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Moleculardynamicssimulationsare usedto investigatethe atomicmobility anddiffusivity of a generalized
Frenkel-Kontorovanodelwhich takesinto accountanharmonidexponential interactionof atomssubjectedo
athree-dimensionadubstrateotentialperiodicin two dimensionsandnonconvexMorse in thethird dimen-
sion. The numericalresultsare explainedby a phenomenologicatheory which treatsa systemof strongly
interactingatomsasa systemof weakly interactingguasiparticlegkinks). Model parametersre chosenclose
to thosefor the K-W(112) adsorptionsystem[S0163-182806)00826-0

I. INTRODUCTION

Experimentalstudiesof transportcoefficientsin systems
of strongly interactingatomsadsorbedon a crystalline sur-
face show a very rich and complicatedbehavior,especially
asfunctionsof the atomicconcentrationThe variationof the
diffusion coefficientversuscoverageis particularly impor-
tantfor adsorbedayerswherethe concentratiormay vary in
wide limits from zero (diffusion of isolatedadsorbecatoms
to very high values (for example,in some adsystemshe
interatomicdistancein a monolayerof adatomss lower than
that in the correspondingmassivecrysta).! The theoretical
studyof massandchargetransportin suchsystemss avery
difficult problem;however,it was studiedfor variouskinds
of interactionsby Gomerandco-workerg usingMonte Carlo
simulations.At high temperaturestransportcoefficientscan
befoundwith a perturbationtechniquestartingfrom the case
of noninteractingatoms® At low temperaturesthe caseof
interactingatomshas beenstudiedby a numericalcalcula-
tion of the transport propertiesof the standardFrenkel-
Kontorova(FK) model,which describesa chainof harmoni-
cally interacting atoms subjectedto a one-dimensional
sinusoidal external potential*® Recently, the low-
temperaturédehaviorof a systemof strongly interactingat-
omsin a more generalone-dimensionamodel hasbeenap-
proximately treated with a phenomenologicalapproach
which introducesweakly interacting quasiparticle$. This
methodprovidesanalyticalestimatesfor the transportcoef-
ficients, but it requiresmany approximationsin particular,
the propertiesof the quasiparticlesnvolvedin thetheoryare
deducedrom resultsof the standard=K model, which pro-
videsonly a simplified picture. Thereforeit wasnecessaryo
checkthe validity of the theoreticalapproachby numerical
simulationsof a modelwhich is sufficiently complicatedto
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providea reasonablelescriptionof a real system.This is the
aim of this paper,which studiesa two-dimensionageneral-
ized FK modelandalsodiscussesomeexperimentatesults
in the sameperspective.

The original FK modelwasintroducedto analyzethe dy-
namicsof dislocationsin crystalg by consideringa chainof
interacting particles subjectedto a periodic substrate(on-
site) potential.lt candescribefor example a closelypacked
row of atomsin a crystal® a chain of atomsadsorbedon
steppedor furrowed crystal surfaces, a chain of ions in a
“channel” of a quasi-one-dimensionalonductor'® hydro-
gen atomsin hydrogen-bondedsystems! etc. In all the
casesmentionedabove,the chain of interactingparticlesis
an intrinsic part of the whole physicalsystemunderconsid-
eration.Therole of the remainderf the systemis playedby
an externalsubstratepotentialand a thermalbath. Although
it is still oversimplified,the generalized FK modelthat we
considerhere provides a rather complete descriptionof a
layer of atomsadsorbedon a two-dimensionalcrystal sur-
face. It includesrealistic (exponentigl interactionsof par-
ticles insteadof the harmonic springsof the standardFK
model,andthe substratepotentialis threedimensionallt is
periodicin thetwo dimensiongarallelto the surfaceandhas
a Morse shapein the third direction, orthogonalto the sur-
face.

The transportpropertiesof the systemare describedby
two coefficients the mobility B andthe chemicaldiffusivity
D.. The mobility definesthe responseof the systemto an
infinitesimaldc force F,

J=pBF, (1)
whereld is the atomic flux causedby the force andp is the
averageatomicconcentrationOn the otherhand,the chemi-
cal diffusion coefficient D, connectsthe flux J(x,t) in a
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nonequilibriumstateto the gradientof the atomicconcentra-
tion whenp(x,t) slightly deviatedrom its equilibriumvalue.
Accordingto Fick’s law

(306) =~ Do ((p(x.1), @

where ((---)) standsfor the averagingover macroscopic
distancex>a,, anda, is the averageanteratomicdistance.
Thesetwo coefficientsare coupledthroughthe relation

b kgTB 3
c X I
where kg is Boltzmann’sconstant,T the temperatureand
x the dimensionlessusceptibilityof the system.

The predictionsof the phenomenologicahpproach can
be summarizedasfollows. The masstransportis causedoy
kinks which describelocalized compression®r expansions
of the chainandthereforethe mobility B canbe expectedo
be proportionalto the kink concentration.The kinks have
two different origins, “geometrical” and thermal. We call
geometricalkinks the kinks which result from the value of
the coverage#=N/M, whereN is the numberof atomsand
M the numberof wells of the substratgotentialon a given
length.For #=1/g, with integerg (g=1,2, . . .), the system
hasa trivial groundstatewith oneatomat the bottomof the
substratewells every gth well. When 6 deviatesslightly
from sucha value, the differenceis accommodatedby the
systemby forming localizeddiscommensurationghich are
the geometricakinks (calledalso “trivial kinks” in the no-
tation of Ref. 6). As the kink densityincreasesvhen 6 de-
viatesfrom 1/g, thetheorypredictsthatB( ) shouldexhibit
local minimafor anytrivial groundstate(GS) of the system,
such as =1, #=1/2, 6=1/3, etc. When 6=pl/q is a
rationalnumberwith alargernumeratorsuchas 6=2/3, the
density of geometricalkinks becomesvery large and one
could expectto get a high mobility B. The pictureis, how-
ever, more complicatedbecausedue to their high density,
the geometricalkinks interact strongly and, when tempera-
ture is sufficiently low with respectto their interactionen-
ergy, they tend to form a regular lattice which is weakly
pinned, giving a low mobility for any rational 4. A slight
deviationfrom 6= p/q appearasdiscommensurations the
kink lattice, i.e., “kinks in a kink lattice,” which are called
superkinksin Ref. 6. Thesetopological excitationsof the
kink lattice contributeto masstransportexactlyasthetrivial
kinks do, so that the mobility is expectedto exhibit local
minima for 6=p/q suchas §=2/3. In the limit T—0 the
function B(#) shouldthereforehaveminima at any rational
6. When temperaturencreasesthe secondaryminima dis-
appeatbecausehekink lattice “melts” and,moreoverther-
mal fluctuationscreatekink-antikink pairs which are ther-
mally activated.Consequentlyat high enoughtemperature
the mobility is expectedto exhibit broad maximabetween
the primary minima at #=1/g. Such a behaviorhas been
observedn one-dimensionaimodels?~#

