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We study surface diffusion in the framework of a generalized Frenkel-Kontorova model with a nonconvex
transverse degree of freedom. The model describes a lattice of atoms with a given concentration interacting by
Morse-type forces, the lattice being subjected to a two-dimensional substrate potential which is periodic in one
direction and nonconvex~Morse! in the transverse direction. The results are used to describe the complicated
exchange-mediated diffusion mechanism recently observed in molecular dynamics simulations@J. E. Black and
Zeng-Ju Tian, Phys. Rev. Lett.71, 2445~1993!#. @S0163-1829~96!00726-6#

I. INTRODUCTION

Diffusion of atoms adsorbed on crystal surfaces is impor-
tant in many processes such as surface reactions and crystal
growth of artificially layered materials.1,2 In addition, surface
diffusion is of considerable intrinsic interest, because experi-
mental results show a very rich and complicated behavior of
diffusion coefficients, especially as a function of the atomic
concentration.

When the first adsorbed layer is complete, new incoming
atoms start to fill the second adlayer. Usually the diffusion in
the second layer follows the same laws as that in the first
layer because the adatoms of the first monolayer play the
role that substrate atoms played for the diffusion of the ada-
toms of the first layer, i.e., the first-layer adatoms create an
external potential for the second-layer atoms. However, for
some adsystems the situation may be more complicated ow-
ing to exchange of atoms between the first and second ad-
layers. Such an exchange was observed experimentally by
Medvedevet al.3 for the Li-W~112! and Li-Mo~112! adsys-
tems, where the growth of the second layer results in the
reconstruction of the underlying first adlayer. Moreover, re-
cently Black and Tian5 have observed a ‘‘complicated
exchange-mediated diffusion mechanism’’ in a molecular
dynamics experiment, where an isolated Cu adatom, which is
diffusing on the Cu~100! surface, may enter the first sub-
strate layer and create there a strain along a close-packed
row. This localized excitation moves along the row for a
distance of several lattice constants, and then the strain is
relieved by an atom in the strained row popping out and
returning to the surface. The simulation showed that this dif-
fusion mechanism becomes important at high enough tem-
peratures@T;900 K for the Cu-Cu~100! adsystem#.

The effect of reconstructive crystal growth was studied
theoretically in Ref. 6 within the framework of a generalized
Frenkel-Kontorova~GFK! model with a nonconvex trans-
verse degree of freedom. The model describes a chain of
atoms interacting with a generalized Morse potential. The
atoms are assumed to be mobile in two directions, one along
the surface~this is the direction along which the atoms can
diffuse!, and the other one orthogonal to the surface. They
are subjected to a two-dimensional substrate potential which
is periodic along the chain~i.e., along the surface! and has
the shape of a Morse potential in the transverse direction

~orthogonal to the surface!. The concentration of atoms is
characterized by the dimensionless parameteru5N/M , the
so-called coverage in surface physics, whereN is the number
of atoms andM is the number of minima of the external
potential. This model may be considered as a ‘‘minimal’’
model which takes into account all main features of real
adsorbed systems such as layers adsorbed on furrowed crys-
tal surfaces. On the other hand, it is simple enough to be
tractable analytically, at least in some aspects. The aim of the
present paper is to show that the same model6 can provide a
useful framework to study the role of the atomic exchange
between the first and second adlayers in surface diffusion at
coveragesu*1.

In the study of surface reconstruction,6 it has already been
shown that the formation of a metastable defect~kink! in
which an atom of the second layer penetrates into the first
layer is possible in some parameter range of the GFK model.
As kinks of the first layer generally have a diffusion coeffi-
cientDk which is much larger than the diffusion coefficient
Dact of thermally activated atoms of the second layer, it was
speculated that the formation of such defects could have a
large influence on the overall diffusion of atoms on crystal
surfaces. The present work confirms this conjecture and pro-
vides quantitative evaluations of the role of this exchange-
solitonic mechanism on surface diffusion. We study a system
of adsorbed atoms which has a complete first adlayer and an
extra adatom that can be in two stable configurations. In the
first one, the extra atom is in the second layer. This state
corresponds to the minimum of the total potential energy~the
gs configuration!. The second configuration with all adatoms
in the first layer corresponds to a metastable state~the ms
configuration!. In this ms configuration the extra atom cre-
ates a localized solitonic excitation, the so-called kink, which
usually has a very high mobility. Thus, even if the lifetime of
the ms configuration is small at a nonzero temperature, the
ms configuration may play the main role in surface diffusion,
generating an unusual temperature dependence of the mass
diffusion coefficient.

