reach equipartition. Here again, the propagation of waves and localized structures will play a fundamental role in 
the evolution of the system. 
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As usual, in numerical simulations one does not study the real Hamiltonian system, but a discrete time version that 

approximates the time continuous dynamics. It is therefore essential for long time simulations to use an appropriate 
symplectic integration scheme in order to preserve as far as possible the Hamiltonian structure of the problem. We 
adopt the sixth-order Yoshida's algorithm [12] with a time step dt = 0.01; this choice allows us to obtain an energy 
conservation with an accuracy AE ~ 10 -11 (that corresponds to a relative accuracy A E / E  ranging from 10 - l °  to 
10-12). 

We follow the approach proposed by Fermi-Pasta-Ulam in [1] where they look at the stability of one normal 

mode of the harmonic part, but contrary to them we have performed simulations adopting as initial condition the 

highest frequency mode. The highest frequency mode (the so called 7r-mode) corresponds to the following zig-zag 
pattern for un 

U n = ( - 1 )  n a  and t~n=0,  (2) 

where a is its amplitude. Since most of the normal modes of the harmonic part of the Hamiltonian are no longer 

solutions of the full Hamiltonian, energy initially fed into one single mode will be shared on later times among other 
modes. However, this is not true for three particular modes that are exact solutions of the FPU lattice [13]. As the 
re-mode is one of these solutions, in order to destabilize such initial state a small amount of noise (of order 10 -14) 
has been added on the velocities. 

As already shown in [5,14] the a--mode turns out to be modulational unstable above a critical energy Ec, that can 
be analytically derived [14] 

2N 7 cosZ(re/N) - 1 
Ec (3) 

As for this mode, E ---- N(2a 2 + 4/3a4), we easily see that if 

a > ac = s i n ( r e / N ) / v / f i ( 9  cosZ(re/N) -- 3), (4) 

the re-mode will be destroyed by modulational instability. 

In Fig. l(a) a generic evolution of the above initial state for a > ac is reported. The grey scale refers to the energy 
residing on site n, 

= 1 . 2  En :un  -[- -12 V(b/n+l - bin) q- 1 V  (b/n -- b/n-l), (5) 

where the substrate potential is V ( x )  ---- lx2 + ~x 4. Figs. l(b), (c) and (d) refer to three successive snapshots of the 

local energy En along the chain. After a very short delay, a slight modulation of the energy in the system appears 
(see Fig. l(b)) and the re-mode is destabilized. Later, as attested by Fig. l(a), only a few localized energy packets 
emerge from this temporary state; they correspond to oscillating localized waves and are usually called breathers or 
intrinsic localized modes. At this stage, as inelastic collisions of breathers have a systematic tendency to favor the 
growth of big breathers at the expense of small ones [9,15], the number of localized objects decreases and only one 

very large amplitude breather-like excitation survives (see Fig. l(c)): this is the excitation we have termed CB. The 
CB moves along the lattice with a perturbed ballistic motion: sometimes the CB is even stopped or reflected. During 

its motion the CB collects energy from the visited sites on the chain, and its amplitude increases. It is important to 
note that the CB will never be at rest and that it propagates in general with almost the same speed (in modulus). 
Finally, after a very long time and through a mechanism we will consider later, the CB decays and the system 
reaches the equipartition of energy, as illustrated in Fig. l(d). 

The main important aspect that arises from the above reported picture is that the dynamics of the model 
seems to favor the emergence of a well-localized state (CB) during the transient preceding equipartition [4]. 
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Fig.  1. Evo lu t i on  o f  the  loca l  e n e r g y  En a l o n g  the  cha in .  In  (a),  the  ho r i zon ta l  ax is  ind ica tes  the  pos i t i on  a l o n g  the  c h a i n  a n d  the  ver t ica l  

axis  c o r r e s p o n d s  to  t ime  ( t ime is g o i n g  u p w a r d ) .  The  g rey  sca le  g o e s  f r o m  En = 0 (whi te)  to the  m a x i m u m  En-value (black) .  The  l o w e r  

r e c t a n g l e  c o r r e s p o n d s  to 0 < t < 3 0 0 0  a n d  the  u p p e r  one  to 5 . 9 9 4  • 105 < t < 6 • 105; (b ) - (d )  s h o w  the i n s t an t aneous  En a l o n g  the  
N = 128 c h a i n  at  th ree  d i f fe ren t  t imes .  No te  the  d i f f e rence  in ver t ica l  ampl i tude .  T h e  ini t ia l  r e -mode  a m p l i t u d e  w a s  a = 0 .4  (whi le  

ac  = 0 .0317) .  