The behaviorof the diffusion coefficientD, is simpler
thanthe variationof B(#6) as predictedin Ref. 15. According
to Fick’s law (2), D, is the proportionality coefficient be-
tweenthe (infinitesima) gradientof theatomicconcentration
and the flux of atomscausedby this gradient.However,a
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gradientof atomic concentrationautomatically producesa
correspondingyradientof kink concentrationln the standard
FK model,wherethe elasticconstantdoesnot dependon 6
and where the parametersof kinks and antikinks are the
same,D.(0) is the ratio of two quantitieswhich vary simi-
larly sothatit shouldbe approximatelyconstantandcoincide
with the kink (or antikink) diffusion coefficient.In the gen-
eralizedFK modelthe situationis different becausehe an-
harmonicityof the interatomicinteractiondestroysthe kink-
antikink symmetry*® The effective interatomicforcesfor a
kink, which correspondso a local contractionof the chain,
exceedthosefor an antikink, which is associatedvith a re-
gion of alocal extension.Thus,in comparisorwith an anti-
kink, a kink is characterizeddy a larger value of the rest
energyandby lower valuesof effective massandactivation
energyfor its motion® Whenthe coveraggpasseshrougha
commensuratealue 6y, the geometrical-kinkdensity van-
ishes;for #< 6, the systemhasgeometricalantikinks while
for 6> 6, the systemhasgeometricakinks. Thereforewhen
the coverage # increasesthrough a commensuratevalue
6y, the activationenergyfor the chemicaldiffusion should
jump to a smaller value. Simultaneouslythe value of D,
shouldrise sharplywhen the coveraget exceedghe value
6, that characterizes “well-defined” commensuratstruc-
ture and one could expectD.(6) to exhibit the shapeof a
devil's staircase.The abrupt (jumplike) increaseof D,(#6)
will only existin the T—0 limit and, for any T+#0, these
jumpswill be smoothedwing to correctiondrom thermally
excitedkink-antikink pairs.

In the presentpaperwe checkthesepredictionsby mo-
lecular dynamicsinvestigationsof the low-temperatureno-
bility and diffusivity of a generalized=K modelin oneand
two dimensionsin Sec.ll, we describethe modelanddefine
its parametersKink parametersare calculatedin Sec. Ill.
Simulationresultsfor the mobility are presentedn Sec.lV,
andthosefor the chemicaldiffusivity are describedn Sec.
V. SectionVI discusseknown experimentalresultsin the
frameworkof thesestudiesandSec.VII concludeghe paper.

Il. THE MODEL

As for the standard=K model,we considerthe dynamics
of atomsadsorbedn a periodicsubstrateThe displacement
of eachatom is characterizeddy three variables:x andy
describeits motion parallelto the surface while z describes
its deviation orthogonalto the substrate For the substrate
potential,we take the function

VsudX,Y,2) = [Vpr(X;asx +Esx»Sx) +Vpr(y;asy 1Esy asy)]87 v'z
+V,(2). (4)

To modelthe substratepotentialalongthe surface we usea
deformableperiodic potentialwhich can be adjustedto de-
scribean actualcrystalfield,*’

e (1+8,)[1—cog2mx/ag,)]
Vpr(X;asx Eex Sx) = 5~ 2
2  1+s;—2s.c082mx/ag)

(5)

Thus g4, correspondgo the activationenergyfor diffusion
of a single atom along the x direction, ag, to the lattice
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constant,and the parameters, (|s,|<1) controlsthe shape
of the substratepotential. The frequencyw, of a single-atom
vibration along the x direction is connectedto the shape
parameters, by the relationship w,= wg(1+s,)/(1—8,),
where wo=(e4,/2m) Y42 7/ay,) andm is the atomic mass.
The potential\_/pr(y;agy 1€y ,8y) hasthe samgform.

The potentialperpendiculato the surfaceis modeledby
the Morse function

V(z)=eq4(e *-1)% (6)

which tendsto the adsorptionenergy e4 when z goesto
infinity. The anharmonicityparametery is relatedto the fre-
quencyw, of asingle-atomvibrationin the normaldirection
by the relation w?=2y2¢4/m.

Finally, the exponentiaFactor after the squarebracketsof
theright-handsideof Eq. (4) takesinto accountthe decrease
of theinfluenceof the surfacecorrugationasthe atomsmove
away from the surface, so that Vg, x,y,z)—¢e4 When
Z— ™,

For the interactionbetweenthe atomswe take the expo-
nentialrepulsion

Vind(F) =Voexp — BoF), ()

whereV, is the amplitudeand ,851 determineshe typical
rangeof theinteraction.This potentialis adaptedo describe
rather high coveragessuchthat the atomsinteractthrough
the repulsivebranchof the interatomicpotential.In numeri-
cal simulations,we can only include the interaction of a
given adatomwith a finite numberof neighbors.Therefore
we usethe standardapproachof moleculardynamics(MD)
simulationsandintroducea cutoff distancer *. We account
only for theinteractionsbetweenhe atomsseparatedby dis-
tanceslower thanr*, andto reduceerrors causedby this
procedurethe interactionpotential (7) is truncatedas

Vil =Vin(1) = Vi(r*) = Vi (1) (r=1%),  (8)

sothatthe interactionpotentialandforce vanishat the cutoff
distance Vi, (r*)=V;,(r*)=0 (thetilde will be omittedin
what follows). In addition, becauseve are usingthe repul-
sive interatomicinteraction,we haveto fix the atomic con-
centration.lt is imposedby periodic boundaryconditionsin
x andy. We place N atomsin the fixed areaL,XL,,
L,=M,a,,, L,=Mag, , so that the dimensionlessatomic
concentratioris equalto #=N/M, whereM =M,M,, .