The paper is organized as follows. The model is described
in Sec. II. Calculations of quasiadiabatic trajectories are de-
scribed in Sec. III, and the results of molecular dynamics
simulation are presented in Sec. IV. Section V is devoted to
theoretical estimations of different diffusion mechanisms.
The last section, VI, concludes the paper.
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II. MODEL

We use the generalized Frenkel-Kontorova model intro-
duced in Ref. 6. The displacement of an atom is character-
ized by two variables:x describes its motion parallel to the
surface andy describes its deviation orthogonal to the sub-
strate. The potential perpendicular to the surface has a Morse
shape,

Vy~y!5«d~e
2gy21!2, ~1!

which tends to the finite limit«d ~known as the adsorption
energy! wheny→`. The parameterg determines the anhar-
monicity and it is related to the frequencyvy of a single-
atom vibration in the normal direction by the relation
vy
252g2«d /m, m being the atomic mass. It should be no-

ticed that the function~1! is nonconvex, i.e., it has an inflec-
tion point at y5yinf[g21ln2, which has important conse-
quences on the properties of the system.6 To model the
substrate potential along the surface, we use the deformable
periodic potential7

Vx~x!5
1

2
«s

~11s!2@12cos~2px/as!#

11s222scos~2px/as!
~2!

as discussed in previous work.8 Here «s is the activation
energy for diffusion of a single atom,as is the period of the
substrate potential along the chain, and the parameters
(usu,1) determines the shape of the potential. The fre-
quencyvx of a single-atom vibration along the chain is con-
nected to the shape parameters by vx

25v0
2@(11s)/

(12s)] 2 with v0
2[2p2«s /mas

2 . In the following we use a
system of units whereas52p, «s52, andm51, so that
v051.

The total potential energy of a single atom interacting
with the substrate is written as

Vsub~x,y!5Vx~x!e2g8y1Vy~y!. ~3!

The exponential factor in the first term of the right-hand side
of Eq. ~3! takes into account the decrease of the influence of
the surface corrugation as the atoms move away from the
surface, so thatVsub(x,y)→«d wheny→`.

To model the interaction between adatoms, we use the
generalized Morse potential

Vint~r !5«aH b8

b2b8
e2b~r2r a!2

b

b2b8
e2b8~r2r a!J , ~4!

where«a is the interatomic bonding energy of a molecule
adsorbed on the surface,r a is the molecule’s equilibrium
distance, and the exponentsb andb8 are related to the fre-
quency va of interatomic vibration by the relation
va
25«abb8.
We use the same model parameters as in the study of

surface reconstruction, Ref. 6; namely, considering the case
of metal atoms adsorbed on a metal substrate such as, e.g.,
the Li-W~112! or the Li-Mo~112! adsystems, we take
as52.73 Å which is the distance between the wells along a
furrow on the W~112! surface, and«s;0.1 eV, «d;3 eV,
vx&vy;103 cm21, which are typical values for these sys-
tems. Returning to our system of units, we get«d560,
g50.183,yinf53.80,vx51.5, vy52, g852g50.366, and

s50.2. The interaction energy between two adsorbed metal
atoms usually lies within an interval«a;0.1–0.5 eV,10 or
«a;2–10 in our system of units; we have chosen the value
«a56. For the exponentsb and b8 we takeb51.9 and
b850.19~see a more detailed discussion of such a parameter
choice in Ref. 6!. In Ref. 6 we had chosen for the interatomic
equilibrium distance the valuer a'3.04 Å ~the interatomic
distance in lithium metal!, or r a57 in our system of units,
because we had in mind the application of the model to the
lithium film. However, we will use in the present work lower
values ofr a , r a56.3 and 6.4, in order to investigate the case
when an extra atom can be inserted into the first adlayer and
exist there in a metastable state. Although we have selected
some of the parameters by comparison with a real system,
we do not claim to describe quantitatively a concrete system
of adatoms with a model which is still oversimplified. We
are interested in thephenomenonof exchange-mediated dif-
fusion, and this is why the parameterr a has been adjusted to
allow such a phenomenon.