In order to give a more quantitative characterization of the energy localization, we introduce the following 
quantity: 

N(z _ 1E,)' 
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As it can be easily seen Co is of  order one if  E i = E / N  at each site of  the chain and of  order N if  the energy 

is localized on only one site. In Fig. 2 Co is reported as a function of  t ime for an initial condition (2) with a > ac. 

Initially Co grows in time, indicating that the energy, evenly distributed on the lattice at t = 0, localizes over a 

few sites. This localized state survives for some time, at later times Co begins to decrease and finally it reaches 

an asymptotic value C0 that is associated with a total disappearance of  the CB. At  this stage a state with a fiat 

distribution of  energy in Fourier  space is attained, i.e. a state where equipartition of  energy is fulfilled. Already at 

this point, it  is important to remark that for N greater than 512, all the curves Co(t) are almost coincident at any 

time. We discuss this point  in Section 5. 

The asymptotic value C0 can be easily obtained. In the l imit  t -+  c~, the energy per site has a mean value 

s = E / N ,  but with some site dependent fluctuations, therefore C0 = (EZ) / (Ei)2 .  C0 can be theoretically estimated 

within a canonical ensemble picture, that allows us to derive an expression for (E/2) (more details are reported in 

Appendix  A). The actual C0-value depends on energy density e and lies of  course between the two limiting values: 

corresponding to the pure harmonic case C0 = 7 /4  and the pure quartic case Co = 19/9 (notice that both these 

values are independent of  e). As derived in Appendix  A, for s = 1.44, we obtain C0 ~ 1.795, in perfect agreement 

with the numerical  results as shown in Fig. 2. 

3. Transition to the energy-equipartition state 

In Section 2 we have shown that the energy-equiparti t ion state is preceded by  a transient characterized by the 

emergence of  a localized state. The main properties of  this state and its relationship with exact breathers are studied 
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Fig. 2. Evolution of CO (t) for chains of various lengths: N = 32, 128, 512, 1024, 2048 and 8192. Each curve corresponds to the average 
over 20 simulations with the same energy density s = E / N  = 1.44 but with different random initial noise added to the velocities. For all 
the reported simulations E > Ec (see footnote 3). 
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in the next section. Here we are mainly concerned with the identification of  some general aspects of  the transient. 
In particular, scaling laws for two indicators measuring the relaxation to thermodynamical equilibrium are derived. 

As a first indicator we consider a parameter in the Fourier space S(t) that gives a quantitative estimation of  the 
energy transfer among the different normal modes [16]. The energy associated with the Fourier mode q = 2Jrk/N, 
with k 6 { 1 . . .  N/2}, is in the harmonic approximation ~q = 1 ([ Vq 12 -~- 09 (q)2 I Xq 12), where 09 (q) = 2 sin(q/2) 

represents the linear dispersion relation and Vq and Xq are the Fourier transforms of  the velocities and the positions, 
respectively. Initially, all the energy is put in the Jr-mode, but as soon as the modulational instability develops also 

the nearest modes q ---- Jr - 6q acquire a non-zero amplitude q~q, these numerical results confirm a previous analytical 
derivation of  the most unstable modes [ 14]. After this initial stage, energy transfer from the highest modes to the low- 

est ones continues and the shape of  the spectrum as a function of  the wave vector is well described by an exponential 

~bq ,~ exp[ -S( t ) ( r r  - q)], (7) 

where, at any time t, S(t) is the slope of  the linear fit in the lin-log scale. 
When the equipartition of  energy is reached, the spectrum is no longer exponential (in other words the slope S 

vanishes). Therefore, the slope S is an excellent tool to follow the transition towards equipartition. The numerical 
results that we have obtained yield the interesting conclusion that the equipartition time is a function of  the energy 

density e only, as attested by Fig. 3(a), where all evolutions of  S(t) for various lengths are almost indistinguishable 
except for the smallest chain N = 32 where finite size effects do appear. 3 

Let us remark that in the original FPU problem, with excitations of  long-wavelength modes, the distribution was 
well approximated by q~q ~ exp [ - S ( t )  q]. In that context, introducing the analytic continuation of  the continuum 
field u (x, t) to the complex plane [ 16], the slope was directly related to the imaginary part of  the nearest singularity 
to the real axis. Work along this line would probably lead to a similar conclusion in our case. 