To modelthe energyexchangeof the atomswith a ther-
mal bath,we usethe Langevinequationgor atomic coordi-
natesx; ,

. ) d - .
mx; +myX+ —— | Veud X Y1 ,2) + 2 Vi [Fi—F)
Xm J#i

=F®+ sFX(1), 9)

and similar equationdfor y; andz; . Here, » correspondso
the rate of the energy exchange with the substrate,

F={F,0,0 to the dc driving force, and SF is a Gaussian
randomforce with correlationfunction

(SR (1) SFP (")) =2 pmkgT 8,6, 8(t—t'). (10)
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We use a dimensionalsystemof units adaptedto the
scalesof the problem. Distanceis measuredn angstrans,
energyand temperaturen eV. The massof an adatomis
chosenasour massunit (m=1). This imposesa time scale.
We measurdime in units of the characteristidime interval
to=2m/wy. In the remainderof the paper,the measuresf
other dimensionalphysical quantitieswill be omitted, but
they areall expressedn termsof the above-definedinits.

In orderto be closeto real physicalsystems|et us take
the adsystenK-W(112) as an exampleto definethe model
parametersthe W(112) surfaceis characterizedy a strong
anisotropyof the atomic relief becausedt has close-packed
rows of substrateatoms separatedby furrows of atomic
depth.Namely, in the simulation,we put ag,=2.74A and
ag =4.47 A, which are, respectively the distancesbetween
the neighboringwells along and acrossthe furrows on the
W(112) surface,andes,=0.46eV andeg,=0.76eV for the
correspondingbarriers (thesevalueswere taken from Ref.
18). To modelthe shapeof the substratepotential,we have
to definethe parameters, ands, . They canbe estimatedo
be within therange[0.2,0.4.° For the sakeof concreteness
we took s,=0.2 and s,=0.4, which leadsto the following
frequenciesof adatomvibrations: wy=1.65 and wy,=2.02.
The experimental/aluefor the adsorptionenergyof K on W
is £4=2.54eV.18 For the vibration frequencynormalto the
surface we took w,=3(wy+w,)=1.84, which gives
v=0.813. For the interatomicpotential (7), we took the pa-
rameters/,=10eV andB,=0.85A ~1. Thesechoicesgive
reasonablevaluesfor adsystemé® the interactionenergies
betweentwo adatomsoccupyingthe nearestvells alongthe
furrow and acrossare equal to V;(ag)~0.98 eV and
Vinl(ag,) ~0.22 eV, respectively Finally, we haveto define
the rate of energyexchangebetweenthe adatomsand sub-
strate:we took the typical valué! 7=0.1w,=0.165. Note
that althoughsomeof the parametersare chosenratherarbi-
trarily, they are typical for metal atomsadsorbedon metal
substrate$’ However,asthe modelis still oversimplifiedto
describea real adsystemwe haveto saythat our choice of
parametersloesnot claim to provide a quantitativeinterpre-
tation of the K-W(112) adsystemWe do neverthelesde-
lieve in the qualitativedescriptionof the effectsunderinves-
tigation and claim that typical adsystemson anisotropic
surfaces[e.g., lithium and strontium on the molybdenum
(112 surface,for which experimentaldataon the detailed
coverage dependenciesof diffusion characteristics are
availablé®] should exhibit a similar behavior. Finally, for
numericalsolutionof the Langevinequationg9), we usethe
standardourth-orderRunge-Kuttamethodwith thetime step
At=1,/20=0.19, and the cutoff radius was taken as
r*=2a4,=8.94A .

1. KINKS

As the kinks are the main objectsof the phenomenologi-
cal approact, let us first calculatetheir parameterswWe re-
call that kinks can be definedfor any commensuratatomic
structuredy= s/g¢, wheres andgq arerelativeprime integers;
the kink (antikink) describeghenthe minimally possibleto-
pologically stablecompressior(expansioi of the commen-
suratestructure . The kink is a quasiparticlecharacterizedy
an effective massmy, a rest energyey, and the Peierls-
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Nabarro (PN) amplitudeepy, correspondingo the barrier
for thekink translationalongthe chain. Theseparametersire
determinedy the dimensionlesglasticconstanig.; defined
as

2

Bgx
=5——Vin(ana).
Geff 277289( mt( A)

11

Analytically, the kink parameteramay be found in the
low-coupling limit g.4<1 or in the strong-coupling(sine-
Gordon limit® g.¢>1; however the usualreal physicalsys-
temsarecharacterizedby the elasticconstan@.~ 1, sothat
both approximationsaretoo crudeto be appliedto our case.
For our choice of model parametersye have g.4~0.6 for
0o=1. Thereforewe will calculatethe kink parametersu-
merically.

The numericalmethodwasdescribedn detailin previous
paperst>2* Briefly, we haveto choosefirst an appropriate
sizeof thefinite chainin orderto inserta singlekink into the
0o=sl/g commensuratdackgroundstructure;the integers
N andM mustsatisfy the equatior®?®

gN=sM + o, (12
wherethe kink topologicalchargeo is equalto o=+ 1 for
the kink and o= —1 for the antikink. In the simulation,we
restrictourselvesto the concentratiorrange[ 0.5,1] because
for lower concentrationghe interatomicinteractionis too
weak and its effects would be hardly observablewhile at
higher concentrationghe atoms begin to escapefrom the
first adlayer’*?® As backgroundstructuresyve chosethe fol-
lowing coverages: 8p=1/2, 6,=3/5, 6,=2/3, 6y,=23/4,
0o=4/5, and 6,= 1. The corresponding/aluesfor the num-
ber of atomsN, andthe numberof minima of the substrate
potentialM for every 6, are summarizedn Tablel.