In the present work we study the case of a fixed concen-
tration of atoms. Therefore we impose periodic boundary
conditions with a fixed numberM of minima of the substrate
potential as well as a fixed numberN of adatoms~we have
usedM516 andN517). The ground state configuration as
well as the nearest metastable states are searched for with a
standard molecular dynamics~MD! algorithm; namely, we
start from an appropriate initial configuration and allow the
atoms to relax to the nearest minimum of the total potential
energy of the system. Thus the computer algorithm reduces
to the solution of the equations of motion which follow from
the potentials~3! and ~4! with an artificially introduced vis-
cous friction.9,6 In computer simulations we can only include
the interaction with a finite number of neighbors. This is
achieved by introducing a cutoff distancer * ~we have cho-
senr *55.5as) and accounting only for the interactions be-
tween the atoms separated by distances lower thanr * , as
usual in MD simulation.

III. QUASIADIABATIC TRAJECTORIES

Adiabatic characteristics of the system were studied in
order to determine the potential energy surface of the model.
First, we have determined the ground state with the MD
algorithm with friction, in the same way as in the study of
surface reconstruction.6 Then, in order to investigate mass
diffusion, we have investigated the dependence of the poten-
tial energy upon the position of the center of mass of the
system. It is, however, difficult to impose a constraint on the
center of mass. Therefore, instead of determining this adia-
batic trajectory, we explore the multidimensional potential
energy surface along ‘‘quasiadiabatic’’ trajectories defined
by imposing appropriate constraints on a single atom. The
most important characteristics of the motion, which are the
positions and energies of the stationary points~the ground
state, the metastable state, and the saddle points!, are calcu-
lated correctly by this method, and we may expect to obtain
the correct shape of the adiabatic trajectory at least qualita-
tively with this approach.

Since we consider the possibility that the extra atom may
exist in two stable states that differ by its distance to the
substrate~atom in the second or in the first layer!, a first
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analysis has been performed by constraining only they co-
ordinateyj of the extra atom. We displace it up and down in
the y direction~perpendicular to the surface! by small steps.
At each step we allow for thex coordinate of this atom and
for both coordinates of all other atoms to adjust themselves
to the new value ofyj . For each relaxed state, the position
Y of the center of mass of the system is calculated. Figure 1
shows the dependence of the system energy uponY. The
ground state configuration corresponds to aY position of the
kink around 2.8, while the metastable state corresponds to a
much lower value ofY. These pictures allow us to calculate
«ms, the difference in energies of the metastable and ground
states. The results are listed in Table I. One can notice that
«ms depends very much onr a ; the metastable state is much
more likely to be relevant in the case~a! r a56.3 which has a
lower «ms than in case~b! r a56.4. The two stable states are
separated by a barrier«barrier.

Around each value ofY corresponding to a stable state,
we have then determined the potential energy as a function
of the displacement alongx of the coordinatexj of the extra
atom. In this casexj is constrained to a given value butyj is
allowed to relax to its equilibrium value as well as thex and
y coordinates of all the other atoms. TheX coordinate of the
center of mass is again calculated for each relaxed state. The
results are presented in Fig. 2 for the case of a quasiadiabatic
trajectory starting from the ground state, and in Fig. 3 for a
trajectory starting from the metastable state. In this case, the
structure of the metastable defect is such that the extra atom
does not play a specific role and cannot be identified unam-
biguously. This has no consequence on the mass diffusion,

but in the algorithm one has to choose the atom that will be
constrained to a givenxj . The choice has been done in the
same way as in Ref. 9. Figure 2 shows that, for the transla-
tion of the center of mass alongx in the case of an extra
atom in the second layer, there is no metastable state and
only a barrier to overcome. The diffusion in theX direction
will therefore be an activated process and we call«act the
difference between the unstable maximum state and the
stable one. As attested by the results presented in Table I,
«act decreases whenr a increases. More precise consequences
for the physics will be explained in the following section.
Figure 3 and Table I show that the barrier«PN for the X
translation of the metastable state is extremely low compared
to «act.