The transition to equipartition can be investigated even more precisely considering the following indicator [17]: 

2 
7? (t) = ~ exp -- E Pq (t) In pq (t), (8) 

q 

3 Ec(N) vanishes as N -1,  but Ec(32) --~ 1.04 is not negligible for e = 1.44. 
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where pq(t) is the probability to have an energy ~q associated to the mode q at time t; i.e. 

pq(t) = (bq / ~ ~)q. (9) 
/ q 

Indeed, ~/(0) = 0 whereas max(r/) ---- 1 is reached 4 in the energy equipartition state where all pq = 2 / N  (for a 

detailed derivation of the equipartition value ~ see Appendix B). Thus energy sharing among normal modes will 

be detected by an increase of 0 (t), which can be considered as the percentage of modes with significant energy. 

It is exactly what we obtain in Fig. 3(b) for various chain lengths. The main conclusion that we can draw from 

this result is that again the equipartition time is a function of energy density e only, and therefore it is finite in the 

thermodynamic limit, although it may diverge in the limit of vanishing energy density (see the following). 

Simulations for various energy densities 0.33 < e < 106 allow us to study the variation of the equipartition 

time as a function of the the energy density. In the low energy limit (0.33 < e < 1.44), a good data collapse is 

obtained if the time is rescaled by a typical time scale r ~ e -2  (see Fig. 4(a)). At high energy (e > 1000) the 

typical timescale is v ~ e -U4,  as it is clearly shown in Fig. 4(b). Let us also stress that e was also found to be the 

relevant dependence of the largest Lyapunov exponent in the equipartition state [14,18]. Moreover, the maximal 

Lyapunov exponent shows two scaling laws at high and low energy density that coincide with those here reported 

for the equipartition time (namely, for its inverse) [14,19]. However, while for the Lyapunov the transition from one 

regime to the other is observed at e --~/3 -1 [14,19], for the equipartition time the transition occurs at higher energy: 

e --~ 100 for 13 = 0.1. Power law divergences of the relaxation time have been recently reported for several models 

of nonlinear oscillators and for different classes of initial conditions [20-22], although the large N limit has not 

been studied as carefully as in the present paper. 

4 The asymptotic value ~, for low (resp. high) energy densities, is rather _~ 0.795 (resp. -- 0.655) than 1 because of the fluctuations 
around the value pq = 2/N. ~ shows a continuous transition from 0.795 to 0.655 for increasing e. These discrepancies were already 
noticed in [38]. In Appendix B a more detailed analysis of this point is reported. 
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4. Relationship between exact and chaotic breathers 

In the present section, we would like to pay attention to the localized objects observed during the transient state, 

and study their relationship with the already known localized solutions of  nonlinear lattices, that we call exact 

breathers. We have seen that the energy contained in a CB (and thus its frequency) can be very high. For example, in 

chains of  N = 512 sites, we found breathers with frequency o) ~ 3.5 (when the maximal  frequency associated to the 

phonon band is 2). We would like to emphasize here that the usually adopted Nonlinear SchrSdinger approximation 

[4,23] is not appropriate to describe these objects. 

The unstable Jr-mode gives rise spontaneously to a localized breather-like excitation, qualitatively very similar 

to the exact breathers obtained for the FPU chain [24]. The most evident difference is that the former move in an 

erratic way in the lattice and have a finite lifetime, while the latter are exactly periodic and mainly static. Therefore 

it is natural to try to determine to what extent it is possible to compare them. 

Another  important difference between the self-created excitation and the exact breathers concerns their dynamical  

stability, which has been investigated with the aid of  a Lyapunov analysis. On one hand exact breathers are linearly 

stable and remain perfectly unchanged during very long simulations. On the other hand, we show here that CBs are 

strongly chaotic. 

In order to compute the Lyapunov exponents of  the system, we have used the standard algorithm of  Benettin et al. 

[25]. However, we are here interested in the Lyapunov exponents at short times instead of  the asymptotic ones. We 

evaluate the cumulative average corresponding to such exponents as a function of  time. In Fig. 5, the evolution of  

the localization parameter  Co(t) is reported (panel (a)) together with the corresponding cumulative average for the 

first four Lyapunov exponents (panel (b)) for a typical evolution starting from an unstable Jr-mode. 

It is clear from Fig. 5(b) that the localized object, which has spontaneously appeared, is chaotic because its 

presence (indicated by the peak in Co(t)) is associated with a positive maximal  Lyapunov exponent. Moreover, 

another typical feature of  the CB is that the running average for the maximal  Lyapunov exponent has an higher 
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Fig. 5. (a) Presents the evolution of Co(t) and (b) presents the cumulative average of the first four Lyaptmov exponents when the initial 
condition is a yr-mode with a = 0.4 in an N = 128 chain. The solid fine corresponds to the first Lyapunov exponent (the dash-triple 
dotted line corresponds to the value of the largest Lyapunov exponent after the transient), the dotted one to the second, the dashed one to 
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T. Cretegny et aL /Physica D 121 (1998) 109-126 117 

value during the transient than in the equipartition state. The evolution of this running average is quite similar to 

that of Co (t): there is an initial growth followed by a decrease at later times. Naively, one would usually expect that 
an higher degree of chaoficity should be related to a higher degree of energy equipartition: the present simulations 
clearly shows the opposite. 