We startwith an appropriateinitial configurationand al-
low the atomsto reachthe minimum energy configuration
(seedetailsin Refs.26 and27). This determineshe structure
of a kink in its minimal energystate.Then,in orderto cal-
culate the parameterghat characterizethe kink translation,
we choosea given atomin thekink region(seeRef. 15) and
moveit to the right by small stepsby imposingits x coordi-
natewhile all otherdegreesf freedomof the chainremain
freeto adjustto everynew positionof the constrainedatom.
This processallows us to find the saddleconfigurationand
thereforethe amplitudeof the PN barrier e p as the differ-
enceof the saddleand GS energiesln addition,the energy
of creation of the kink-antikink pair is determined
as & pair— E{KINK[ 651} + E{antikinK 6,1} —2E{GY 6,1},
whereE{-} is the energyof the correspondingonfiguration
(notice that it must satisfy the relation N{kink[ 6,]}
+ N{antikin 6,1} =2N{G{ 6,]} which is imposedby the
total length of the atomic chainsalongx). The kink param-
etersobtainedby this methodaresummarizedn Tablel, and
the dependencef the PN energyon the atomic concentra-
tion is presentedn Fig. 1. Note thatthe function epy( 6) has
the shapeof a devil’s staircasé?

From the kink parameters, the phenomenological
approach describesapproximatelythe low-temperaturebe-
havior of the system as follows. For 6=1 and
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TABLE |. Parameterf kinks: Ny is the numberof atoms,
M, the numberof minima of the substratgotentialfor one period
of the systemalongx, &, the creationenergyof a kink-antikink
pair, and e py the amplitudeof the Peierls-Nabarrgotential.

Structure No My ep4 (€Y)  epy (V)
Antikink[1/2] 21 43 0.378
6o=1/2 21 42 0.759

Kink[1/2] 21 41 0.0849
Antikink[3/5] 22 37 0.0848
0o=3/5 21 35 0.007

Kink[3/5] 20 33 0.0813
Antikink[2/3] 21 32 0.0812
0o=2/3 20 30 0.170

Kink[2/3] 21 31 0.0192
Antikink[3/4] 20 27 0.0184
0o=3/4 21 28 0.055

Kink[3/4] 22 29 0.0087
Antikink[4/5] 19 24 0.0086
0o=4/5 20 25 0.018

Kink[4/5] 21 26 0.0071
Antikink[1] 21 22 0.0071

T<ep4id 6o}/kg the concentrationof thermally nucleated
kink-antikink pairsis equalto®®-®

<‘9pair>% C exp(— fpaiIIZkBT), (13
where C~(2myw2a2/7kgT)Y? and my = (mymi)*2 For
lower coveragesf= 6,=s/q Eq. (13) should be properly

renormalizedwhich resultsin an additionalfactor 1/g in its
right-handside.

O,= /2 3/5 2/3 3/4 4/5 1

0.5

Peierls—Nabarro Energy (eV)

0.7

0.8
COVERAGE

FIG. 1. Peierls-Nabarr@nergyversuscoverageCoveragesor-
respondingto simplestcommensuratestructuresare shown with
dashedines.
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Whenthe concentratiory slightly deviatesfrom the com-
mensuratesalue 6,, the thermalkinks are supplementedby
geometricalkinks (if 8> 6,) or antikinks (if 6<6,) with a
concentrationdgeon=g| 6 — |- In the closevicinity of 6,
the total kink concentratiorcanbe found as

< otot> ~ ogeom+ 2< 0pair>- (14)
The dimensionlessusceptibility y
x=(6o0/g76 (15)

cantheneasily be obtainedfrom Egs. (13) and(14).

Let us now examinethe phenomenologyf subsequently
melted kink superlattice$. In order to describethe atomic
mobility in termsof collective excitations,we mustfirst de-
fine the type of excitationsthathaveto be consideredAs an
example let us selecta concentratiord in the neighborhood
of 6,=2/3. For low T, T<gp,{2/3}/2kg, we haveto use
the superkinksdefined on the backgroundof the 6,=2/3
structure in the expressions(13)—(15). However, in the
intermediate temperature range, i.e., &pad2/3}/2kg<<T
<epain 1/21/2kg , whenthe superkinksaredestroyedy ther-
mal fluctuations while the trivial kinks (defined on the
0o=1/2 backgroungl are not yet destroyedwe haveto sub-
stitute the parameterof the trivial kinks in Egs. (13) and
(14). In particular, we should take g=3 for low T but
g=2 for intermediatetemperaturesin the latter case,how-
ever, the parametersof trivial kinks may seriously differ
from thosecalculatedor the ideal case becauséhe concen-
tration of trivial kinks at the §=2/3 coverages very large
andtheir interactionis not negligible.

Whenthe amplitudeof the activationbarrierfor the kink
motion is known, the diffusion coefficientD, for a single-
kink randomwalk may be approximatelycalculatedwith the
Kramerstheory.For T<epy/kg this approachgives

D= Dyoexp —epn/kgT), (16)
where
a’wpy2m if < n<wpy,
Dio™ azngl27T77 if 7> wpy- (A7
Here wpy=(lag)(2e pn/m)Y2  a=ga,, and 7

= wppNKgT2mepy.

If the interatomicinteractionis strong enough,the in-
equality epy<epy may easily be fulfilled. In this case,
within the temperatureinterval epy<kgT <ep,;, the kink
diffusion coefficient is approximatelyequal to (e.g., see
Refs.33-35)

1
8

kgT
Dk%L
myn

€PN z
kT

(18)

Knowing the kink diffusion coefficient,we canfind the
chemical diffusion coefficient with the phenomenological
approach by the formula

_ (0D H(i)Dy
(Orop) ’

where for 6> 6, we should take (6y) = Ogeonit { fpair and
(0x)={Opain» While in the 6< 6, case we haveto substitute

D, (19
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(0k) =(bpain AN (O%) = Ogeonit (Opaip- Finally, the chain
mobility may be found as B=yD,. These predictions
shouldbe now comparedwith the resultsof simulationand
this is the subjectof the following section.

IV. MOBILITY

To studythe mobility, we useanalgorithmwherewe look
first for the minimum energy configurationof the system.
Thenwe increasehe temperatureup to a given temperature
T by small steps AT=T/50 during the time
tinerm= 100 o= 381. At that point, we apply a small dc force
F=0.01 which is gradually increased from F=0 to
F=0.01 during the time 10&,, and wait during
twait= 10, in orderto allow the systemto reacha stationary
state.Then, for the discretetimest,=nt,, we measurethe
averagevelocity (v,) of the atomsduring t,,,= 10Q,, and,
finally, the procedureis repeatedn,, times (n,,=5 in the
simulation with differentinitializationsof the randomnum-
ber generatoiin orderto estimatethe error bars.