In order to complete the picture of the potential energy
surface, in a second series of calculations we artificially
moved the same atomj , but now both coordinatesxj and
yj were constrained, while the other atoms were allowed to
relax to the minimum of the system energy. The atomj was
moved to scan thex andy directions as in a TV sweep. The
results allow us to draw the full picture of the energyE of
the system as a function ofX andY. They are presented in
Fig. 4~a! as a contour map and in Fig. 4~b! as a three-
dimensional surface~we show the results only forr a56.3,
because the caser a56.4 looks qualitatively similar!.

From the energy surface of Fig. 4 and the quantitative
results of Table I, one can predict the general behavior of the

FIG. 1. Change of energyDE with respect to the ground state as
a function ofY for a displacement along the quasiadiabatic trajec-
tory perpendicular to the surface for~a! r a56.3 and~b! r a56.4.

TABLE I. Parameters of quasiadiabatic trajectories for two val-
ues of the equilibrium distancer a of the interatomic potential.«ms

is the difference in energies of the metastable and ground state
configurations,«barrier is the activation barrier for the transition from
the gs configuration to the metastable state,«act is the activation
energy for the hopping diffusion, and«PN is the barrier for kink
motion parallel to the surface.

Parameter r a56.3 r a56.4

«ms 0.755 3.014
«barrier 1.752 3.476
«ac 2.364 2.055
«PN 4.1831026 6.3931026

FIG. 2. Change of energyDE with respect to the ground state as
a function ofX for a quasiadiabatic displacement parallel to the
surface starting from the ground state for~a! r a56.3 and ~b!
r a56.4.

FIG. 3. Change of energyDE as a function ofX for a quasi-
adiabatic displacement parallel to the surface starting from the
metastable state for~a! r a56.3 and~b! r a56.4.
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system. Starting from the ground state in the second layer,
the extra adatom may overcome the barrier«act and directly
jump to the nearest neighboring site in the second layer, or it
may overcome the barrier«barrier and form a metastable state
in the first adlayer that will move practically without barri-
ers. Therefore during the lifetime of the metastable state the
local compression of the first layer may move for a long
distance, and when the system returns back to the ground
state an atom arises in the second layer in a site which may
be far away from the initial position of the extra atom. Such
an exchange-mediated diffusion should clearly be the favor-
able diffusion pathway in the caser a56.3 because, in this
case, the activation barrier for the transition to the metastable
state is lower than the activation energy in the second layer,
«barrier,«act. On the other hand, in the caser a56.4 we have
the opposite inequality,«barrier.«act, and direct jumps to the
nearest site of the second layer should be the most probable
diffusion path. However, even in this case, transitions to the
metastable state may take place and, owing to the high kink
mobility, these transitions may lead to a remarkable contri-
bution to the total diffusion coefficient. This aspect is dis-
cussed in the following section.

IV. MOLECULAR DYNAMICS SIMULATIONS

The predictions presented above are simply based on
static configuration energies and collective dynamical effects

could enter in a nontrivial way to affect the diffusion. Thus
these predictions must be checked with full molecular dy-
namics simulations of the system. Temperature effects are
introduced through a standard Langevin approach. The
Hamiltonian equation of motion of each atom of massm is
completed by a friction term with a damping coefficient
mh and a random force with ad correlation function of
factor 2mhkBT. Starting from the ground state configuration
a first time intervalt th is allowed to reach the thermal equi-
librium state. Then, during a time intervalt run we save the
dependenciesX(t) andY(t), which define the position of the
localized excitation andymax(t) which defines the maximum
y coordinate of the atoms at timet. This last quantity allows
us to determine if the system is in the ground state or in the
metastable state.