One should stress that the running average for the Lyapunov exponents relaxes very slowly to the asymptotic 
value, because its value is affected by the estimation at earlier times. A more efficient method to obtain the asymptotic 
Lyapunov exponents is therefore to restart the running averages after the transition to equipartition state (i.e. after 
the decrease of Co). The dash-triple dotted line of Fig. 5(b) shows that the convergence is much faster if this is done. 

Another interesting result is the fact that a gap is present in the distribution of the Lyapunov exponents during the 
transient: the first Lyapunov is clearly above the others whereas, when the system reaches the energy equipartifion 
state, the gap disappears (as shown in Fig. 5(b)) and the whole spectrum of Lyapunov exponents is approximately 
linear [26]. 

Furthermore, a measure of the localization of the Lyapunov vectors shows that during the transient the first 
Lyapunov vector is localized contrary to all others. This localization of the Lyapunov vector disappears after that 
the equipartition is reached, since the energy density is below the strong stochasticity threshold, see [14]. An 
interesting question is to see whether this peculiar structure of the tangent space (i.e. the gap in the spectrum and 
the localization of the first Lyapunov vector) can be related to the properties of exact breathers. 

Let us briefly recall that exact discrete breathers are time-periodic and spatially exponentially localized solutions 
of the equations of motion (1). Their frequency is always higher than the frequency of the top of the phonon band. 
Calculating such a solution is equivalent to looking for a fixed point of the stroboscopic T map 

({Un, un})(O) ~ T({un ,  un}) ---- {un, {tn}(tb), (10) 

where tb is the period of the solution. This can be done with the aid of a Newton process, using the tangent map 
OT. The  latter relates linearly an initial perturbation {El, ¢i }(0) to its image {~i, ~i }(tb) where the perturbations Ei 
evolve according to the N linearized equations of motion 

~n = [1 + 3fl(Un+l -- Un)2](En+l - En) -- [1 + 3fl(Un - Un-1)2](En -- ~n-1). (11) 

Starting from a sufficiently good approximation, the Newton method converges to a periodic solution, satisfying 
Eq. (10) up to machine precision [24]. One can then investigate the linear stability of the breather solution with a 
standard Floquet analysis, i.e. computing the eigenvalues of the 2N × 2N matrix 0 T (a periodic solution is linearly 
stable when all eigenvalues lie on the unit circle of the complex plane). 

The main results concerning exact breathers in the FPU chain can be summarized as follows. They exist for 
every frequency above the phonon band; moreover the spatially antisymmetric solutions (centered between two 
particles, as the generic example plotted in Fig. 6(a) and sometimes called P-modes [27]) are linearly stable, while 
the symmetric (the ST-modes [28]) are unstable. The spectrum of the Floquet matrix, discussed in detail in [29], 
consists of a "continuum" of spatially extended eigenmodes (the linear phonons) and a discrete part with a spatially 
symmetric and exponentially localized mode. Due to the time reversibility of the solution, the real axis is a symmetry 
axis of the spectrum (if)~ is an eigenvalue of 0 T, then )~* is also an eigenvalue). Fig. 6(b) shows schematically half 
of the spectrum (the other half is its complex conjugate) with the continuum and the discrete localized mode. As the 
problem is solved for afini te  chain, the continuum corresponds in reality to (N - 1) modes with a higher density 
of modes close to the end of the band. 

Such linear modes out of the phonon band and with opposite symmetry to the original solution have been 
observed and studied in the framework of Klein-Gordon chains. They are called pinning  or translation modes 
[8,30,31]. Indeed, an excitation of the periodic solution in the direction of this mode produces an oscillation of the 
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Fig. 6. (a) Presents the spatial shape of an exact linearly stable FPU breather, solution of Eq. (1) with a frequency w = 2.5; (b) shows the 
schematic repartition of its Floquet eigenvalues on the complex plane. 

center of  energy or can even lead to a propagation of  the solution along the chain without radiative decay. We have 

checked that these features are also present in the fl-FPU model. 