To demonstratehe effect of the transversedegreesof
freedomon the atomic mobility, we consideredhreediffer-
ent casesof the generalized-renkel-Kontorovamodel:

(i) a purely one-dimensionahtomic chain with atomic
movementrestrictedto the x direction (1D);

(i) a quasi-one-dimensionatomicchainwith two trans-
verse degreesof freedomy and z (we will call it the
quasi-1Dcase;

(iii) a true two-dimensionalextensionof the FK model
(2D).

Note that the interactionbetweenthe atomsalways has
the generalform of Eq. (7), i.e., it hasa 3D characteiin the
quasi-1Dand 2D cases.

The quasi-1Dcasecan be easily obtainedfrom the gen-
eral caseby choosinga period of onelattice constantin the
y direction;namely,we putM =1 so thatall chainsmovein
the sameway and chose N=5Ny{6} and M,=5M{6},
wherethe integersN, and M, are takenfrom Table | for
eachcoveragef in orderto havefive kinks or antikinksover
thelengthunderinvestigation.The resultsof the simulations
are presentedn Fig. 2. As expectedfrom the phenomeno-
logical theory, at low temperatureB(6) does have local
minima not only for the trivial concentrations¥=1/2 and
#=1, but also at the commensurateoncentrations#=2/3
and 6= 3/4. Thesetwo minima,whichinvolve a kink lattice,
disappearwhen the temperatureis increased,while the
minima for the trivial structuressurvive at any temperature.
In the simulation,minima do not appearfor the othercom-
plicated GS structures(e.g., #=3/5 and #=4/5) because
thesehigher-orderstructurescorrespondo too low “melt-
ing” temperaturesf the kink lattice.

In order to check completely the phenomenological
theory® it would be interestingto seeif theseextraminima
appearat very low temperaturebut the mobility is thentoo
small to allow us to obtain accurateresultsin a numerical
simulation.As the “melting” temperaturaés determinecby
the magnitudeof the effective elastic constantof the kink
lattice,onecould attemptto increasehe parametel, in Eq.
(7). But in that case the repulsionbetweenthe atomsis too
large andthey beginto escapdrom the minima of the sub-
stratepotentialin the directionorthogonatto the chain?’ To



326

MOBILITY

0.5 0.6 0.7 0.8 0.9 1.0
COVERAGE

FIG. 2. The mobility B of the quasi-1DFK modelwith trans-
versedegree®f freedomasa function of the coveraged at selected
temperatures T=0.0025 eV [curve (1)], T=0.005 eV (2),
T=0.020eV (3), andT=0.050eV (4).

prevent this escapeand allow the study of higher-order
minima, we artificially restrictedthe atomicdisplacementso

the x dimension.This allowed us to takeVy=100eV. This

casecorrespondgo the so-called1D case.The resultsare
shownon Fig. 3.

As seenfrom Fig. 3, in the 1D casethefunctionB( ) has
pronouncedliocal minima at §=2/3 and 6=3/4 at much
highertemperatureshanin the quasi-1Dcase.Onecannote
also that the minimum at #= 3/4 disappearsvhen the tem-
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FIG. 3. Themobility B versuscoveraged for a purely 1D model
with Vy=100eV at differenttemperature¥ = 0.005eV (diamonds
and dotted line), T=0.05 eV (asterisksand dashedline), and
T=0.10eV (trianglesandsolid line). For a betterpresentationthe
data for the two lower temperaturesare plotted only within
0.72< < 0.8, becausat other coverageshey are the sameas for
T=0.10eV. Thedash-triple-dottedine is Eq. ( 20) for T=0.10eV.
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peratureis increasedwhile the minimum at 6= 2/3 survives
in the whole rangeof investigatedemperaturessinceit has
a greater melting temperature.However, the minima at
#=23/5 and #=4/5, where the kink lattice has the period
5a,,, are not found even for this very strong interatomic
repulsion.Note also that in real physical systems,such as
adsorbedayers, the observationof local minima for these
complicatedstructuresis unlikely due to the existenceof
transversalegreef freedom.

In a one-dimensionamodel at high enoughtemperature
(T>epair/kg), the mobility canbe calculatedwith a pertur-
bative approactstartingfrom a systemof noninteractingat-
oms. The function B(6) is given by'?>~*

2] -1

(20

1
8

(esx/kT)SINNkgT/e5,@n)
coshikgT/e4@,) — COS2 A, /ag,)

whereBy=1/my, a,=a/ ¢ is the averageinteratomicdis-

tance, and the elastic constant g, is defined by

ga=a2 V] (a,)/27?s . Note thatthe function (20) haslo-

cal minimafor trivial configurationsonly, in agreementvith

the phenomenologicatheoryin the high-temperatureange.
The chemicaldiffusivity D, could be obtainedby replacing
the prefactorB; in Eq. (20) by a3Vj(as)/my. Figure 3

showsthat Eq. (20) describeshe high-temperaturesimula-
tion resultsof the purely one-dimensionaFK model with

good accuracy (except in the vicinity of the coverage
0=2/3, wheree ., /kg>T evenfor the higheststudiedtem-

perature. For this model, the highest possible mobility

By= 1/m7~6.0, which correspondso the caseof noninter-
acting free atoms, is reachedin the middle of the interval

0.5<60<1.0.

The high-temperaturemobility for the quasi-1D chain
with transversaedegreesof freedom[curve (4) in Fig. 2] is
approximatelytwo times lower than the values calculated
with Eg. (20) for correspondingparametersNote that, for
the chosenset of parametersn a quasi-1Dmodel, T=0.05
eV is the highesttemperaturdor which the determinatiorof
the mobility in the first monolayer of atoms is possible.At
higher temperatureshe atomsstartto escaperom the first
layer to the secondone, which may seriouslydistort the re-
sults[the curve (4) in Fig. 2 is not plottedat §>0.8 for this
reason. Evenif onetakesinto accountthe fact thatthe high-
temperatureangerequiredfor the validity of Eq. (20) is not
reachedthe disagreemenbetweenEg. (20) andthe simula-
tion resultsis largein the quasi-1Dcase.This showsthatthe
presenceof the transversalegreesf freedomhasthe same
effecton the mobility asan additionalfriction in the system.
This canbe understooecausesomepart of the work done
by the externalforce is usedto excitethe transversalegrees
of freedom.