The first step of the analysis has been devoted to the prop-
erties of the metastable state at nonzero temperature. In prin-
ciple, the positionY of the center of mass of the system
should tell us whether the system of adatoms is in the ground
state or the metastable state. However, in practice, measures
of Y do not answer this question because the histogram for
the probabilityP(Y) thatY takes a given value shows only
one maximum corresponding to the ground state configura-
tion. This does not mean that the metastable state is never
excited, but because of the importance of the fluctuations it is
not possible to distinguish the two stable states, characterized
by the shift between the two layers of only one atom~among
N517 atoms!: the increase ofY is too small. The informa-
tion on the state of the system can be deduced fromymax
because this quantity takes a large value if an atom is in the
second layer~i.e., when the system is in the ground state!.
The histogram of the probabilityP(ymax) does exhibit two
well-defined maxima corresponding to the ground state and
metastable state configurations up to temperatures above
T52 @see Fig. 5~a!#. From this result, it is possible to define
an effective free energy of the system as

Feff52kBTlnP~ymax!, ~5!

which is plotted in Fig. 6 at different temperatures. The dif-
ference in free energy between the metastable state and the
ground state~called «ms in Sec. III!, as well as the height

FIG. 4. Potential energy surface for the caser a56.3. TheX-Y
contour map is plotted in~a! while ~b! presents a three-dimensional
plot.

FIG. 5. Simulation results forr a56.3 andh50.1. ~a! Probabil-
ity of the maximum of they position for different temperatures. The
solid line corresponds toT50.3, the dotted line corresponds to
T50.5, the dashed line corresponds toT50.7, and the dot-dashed
line corresponds toT50.9. ~b! Density of states versus tempera-
ture. The solid line and stars describe the simulation results,
whereas the dashed line corresponds to the estimation~ 7!.
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«barrier of the barrier between the ground state and the meta-
stable state, are approximately equal to the values deduced
from quasiadiabatic calculations atT50. The relative verti-
cal positions of the curves are not significant, because they
depend on the reference in energy that we chose for each
temperature. Note, however, that the free energy of the meta-
stable state with respect to the ground state free energy,
«ms(T), increases with temperature from the value 0.6 at
T50.3 to 1.2 atT50.9. This effect may be understood by
noticing that the variation of this difference in free energy is
related to the entropy of both states as follows:

]«ms~T!

]T
5

]@Feff~ymax
ms !2Feff~ymax

gs !#

]T
5Sgs2Sms. ~6!

Since this variation is positive according to the numerical
result, it means that the entropy of the ground state is higher
than that of the metastable state. This result is reasonable
because the atom isolated in the second layer has more space
available to move than when it is in the first layer, and more-
over its interaction energy with its neighbors and with the
substrate@because of the exp(2g8y) factor# is weaker.

Integrating the peaks of the histogram ofP(ymax), we can
obtain the occupation numbers of the two states. The density
of state for the ground state,rgs, is calculated by considering
the states on the right of the minimum value between the two
peaks. The density of state for the metastable state is then
rms512rgs. In Fig. 5~b! they are shown as functions of the
temperature, and compared with the functions

rgs
~0!5~11e2«ms/kBT!21 and rms

~0!512rgs
~0! , ~7!

which would be deduced from the quasiadiabatic results
without taking into account the variation of the energy of the
metastable state with temperature. A significant deviation be-
tween the numerical values and the estimation provided by
the quasiadiabatic results shows up only in the high tempera-
ture range.

The second set of studies has been devoted to a direct
determination of the mass diffusion coefficient from the ther-
malized molecular dynamics simulation. The result is de-
duced from a series ofk simulations at each temperature
(k520), each one extending over the time intervalt run.
From simulationi we extract the diffusion coefficient using

Di5 limt→`

^@X~ t01t !2X~ t0!#
2&

2t
~8!

~where t01t is lower thant run). Then we average over the
k simulations. The results are presented in Figs. 7 and 8, and
discussed in the following section.

Besides the total diffusion coefficient, we calculate also
the kink diffusion coefficient~i.e., the diffusion coefficient of
the system in the metastable state!. For this, we start from the
metastable state and monitor the maximumymax coordinate
of the atoms: when an atom escapes from the first adlayer,
we stop the run. A reliable numerical estimation of the kink
diffusion coefficient is only possible at low temperature
when the metastable state has a sufficient lifetime. The re-
sults are presented in Fig. 9.

V. DISCUSSION

Let us now come to the main point, an analytical estimate
of the role of kinks in the process of surface diffusion. As
shown above, the system may evolve from one gs configu-

FIG. 6. The effective free energy~ 5! as function of the maxi-
mum of they atomic positions as follows from the results of Fig. 5.
The solid line corresponds toT50.3, the dotted line corresponds to
T50.5, the dashed line corresponds toT50.7, and the dot-dashed
line corresponds toT50.9.