The problem now is to link these exact solutions with the self-created excitations which have been observed in 
the simulations. The essential difference is that the former are linearly stable while the latter are strongly chaotic. 
However the comparison of  the Lyapunov spectrum of the CB and the Floquet spectrum of the exact breather 

solution shows strong similarities: they both present a "continuum" of  extended states and an isolated spatially 
localized mode. A quite natural hypothesis is that non-zero perturbations of  the exact breather could lead to a strong 
destabilization of  the translation mode. If  this is true, one can understand why this instability is not destructive for 

the breather: a perturbation along this direction only leads to a coherent displacement of  the breather and in addition, 
it explains why, in the simulations, the nonlinear excitation is very seldom static. 

In order to verify that the most unstable direction corresponds to the translation mode of  the exact solution, we 
have performed the following test. We study the evolution of  an exact solution, once it has been perturbed with 

a spatially antisymmetric gaussian noise all over the lattice. The antisymmetry of  the initial condition allows the 
breather to remain at rest centered between two sites and this simplifies the comparison. The Lyapunov analysis 

reveals that the perturbed state is now chaotic. The maximal Lyapunov eigenvector associated with the perturbed 
solution and the Floquet vector corresponding to the translational mode for the unperturbed case are shown in Fig. 7. 

The two vectors are both symmetric and in perfect agreement. This is a convincing evidence that the structure of  
the tangent space of  a CB can be qualitatively interpreted in terms of  the Floquet spectrum of "neighboring" exact 

periodic solutions. 
We would like to stress that the fact that breather-like excitations move is not a sufficient condition for their 

chaoticity. Similarly to what has already been found numerically for Klein-Gordon chains [31], many exact mobile 
breather solutions can be exhibited by the FPU model (see [32-34] or [8] for a discussion on approximations of  
moving breathers). Such solutions satisfy the relation 

{Un, un}(T) = {Un-1,/~n-1}(0), (12) 

where T, the inverse of  the velocity, is a multiple of  the period of  internal vibration of  the breather. One should 
also note that a small amplitude phonon tail dresses these solutions, such that one can consider that the breather is 
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Fig. 7. Shape of the translation mode. The solid fine corresponds to the eigenrnode of the Floquet analysis whereas the stars correspond 
to the first Lyapunov eigenvector. We have reported only the part of the vectors relative to the positions when the internal phase of the 
breather is zero (i.e. when the kinetic energy is minimal). 

in equilibrium with the emitted and the absorbed radiation (for more details see [31]). Many of  these solutions are 

linearly stable and were checked to have zero maximal Lyapunov exponent; the chaotic regime is reached only if 
the whole system is sufficiently perturbed. The direction of  the translation mode is easily excitable, but is not the 
direction responsible for chaoticity: thus mobile breathers are not necessarily chaotic and strong chaos occurs only 
when other modes are sufficiently excited. 

5. Formation and destruction of breathers 

At this stage, we have understood the connection of  the CB with exact FPU breathers but we should explain 

how the destabilization of  the zr-mode can lead to only one localized solution. Indeed, as attested by Fig. l(a), the 
modulational instability gives rise first to a few packets of  energy but then, because of  their interactions, energy is 
concentrated in only one. 

5.1. The localization process 

In order to study this effect in a controlled manner, we have put four exact breathers on the lattice: three moving 
ones with small amplitude and a frequency co = 2.12, that is just above the phonons'  upper band edge (09 = 2), 
and one at rest with a larger amplitude and a frequency co = 2.75. As shown in Fig. 8, due to collisions, the biggest 
breather successively absorbs the smaller ones and gives rise to a moving large amplitude breather-like excitation. 
Such a result is a generic example of  the collision process in the FPU chain and it explains why a single localized 
CB emerges during the transient. 
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F i g .  8. B r e a t h e r s '  m e r g i n g :  (a)  s h o w s  t h e  e n e r g y  e v o l u t i o n  o f  an  e x a c t  b r e a t h e r  i n i t i a l l y  a t  r e s t  (~o = 2 . 7 5 )  a f t e r  c o l l i s i o n s  w i t h  t h r e e  s m a l l  

e x a c t  m o v i n g  b r e a t h e r s  (o9 = 2 . 1 2 ) ;  (b)  ( r e sp .  (c ) )  s h o w s  t h e  e n e r g y  r e p a r t i t i o n  a t  t = 0 ( resp .  a t  t = 2 .  104) .  