Finally, we alsosimulatedthe 2D Frenkel-Kontorovasys-
tem with M, =30, M,=M,{6}, and N=30Ny{6}. The re-
sults, presentedin Fig. 4, show that there is no essential
differencebetweenthe B(#) dependenciefor the quasi-1D
and 2D systemsexceptthat 2D dependencieare systemati-
cally lower. The role of the transversedegreesof freedom,
alreadynoticedfor the quasi-1Dmodel,showup againhere.
It is interestingto noticethat Fig. 4 showsfor the 2D model
at T<0.01 eV the additional small minimum of B(6) at
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FIG. 4. The mobility B versuscoverage# for a 2D model at
selectedtemperatured =0.005eV [curve (1)], T=0.010eV (2),
T=0.020eV (3), T=0.030eV (4), andT=0.050¢eV (5).

0= 4/5 predictedby the phenomenologicaheory,which re-
flectsthe existenceof the kinks/antikinkson the background
of this coverage.

The plots of the mobility B versusinversetemperature
shownin Fig. 5 for the 2D modelat selecteccoverageshow
that the atomic mobility has an activatedcharacterin the
investigatedrangeof temperaturesind coveragesThe same
qualitative behaviorwas found for the 1D case.Using an
Arrheniusform B(T) =Byexp(—E,/T), we cancalculatethe
activationenergyE, andthe prefactorB,. Their dependence
on coveragds shownin Fig. 6. The activationenergyE, has
a sharpmaximumatthe coveragefd= 2/3, which corresponds
to a well-defined commensuratestructure,while activation
barrierson both sidesof 6=2/3 are muchlower dueto the
presenceof residualkinks/antikinks;the barrierfor “kink”
coveraged=2/3+ § is lower thanthat for “antikink” cov-
eraged=2/3— 5. On the otherhand,the maximaof E, atthe
higher-order commensurabilitiesé=3/4 and 6=4/5 are
much lesspronouncedThis is consistentwith the fact that
thesehigher-orderrommensurabilitiekardly showup in the
mobility curvesof Fig. 4.

The maindifferencebetweerthe quasi-1Dsystemandthe
true 2D modelis dueto the interactionsof kinks in the near-
estneighboringchannelsFor therepulsiveinteratomicinter-
actionstudiedin the presentvork, kinks in the nearesneigh-
boring channelgepeleachotheratthe #=1 coveragewhile
for any <1 theyattracteachotherandtendto form domain
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walls. With the short-ranggexponential interactionstudied
in our simulations two kinks belongingto neighboringchan-
nelsattracteachotherwith a potentialV,,(x)«|x|, contrary
to the usuallaw® Vi, (x) <x?. As a consequencehe stiffness
of the domainwalls vanishesand they can be destroyedby

thermal fluctuationsor externalforcesfor any T#0 or F

#0. Thisis confirmedby the observatiorof snapshotef the
atomic configurationin the 2D model. During the time evo-
lution a domainwall of kinks is destroyedas soon as the
temperatures high enoughto provide a noticeablevalue of

the mobility. For exampleFig. 7 demonstratethe evolution
of sucha domainwall definedon the backgroundof the
#=1/2 commensuratestructure.This casewas chosenbe-
causeits kinks havethe simpleststructureandare morevis-

ible thankinks definedon the backgrouncof any othermore
complexcommensuratstructure.The initially well-defined
kink wall (relaxedconfigurationfor T=0) is smearecut at
T=0.02eV andF=0.01, althoughthesevaluesof tempera-
ture and external force provide a very low value of the
atomic mobility (B~0.03) at the chosencoverage This in-

stability of the kink domainwalls explainswhy the true 2D

model gives resultswhich are not fundamentallydifferent
from the resultsof the quasi-1Dcase.Neverthelessthe in-

teractionbetweenatomsand kinks in the nearestneighbor
channelsdoescontributeto the dynamicsof the system.lIt

results,in particular,in the lowered valuesof mobility for

the 2D casein comparisorwith thosefor a 1D systemHow-

ever, in more realistic 2D models with long-rangeinter-

atomic forcessuchas elasticor dipole-dipoleforcesdue to

the substrate the role of the domainwalls might be more
essential.

V. DIFFUSION

The chemicaldiffusion coefficientis moredifficult to cal-
culateby MD simulationsthanthe mobility. It canbe deter-
minedin two ways. First, the susceptibilityy canbe calcu-
lated with one of the methodsdescribedn Ref. 5 andthen
D. could be derivedfrom the relation D,=B/y. However,
this approaclrelieson the accuracyof thetwo factors.In the
presentvork, we usea directapproachhasedn the Fick law
(2). We startfrom a nonuniforminitial concentratiorprofile
6(x) andobserveits evolutionwith time at a giventempera-
tureT (wewill now usethenotationé insteadof {({p)) in the
diffusion laws, assuminghe existenceof local equilibrium).
The variationsof the chemicaldiffusion coefficientD. with
concentratiordeterminethe diffusion profile! For instance,
for an approximatelyconstantflux J=—D.d6/dx, flat sec-
tions of the observedconcentratiorprofile (low 96/dx) cor-
respondto enhancedliffusivity D, , while sharpchangesf
concentration within  some concentration interval (high

FIG. 5. The mobilty B of the two-
dimensionalmodel versusthe inverse tempera-
ture: (a) for coverages#=0.51 (diamond$ and
6=0.60(triangles; (b) kinks (squarey antikinks
(diamonds, and the backgroundcommensurate
structure(triangles for 6,=2/3; (c) for coverages
0=0.72 (diamond$ and #= 0.80 (triangles.
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FIG. 6. The activationenergyE, and prefactorB, for the mo-
bility versuscoverageé in the caseof the two-dimensionalFK
model.

a6/ 9x) indicatea lower diffusion coefficientD,, .