FIG. 7. Diffusion coefficient versus temperature forr a56.3 and
h50.1. The diamonds correspond to the simulation results. The
error bars are computed numerically with 20 simulations. The dot-
ted curve corresponds toDkink and the dash-dotted curve corre-
sponds toDact. The stars and the solid curve describe the estimation
resultD5rgsDact1rmsDkink , wherergs and rms were taken from
the simulation results of Fig. 5~b!.
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ration to an another gs configuration with the atom occupy-
ing a neighboring site in the second adlayer by two path-
ways, either by a direct atomic jump over the barrier«act or
through a two-stage mechanism involving the metastable
state in the first adlayer. For such a two-way process the total
diffusion coefficient can be calculated by the method de-
scribed by Kutner and Sosnowska.11 The result is trivial:

D5rgsDact1rmsDkink , ~9!

where the occupation numbersrgs and rms were defined
above.

The hopping diffusion coefficientDact may be estimated
with the help of the seminal result of the Kramers theory12

Dact'SAvb
21

h2

4
2

h

2 D v*

vb

as
2

2p
expS 2

«act
kBT

D , ~10!

wherev* (vb) is the frequency of the linearized oscillations
of the system near the ground~unstable! state. As shown on
Fig. 2, the potential energy for the motion over the barrier is
well approximated by a sinusoidal function
V(x)5«act@11cos(2px/as)#/2, so thatv*5vb5A«act/2m.
Finally, asas52p andm51 with our units, we get

Dact'SA«act
2

1
h2

4
2

h

2 D 2p expS 2
«act
kBT

D . ~11!

To estimate the diffusion coefficientDkink of the meta-
stable state, recall that the atom inserted into the chain cre-
ates a local distortion that can be considered as a kink in the
Frenkel-Kontorova model. In the continuum approximation
the equation of motion reduces to the exactly integrable sine-

Gordon~SG! equation. This limit, in which a defect would
propagate freely as a soliton in the system, can be used as a
starting point for a perturbative analysis of the influence of
the discreteness of the lattice. When the continuous transla-
tional invariance is broken, one finds that the kink experi-
ences a periodic potential, with the periodicity of the lattice,
which is known as the Peierls-Nabarro barrier in dislocation
theory. A precise evaluation of the PN barrier turns out to
involve subtle effects, particularly when discreteness effects
are weak,13 but a recent analysis has derived accurate results
in this case.14 The basic result is that the shape of the kink
can be obtained by solving a Klein-Gordon equation ob-
tained by replacing the actual substrate potentialV(x) by an
effective potential

Veff~x!5V~x!2
1

24g
@V8~x!#2 ~12!

where g5as
2Vint9 (as)/(2p2«s)5Vint9 (as) is the elastic con-

stant of the atomic chain. This expression allows us to derive
the value of the mass of the kink, which is given by the
general expression for a Klein-Gordon model,

mkink5
m

as
2Ag

E
0

asA2Veff~x!dx. ~13!

This formula gives the usual expressionmkink58m/(as
2Ag)

in the sine-Gordon case if, instead of the effective potential,
we use the actual potentialV(x)5@12cos(2px/as)#. For the
values ofg which are obtained with our parameters~see
Table II!, the correction to the SG value due to discreteness

FIG. 9. The kink diffusion coefficient versus temperature for
r a56.3. The symbols correspond to the simulation results and the
lines describe the estimated results of Eq.~15!. The stars and the
dotted curve correspond toh50.1, the diamonds and the dashed
curve, toh50.3. The parametersmkink and a were obtained by
fitting the expression~15! to the simulation data for the case
h50.1, and then the same values were used forh50.3.

FIG. 8. Comparison between the MD results and the theoretical
values of the diffusion coefficient in four cases. The symbols cor-
respond to the simulation results, and the solid curves to the theo-
retical ones. The diamonds describe the caser a56.3 andh50.1,
the triangles, the caser a56.3 andh50.3, the squares correspond
to the caser a56.4 andh50.1, and the stars, to the caser a56.4
andh50.3.
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is small, giving, for instance,mkink57.95m/(as
2Ag) for the

caser a56.3. The proper treatment of discreteness is much
more important for the evaluation of the amplitude of the
Peierls potential which is obtained as14

«PN'712.26«sg exp~2p2Ag!. ~14!