Let us emphasize that even if some localization processes have already been reported in homogeneous nonlinear 
lattices [9], the process presented here is particularly interesting because of  the absence of  the self-regulation 

process. Indeed, in the Klein-Gordon systems studied in [9,10], the process is regulated by a stronger pin- 
ning effect. Discreteness provides a path to localization but is also responsible for the pinning effect. This is 

stronger for larger excitations (big breathers are easier trapped), and this does not allow a collapse of  all the 
breathers into a single very large excitation. For the FPU model, pinning effects are perhaps too small to be 
detected. Moreover, we have observed that the velocity of  the CB slightly increases with its energy. As a con- 

sequence, we see in Fig. 1 the emergence of  only one large amplitude breather-like excitation from the initial 
Jr -mode. 

Is this effect present also in the thermodynamic limit ? As the lifetime v and the velocity v of  a CB are finite, 
one could predict that, for very long chains, the CB will probably not have enough time to collect all the energy 
present in the system. If, in small chains, the breather could easily move through the system many times, in very 
long chains this would not be the case. One can expect that above a critical chain length Lc = vr  more than one 
CB will be observed in the transient preceding equipartition. To check this, we have investigated the case with an 
initial amplitude a =- 0.8 for the zr-mode; in this situation the typical velocity of  the final breather is v ~ 0.2 and its 
lifetime is v ~ 10 4. From these data the critical length Lc is ~ 2 . 1 0  3. For chains N > 10 3 and a ~ 0.8, additional 

simulations have shown that this is indeed true: the energy is no longer localized in only one huge CB but in few of  
them. 
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A long chain could therefore be considered as a juxtaposition of almost non-interacting sub-chains of length Lc. 

And in each sub-chain, one single CB is created by the modulational instability. This interpretation is consistent with 
the observed saturation of the localization parameter Co when the size of the system increases (Fig. 2). Indeed, a chain 
can be considered as made up of two independent parts A and B, and one has Co(A + B) = (Co(A) + Co(B))~2 = 

Co(A) (Co is an intensive-like quantity). As discussed in Section 3, the lifetime is a function of the energy density 
e. Thus the critical length of course depends on e. 

One can define two different regimes associated to the growth of the excitation. In a first stage the main breather 

present in the chain absorbs the smaller ones by collisions. After this initial stage the growth slows down. This 
effect could be explained by an observation made by Bang and Peyrard for the Klein-Gordon equation [15]. They 
noticed that the energy transfer between localized modes depends on their relative energy difference: the transfer is 

less efficient when the energy difference (or frequency difference) increases. For our system we have observed that, 
after the first collisions, the lattice contains one big breather with a rather high frequency and a large population 
of high frequency phonons waves. The presence of the latter is due to the destabilization of the original zr-mode 

via modulational instability [14]. Correspondingly, the energy transfer-rate between the phonons and the CB is still 
positive but reduced with respect to the initial one. We want to stress that this second regime was detected because 
of the very small initial perturbations of the Jr-mode, since for bigger perturbation this regime can easily be missed 
[4]. In addition, in this paper we have concentrated our attention on the energy region just above the critical energy 
defined by Eq. (3), where the FPU chain evolves towards equipartition on a very long time scale. 

5.2. Breather's metastability 

Once the localization process is finished, a very large amplitude breather is moving in the system and all the high 
frequency waves have been absorbed. The hungry excitation cannot grow any more and this regime corresponds to 

the plateau where Co has reached its maximum. At later times, the excitation disappears and now we want to explain 
how this phenomenon can take place. We have seen that the effect of collisions of the CB with high frequency modes 
leads to absorption of the latter. During such a scattering process, small quantities of energy radiate towards low 
frequency modes. Therefore, after the initial stage the only phonons left in the system are the low frequency ones. 
It is natural to suspect that the destruction of the CB is related to their interaction with the low frequency modes. 

In order to understand this interaction, we have performed numerical experiments where one exact breather 
initially at rest collides with the following wave packets of low frequency phonons centered on the site no: 

Un(t) = A cos(qn - wt)e-(n-n°)2/212o. (13) 

We have taken q = 0.2, l0 = 13 and an amplitude A ~ [0.5; 3]. Fig. 9 shows that the collision process is very 
efficient in destroying the CB excitation. 

As shown in Fig. 9(a), the decrease of the energy of the breather EB can be considered as linear at the earlier 
times with a good approximation. Moreover, a more detailed study of the phenomenon shows that the amplitude 

of the wave packet determines the destruction rate. In particular, the slope of the decrease of EB is an exponential 
function of the amplitude. This result suggests that a very complicated nonlinear mechanism is at the origin of the 
interaction. To give a more quantitative explanation we should study the scattering on one phonon with the CB as 
done by Cretegny et al. [29] for exact breathers at rest in the Klein-Gordon model. However, here, the study will 
be much more complicated because small perturbations will easily put the FPU-breather in motion. 