Quantitativedataon the variation versusé of the diffu-
sion coefficientD, canbe obtainedby studyingthe concen-
tration profilesgiven by the one-dimensionatiiffusion equa-
tion

a6(x,t)

De(6) — |- (21

9 a(x.t)=
o Pt = o5

The simplestcaseis the diffusion of an initially stepwise
profile in a spatiallyinfinite system,which givesan explicit
expressiorfor the D.(#) function by the Boltzmann-Matano
formula (see,e.qg.,Ref. 1). However,with periodicboundary
conditions, computationallimitations do not allow us to
choosea period large enoughto observesuch a profile.
Therefore we first derive an approximate expressionof
D.(6) usingthe phenomenologicaéquationg13)—(19), and
then solve Eg. (21) with this D,(6) and periodic boundary
conditions.Finally, we comparethe calculatedprofiles with
thoseobtainedfrom MD simulationfor the sameinitial dis-
tribution.

Let usfirst apply the kink-gasphenomenologyo the de-
terminationof D.. We have chosenthe room temperature
T=0.025eV (290K) sinceit dividesthe whole investigated
coverageanterval[0.5,1.7 into two partswhich differ by the
mechanismof kink diffusion. For the coverage range
0.5< 6<0.66 where the condition T<epy/kg is satisfied
(seeFig. 1), thediffusion of kinks hasanactivated character
and,in termsof the Arrheniusrepresentationf the chemical
diffusion coefficientD,=Dyexp(—E,/T), this meansthat
the D.(#) dependenceés determinedmainly by the varia-
tions of the activationenergy[note that E,~ e py according
to Eqg. (16)]. On the other hand, for 0.66<6<1.0, where
T>epn/kg andwherethe Peierls-Nabarr@nergye py shows
only minor changeswith coveragethe masstransportis car-
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FIG. 7. Snapshot pictures for two-dimensional model at
0=0.51. (Top) Theinitial relaxedconfiguration(T=0) and (bot-
tom) the atomic configurationafter the evolution time t~ 1600 at
T=0.02eV.

ried out by free diffusion of kinks andthe main variationsof
chemicaldiffusion coefficientwill arise from the prefactor
DO .
Oneshouldkeepin mind thatthe phenomenologicaqua-
tions (13)—(19) canbe usedonly for thosekinks which are
well definedas quasiparticledor a given temperatureanda
given coveragenterval, i.e., the conditionT<e,;,/kg must
be satisfied.In other words, the concentratiorof thermally
excited kink/antikink pairs (13) for a given structure
0p=s/g cannotexceedthe maximal possiblevalue 1/g. For
the presentstudy, it meansthat the quasiparticleswhich
shouldbe takeninto accountat T=0.025eV arethe trivial
kinks/antikinksof the trivial GS 6,=1/2 and §,=1 and su-
perkinksdefinedon the backgroundf 6,=2/3 structure We
pointedout in Sec.lll that,for our model parametersaccu-
rate kink parameterscan only be determinednumerically.
But in orderto solve Eq. (21) we needsomeexpressiorfor
thekink massesSincethe maximumvalueof the dimension-
lesselasticconstantg.s; definedby Eq. (11) approximately
equals0.6 for the chosenset of model parametersthe best
estimateis given by the low-coupling-limit expressioh
my~nm,=~m/g>.

Theoretically the applicationof the Eqgs.(13)—(19) for the
determinatiorof D,, is only strictly valid in the closevicinity
of commensuratetructureswherethe concentratiorof re-
sidual kinks is low (in our case, near the coverages
60o=1/2, 6,=2/3, and 6,=1). Sincewe needD.(6) for all
intermediated values,we haveto interpolatebetweenthese
specific# values.We calculatedthe valuesof D,, (indicated
by the plus signsin Fig. 8) up to the middle points between
these specific coveragesand used a weighting coefficient,
plottedthemin theinsetin Fig. 8, to markthe significanceof
eachpoint in the subsequentnterpolation procedure.The
final form of D.(#) is takenas a superpositionof tanh()
functionschosento provide a goodfit of the value deduced
from the phenomenologicatheory around the coverages
0o=1/2, 6,=2/3, and 6,= 1, whereit is accurateAlthough
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FIG. 8. Chemicaldiffusion coefficientD, versuscoveragefor
T=0.025eV. Crossesorrespondo the D, valuescalculatedwith
phenomenologicaéquations(13)—(19); the full curve corresponds
to the D(#) dependencdnterpolatedwith the help of the weight-
ing coefficientpresentedn theinset.

this procedurecannotavoid somearbitrarinessye keepit to

a minimum by putting the weightingfactorto zerowherever
the theoreticalformula for D,(6) is not valid. The general
shapeof theinterpolatedD .( 0) reflectsthe expectedyeneral
variationsof the chemicaldiffusivity versuscoverageWe

seethat this function monotonicallyincreasesn the region
1/2< < 2/3 (correspondingdo the decreas®f the activation
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energy E,. which can be deducedfrom Fig. 1), while at
highercoverage®,, startto decreaseThe high-temperature
behaviorof D, at high coveragess given in the kink-gas
approachby the variationof kink mass.lt canbe alsointer-
preted in terms of the Arrhenius formula D,
=Doexp(—Eg/T). Generally,D, andE,. changen a simi-
lar manner (the so-called compensation effect!). At high
enoughtemperatureghe slow decreasef E,.at 0>2/3 (see
Fig. 1) leadsonly to a slow changeof the exponentiaterm of
the Arrhenius formula. The fast drop of D, must thus be
attributedto the prefactorD, .

OnceD, is known, the secondstepis to solve Eq. (21)
with this D, dependencand comparewith the MD simula-
tions. To deducea local coveragefrom the MD atomiccon-
figuration at a given time t, we calculate the occu-
pation numbers n(iy,iy;t) (where iy=1,... M, and
iy%=1,...,M,) definedasthe numberof atomsin the given
elementarycell (i ,i,). Theresultsof the simulationsfor the
2D model(M,=84, M, =60, andN=3780) arepresentedn
Fig. 9. We startedwith an artificially preparedstepwiseini-
tial configurationiconcentratiord= 1 in the centralregionof
the lattice (for i,=M,/4+1, ... 3M,/4) and #=0.5 outside
this region. The systemis thenallowedto evolve according
to the Langevin equations(9). The concentrationprofile
e(ix,t,,)=2i"jiln(i'x,i'y ;ta)/My is recorded at times
t,=nt,. The simulationwas repeatedive timesin orderto
averagethe profilesand decreasstatisticalfluctuations.The
simulation profiles for different times are shownin Fig. 9
with symbols.Theyhaveaflatter sectionin the middle of the
studiedcoveragenterval, correspondingo the coveragere-
gionwith enhancedliffusivity. Moreover,in the samefigure,
we plot with solid linesthetheoreticalprofilesobtainedfrom

COVERAGE
COVERAGE

FIG. 9. Evolution of the coverageprofile ver-
sustime: t=0 (a), t=190 (b), t=763 (c), and

50 t=1715 (d). The triangles correspondto the
simulation of the 2D model with M,=84,
M,=60, and N=3780 at room temperature

0.90F R

COVERAGE
COVERAGE

0.50F

T=0.025eV, andthe full curvesarethe solution
of thediffusion equation(21). The coordinatex is
indicatedin lattice units ag, .
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the numericalsolution of the diffusion equation(21) with
D.(6) plottedin Fig. 8. The datapresentedn Fig. 9 show
that the theoreticaland simulationresultsare in very good
agreementwhich validatesthe phenomenologicahpproach
usedfor determiningthe diffusion coefficient.