Table II gives the values ofg, mkink , and«PN which result
from the interaction potential~4! with r a56.3 andr a56.4. It
shows that the amplitude of the PN potential is negligible
with respect to the barrier«act corresponding to the transla-
tion of the extra atom in the second layer. This is in agree-
ment with the numerical results of Sec. III. Moreover, this
value «PN!kBT at the temperature that we consider shows
that the kink motion is not thermally activated. Its diffusion
coefficient can be derived from the formula for a free diffu-
sion,

Dkink5
kBT

mkinkhkink
, ~15!

wherehkink is an effective viscous friction for kink motion.
At T50 hkink is simply given byh kink'h, whereh is the
viscous friction for the motion of an isolated adatom due to
energy exchange with the substrate. The value ofh is
usually15 about h;v0/10. But at nonzero temperature
hkink depends onT because of the coupling of the lattice
phonons with the highly nonlinear core of the kink. The sim-
plest form for this dependence is16

hkink'h1aT, ~16!

wherea is a coefficient which cannot be obtained analyti-
cally but could be obtained experimentally, as in the case of
copper.17

In our analysis, we treatmkink anda as adjustable param-
eters. They are chosen by fitting with Eq.~15! the tempera-
ture evolution ofDkink determined by the MD simulations
with h50.1 andr a56.3. The parametersmkink50.0886 and
a50.155 obtained in this particular case are also valid for
the caseh50.3 as shown from Fig. 9. Moreover, the expres-
sion ~15! with the sameparameters describes the simulation
results for the diffusion in the first adlayer for the case
r a56.4 as well. This rather good agreement between the
numerical results and the analytical estimation ofDkink
shows that, although the SG description may seem rather
crude for the generalized FK model, it provides a good basis
for analysis. This is confirmed by the comparison between
the fitted value ofmkink and the theoretical value given by
Eq. ~13!: the fitted value is smaller than the theoretical one,
but the order of magnitude ofmkink is nevertheless correctly
given by the discrete SG calculation.

Having obtained analytical estimates for the two diffusion
coefficientsDact andDkink , we are now in a position to es-
timate the role of the kink diffusion in the general process of
atomic diffusion in the adsorbed layer. The role of both
mechanisms is well illustrated on Fig. 7. First, one can ob-
serve that the temperature dependence of the total diffusion
coefficientD deduced from the MD simulations is well re-
produced by Eq.~9!. It should be noticed that at this level the
fit is obtainedwithout adjustable parameters, since our pa-
rameters have been deduced from the study ofDkink alone
and the densities of statesrgsandrmsare the measured quan-
tities. The good agreement points out that the diffusion
mechanism that we propose, involving two different pro-
cesses, provides a correct description of diffusion as it can be
observed in MD simulations of the generalized FK model. It
is also important to notice thatboth mechanismsare essential
to reproduce the numerical results. If one considered only
one of the two processes, i.e., assumed thatrgs51 or
rms51, the diffusion coefficient would evolve versusT
along the dash-dotted or dotted line of Fig. 7. The theoretical
value ofD would disagree completely with the MD results.

Figure 8 summarizes the results by providing a compari-
son between the temperature dependence ofD observed by
MD and the theoretical value of Eq.~9! for r a56.3 and
r a56.4 and two values of the damping coefficienth. This
figure shows that all the numerical results are well described
by the two-process diffusion with only two adjustable pa-
rametersa andmkink . The results show also that, even in the
caser a56.4, for which direct jumps to the nearest adsite in
the second layer have to overcome a much lower barrier than
the barrier for the transition to the metastable state, the
solitonic-exchange mechanism involving the metastable state
still brings a crucial contribution to the total diffusion coef-
ficient D. This is due to the extremely high mobility of the
metastable state.

VI. CONCLUSION

Following our results, one can distinguish three different
diffusion mechanisms for atoms adsorbed on a crystalline
surface.