A possible explanation of the CBs metastability is the following: at the beginning of the simulation, when only the 
zr-mode is excited, and even during the modulational instability process, the low frequency phonons are not present. 
During the growing process of the CB the low frequency phonon band is populated due to radiative processes. 
When all the high frequency phonons have been absorbed by the CB, the excitation can only loose energy due to 
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Fig. 9. Breathers '  destruction: (a) shows the evolution of  the energy of  an initial exact static breather (w = 2.4) after collisions with a 
wave packet  of  phonons  (A = 1.5, l 0 = 13, q = 0.2); (b) (resp. (c)) shows the initial (resp. final) repartition of  energy. 

the destructive interaction with the low frequency phonons. Therefore, we can say that the CB "die of starvation". 
The destruction of the CB is associated with a significant increase in the population of low frequency linear waves. 
This transition corresponds to the final decrease of the slope S(t) plotted in Fig. 3 and to the final relaxation to the 
equipartifion state. 

6. Conclusion 

We have seen that the evolution towards equipartition in the fi-FPU chain, starting from the zr-mode as initial 
condition, gives rise to a striking localization process. The spontaneously created excitations are moving breather- 
like excitations with a finite lifetime and a chaotic dynamics. The features of these transient localized modes can 
be explained by exploiting the correspondence with exact breathers. 

It is important to recall that the FPU equation was at the origin of the rediscovery of the soliton [35] in the 
continuum limit, which justified the recurrence phenomenon observed by Fermi-Pasta-Ulam [ 1 ] (see also [36]). In 
the present paper, we have shown the fundamental role played by a second family of excitations, the breathers, in 
achieving the equipartition state on a discrete FPU lattice. The creation of a CB can be considered as an efficient 
mechanism to transfer energy from high frequency modes to low frequency phonons. 
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Let us also remark that the breathers are created from the high frequency zone corresponding to zero group 
velocity. This portion of the phonon band was also recently found to be crucial for the transition to equipartition 
[37]. Indeed, the transition to equipartition disappears if a renormalized FPU Hamiltonian with a dispersion relation 
without zero group velocity region is considered [37]. As in electromagnetism and string theory, the idea that this 
ingredient is absolutely necessary to observe the transition to equipartition of energy is another reason to justify a 
posteriori our study. 

Moreover, we have found that the fundamental parameter for the dynamics of the system is always the energy 
density s = E / N  (i.e. energy/volume). This is true not only for the value of the maximal Lyapunov exponent 
(as already noticed in [14,18]) but also for the transient time towards energy equipartition. One should of course 
emphasize that this is the only parameter which makes sense in the thermodynamic limit. Therefore, the transition 
to equipartition happens in a finite time in the thermodynamic limit, but this time diverges as an inverse power of 
the energy density in the zero energy density (zero temperature) limit. 

As a final remark, this study emphasizes that the concept of a breather is not only important for the energy 
localization in lattices, but is also crucial to address one of the main classical problem of statistical mechanics: the 
transition to equipartition. 
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Appendix A. Calculation of the equipartition value Co of the localization parameter 

Introducing the usual parameter fi = 1/kB T, we obtain directly from Eq. (6), the asymptotic expression corre- 
sponding to energy equipartition 

e0 = N Z ;  _ 
[Ei Ei] 2 <El> 2 , (A.1) 

where the spatial averages are 

<P.~ gi Vi+I> 1 
<El) = + -2- + T = 2-fl + (1~), (A.2) 

and 

Y) 3 1 <gi 2 } <Vi) 2 

<E}> = + T + = + + - 5 -  + - $ -  (A.3) 
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For long chains, we can evaluate (Ei) and (E 2) using the canonical ensemble. Introducing the configurationai 

partition function 

~-oo 

F(fl) = f e x p [ - f i V ( x ) ]  dx, 
--00 

(A.4) 

we have 

1 OF 1 02F 
{V)) -- F 013 and (Vz 2) -- F 0132. 

One obtains therefore: 

1 1 OF 
( Ei ) -- (A.5) 

2fl F Off 

and 

3 1 OF 1 ( O F ~  2 1 02F (A.6) 

(E2) -- 4132 f i r  Off q- ~ \ 013 ] -k- 2----F Off -----T " 

In the pure harmonic case this gives (El) = 1/fl and (E 2) = 7/4fl  2, whereas in the pure quartic case we obtain 

(El) = 3/4fi and (E 2) = 19/16/32. 
In conclusion, C0 = 7 in the pure harmonic case and C0 = ~2 ~ 2.11 in the pure quartic case. But one can even 

compute the result using the complete FPU-potential. V(x)  = x2/2  + ~x4/4. 
Using/(71/4 the modified Bessel function of the second kind, we have 

F ( f i ) = ~ f - ~ e ~ / 8 ~ l C 1 / 4 ( ~ ) .  (1.7) 

We obtain finally for ~ = 0.1, the value 

(~0 "~ 1.795, (A.8) 

in excellent agreement with the numerical value. 

Appendix B. Estimation of the equipartition value ~ in the harmonic approximation 

We would like to give a theoretical estimation of the indicator 0(t) (see Eq. (8)) in the limit t --~ cx~, i.e. m the 

equipartition state (the asymptotic value is indicated as l i m t ~  0 (t) = ~). 
Let us rewrite the spectral entropy as 

N/2 
S = - Z Pq (t) In pq (t), (B.1) 

q = l  

v~N/2 where pq (t) = gpq/~q dpq. Introducing the energy per mode e = (2 /N)  Z-~q=l q~q, in the equipartition state, we 

can easily derive the following expression: 

S - -  (~b In qS) + lne  + in ( N ' ] .  (B.2) 
e k z /  



T. Cretegny et al./Physica D 121 (1998) 109-126 125 

The average appearing in (B.2) is (~b In ~b) = (2 /N)  ~ q  ~bq In ~bq, and due to the equipartition the index q has been 

neglected. 
The corresponding expression for the quantity (8) is 

= e, e -(1/e)(~ln~). (B.3) 

Assuming that the fluctuations can be neglected, we obtain 

(~bln~b) = (~b)(ln~b) = (q~) ln(~b) = e l n e  (B.4) 

and ~ would be exactly one. However, the numerical value of  ~/estimated in the low energy limit is quite different 

from one (namely, it is -- 0.795). This indicates that the inclusion of  the fluctuations is fundamental to give a realistic 

estimate of  ~ (this was firstly noticed in [38]). In order to consider the fluctuations, let us write 

4~ n - 1 
In ~b = lim - -  (B.5) 

n--+0 /It 

This allows one to reexpress Eq. (B.4) as a function of  average of  powers of  ~b 

( ~ n + l )  _ e 
(4~ In q~) = lira (B.6) 

n~0 n 

The estimation of  ~ is now reduced to the estimation of  terms of  the type (~b n), which can be again evaluated 

within the canonical ensemble, after a mode inverse temperature t *  is introduced. In the harmonic approximation 

(tb n ) =  ]Vql 2 I ql = Z k ! ( n _ k ) !  

k = 0  

with 

ark = dx e -fl*x2/2 = 1-' k q- ( f l , ) k + l / 2 '  ( B . 8 )  

where F is the Euler-Gamma function. In particular, e = (¢) = (f l*)-i  and expression (B.7) reduces to 

(¢n) = enl-,(n + 1) = enn!.  (B.9) 

We are now able to give an expression for the spectral entropy. 

en+ll- ' (n  + 2 )  - -  e 
(q~ In ~b) =- lim = e[log(e) + Ff(2)],  (B.10) 

n - + 0  n 

being FI(2)  = 1 - V, where y ___ 0.5772 is the Euler constant. Finally we obtain 

= e v-1 ~ 0.655.  ( B . 1 1 )  

This results have been also obtained with a different approach in [38]. We notice that this value is in perfect agreement 
with the numerical one found in the high energy limit (see Fig. 4(b)), while it is an underestimation of  the one found 
in the low energy limit (see Fig. 4(a)). 

The origin of  such a discrepancy is related to the structure of  the Hamiltonian when expressed in terms of  normal 
modes. Due to the quartic term in the potential, the mode interaction matrix is no longer diagonal [13]. However, 
in the high energy limit a sort of  "random phase approximation" should be valid for the terms appearing in the 
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mode interact ion matr ix  and the off-diagonal  terms should average to zero. Therefore we are left, in  the act ion-angle 

representat ion (Iq, Oq), with diagonal  terms of  the form 

Hqq : (co(q)Iq) q- ~-~co(q)212(cos 40q).  (B.12) 

In  the l imit  N --+ oo the nonl inear  term in Hqq becomes  negl igible  and the harmonic  approximat ion is recovered. 

In the low energy limit,  the ac t ion-ang le  variables are s trongly correlated and a " random phase approximat ion"  is 

no longer  valid. Therefore the off-diagonal  terms cannot  be  neglected and  give a contr ibut ion (although comparat ively 

small) to ~. 
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