The first one is theconventional diffusion~sometimes
called hopping diffusion! which involves only one atomic
layer. In can be an individual process when an adatom di-
rectly jumps from one adsorption site to the nearest adsite.
The diffusion coefficient in this case follows the Arrhenius
law D(T)5A exp(2«act/kBT) with the preexponential fac-
tor being independent of~or weakly dependent on! T. At
high coveragesu&1 ~as well as foru&2, etc.! owing to the
interaction between the adatoms, the activation energy«act
decreases with respect to the height of the original substrate
potential«s . For a strong interatomic interaction the motion
takes a collective~concerted! character and may be described
with the help of the kink concept.9,4 In this case the activa-
tion energy «act for the chemical diffusion becomes the
Peierls-Nabarro barrier«PN, which is significantly lower
than the individual activation energy. Therefore the process
is generally no longer thermally activated andD(T) is ap-
proximately given by the free diffusion formula
D(T)'kBT/mkinkhkink .

While for the conventional diffusion the underlying ada-

TABLE II. Parameters corresponding to the kink~metastable
state!: g is the elastic constant,mkink is the kink mass, and
«PN(theory) is the amplitude of the Peierls-Nabarro barrier.

Parameter r a56.3 r a56.4

g 2.243 2.759
mkink 0.1344 0.1214

«PN(theory) 1.2231023 2.9831024
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toms in the first adlayer play a passive role, creating the
effective external potential for the diffusion of atoms in the
second adlayer, for theexchange diffusionmechanism this
role becomes active. Two types of mechanisms can be con-
sidered. The ‘‘conventional’’~or ‘‘one-step’’! exchange dif-
fusion mechanism has been known for a long time. It occurs
when an adatomA from the second layer ‘‘pushes out’’ an
adatomB from its regular position in the first adlayer and
occupies the free site so created. The new configuration has
only a single adatom (B) in the second adlayer. The inter-
mediate configuration with both adatomsA andB inserted
into the first adlayer is unstable. It corresponds to a saddle
point in the potential energy surface. The elementary diffu-
sion step takes a short time,;10213 sec. The diffusion co-
efficient for the one-step exchange mechanism should follow
the same Arrhenius law as for the conventional hopping dif-
fusion with the activation energy corresponding to the saddle
state. Exchange diffusion may be important for coverages
u*1, when the first adlayer is complete and the second one
starts to grow.

The diffusion mechanism studied in the present work is a
two-step exchangediffusion mechanism. The main differ-
ence from one-step exchange diffusion is that the configura-
tion with the adatom inserted into the first adlayer, now cor-
responds to ametastablestate instead of the unstable
~saddle! state. Because this metastable state corresponds to a
kink configuration which is characterized by a very high mo-
bility, the mechanism may be called the ‘‘exchange-
solitonic’’ mechanism of surface diffusion. For this mecha-
nism the diffusion follows an Arrhenius law too, but now the
activation energy corresponds to the difference in energies
between the metastable state and the ground state~and not to

the barrier for the transition from the second adlayer to the
first one!, while the preexponential factor is determined by
the kink diffusion coefficient and essentially depends on
temperature. The mass diffusion coefficient in this situation
is described by the expression~9! whereDact andDkink are
given by Eqs.~11! and ~15!.

We considered above the situation where an atom is dif-
fusing in the second adlayer over a filled first adlayer. It is
clear that the same situation can occur for adatoms of the
first layer when the adatoms are the same as the atoms of the
substrate. Indeed, in this case the top-layer substrate atoms
play the same role as that of the first-layer adatoms in the
former case. In particular, the exchange diffusion mechanism
was observed when de Lorenzi and Jacucci18 investigated by
the MD method the self-diffusion of Na atoms adsorbed on
the surface of a Na metal crystal. They found that the ex-
change mechanism is responsible for the diffusion across the
rows on the furrowed crystal surface. This conclusion was
later confirmed by the field ion microscope technique for the
diffusion of atoms adsorbed on transition metal surfaces.1,2

It seems possible and would be interesting to find and
investigate the exchange-solitonic mechanism of surface dif-
fusion experimentally with the field-ion microscope or scan-
ning tunneling microscope technique. It may be predicted
that such a diffusion is to be expected for coverages
u;as /r a .
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