V1. DISCUSSION IN RELATION TO EXPERIMENTS

It is importantto examinethe applicability of the theoreti-
cal resultsto real physical systemssuch as atomic layers
adsorbedon crystal surfaces.Although experimentscannot
provide results as detailed as the numerical simulations,a
comparisonis possible.Our modelis oversimplifiedto de-
scribe quantitativelya real adsystem— althoughwe chose
some model parametersclose to those available for the
K-W(112) adsystem— mainly becauseheinteratomicinter-
actionin real adsystemss muchmore complicatedthanthe
exponentialinteractionusedin the presentwork.?® In the
caseof adsorptionon isotropicsurfacesdiffusion is affected
by the formationof domainwalls, especiallywhentheinter-
atomic interactionis long range.Our resultsare more suit-
able to describehighly anisotropicsurfacesfor which the
interaction between neighboring channelsis sufficiently
weak to reducethe role of two-dimensionaldomainwalls.
We obtaina qualitativeagreementvith experimentson dif-
fusion of atomsadsorbedn highly anisotropicfurrowedsur-
faces.

There are very few experimentaldata on the variation
versuscoverageof the diffusion coefficient for atoms ad-
sorbedon highly anisotropic(furrowed surfacesSomedata
have been obtained using the field emission fluctuations
method® for K-W(112 andthe diffusivity wasfoundto in-
crease strongly in the region of the commensurate-
incommensuratéransition: this was interpretedin terms of
fast diffusion of solitons.3

DetaileddependencieP(6) andE,{ #) in thewide cov-
erage interval [0.05,1.3 are availablé® for Li-Mo(112),
where the interaction betweenLi adatomson Mo(112) is
long range and anisotropic.Besidesthe short-rangeforces,
the interactionbetweenthe adatomsincludesalso a dipole-
dipole repulsion and an oscillating part due to substrate-
mediatedelectronexchangé? This is responsibldor the ex-
istence of peculiar chainlike structures p(1X4) and
p(1x2), formed by first-order transitions, for coverages
6<0.53" In this rangeof ¢, the diffusivity D, wasfound to
depend only weakly on coverage.At higher coverages
6>0.5, the repulsionbetweenLi adatomsstartsto play a
larger role. This results first in the formation of one-
dimensionalincoherentstructuresat #~2/3, and then the
adlayer exhibits a one-dimensionaktompressionalong the
direction of furrows3’ In this coveragerange,D.(6) was
foundto increasestrongly and monotonicallywith coverage
at low temperaturesThe sharpesincreaseof diffusivity at
low temperature¢T<250 K) appearfor the commensurate
coverages¥=2/3 and 6=1. This behaviorof D, coincides
qualitatively with the predictionsof the kink-gasapproach
andour numericalsimulations.Moreover,the activationen-
ergy E,. for chemicaldiffusion, obtainedin Ref. 23 from the
slopesof Arrhenius plots of D, exhibits a monotonicde-
creaseas coverageincreasesexceptfor small maxima at
coveragesslightly above the commensuratezalues 6= 2/3
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and #=1), whichis closeto the behaviorof epy in Fig. 1. It
is alsointerestingto noticethatif D(6) is plotted at tem-
peraturesigherthan300K from the valuesof the prefactor
D, andactivationenergyk,. measuredn Ref.23,it showsa
nonmonotonidehaviorwith a minimumaroundé=1, which
is very similar to the behaviorof D, at T=300 K in the
two-dimensionaFFK modelconsiderechere(seeSec.V).

Finally, preliminary resultsof the diffusion studyin Sr-
Mo(112 systen?® have demonstratecthat diffusivity in-
creasesharplyat coveraged~ 0.5 which correspondo the
commensuraté4x 2) structureof strontiumatoms(while at
highercoveragesSr atomsform incommensuratstructures.
Onemay speculataghatthis enhancedliffusivity is provided
by the fastkink diffusion.

VII. CONCLUSION

The aim of this paperwasto checkthe predictionsof the
kink-gas approachwith the help of molecular dynamics
simulations.The validity of the kink-gasapproachoughtto
bequestionedecausdt is basedon one-dimensionainodels
while realadsystemsire2D (or even3D takinginto account
the possiblemotion of adatomsorthogonalto the surface.

First, we comparedthe kink-gas approach[Egs. (13)—
(19)] and high-temperaturdormula (20) for mobility B and
chemical diffusivity D,=kgTB/yx with the results of our
simulationof FK modelswith transverselegree®f freedom.
We have found only a gualitative agreementetweenthe
B(#) dependenciesbtainedn MD simulationof 2D and1D
modelswith transversedegreesof freedomand those pre-
dictedby the kink-gasapproachlin Sec.lV, we showedthat
the mobility B is strongly reducedwhen additional trans-
versedimensionsare involvedin the system.A guantitative
estimationof B usingEqgs.(13)—(19) showsthatthekink-gas
approachoverestimateshe mobility significantly unlesswe
artificially introducea highereffectivefriction .. Thiscan
be understoodecausesomepart of the energybroughtinto
the systemby the externalforceis absorbedy extradegrees
of freedom.For example,in the simplestcaseof harmoni-
cally interactingatomsat high temperatureghe mobility has
to berenormalizedoy afactor 1/3 (i.e., 4= 3 7) dueto the
presencef two additionaldegreef freedom,sincethe en-
ergy is redistributeduniformly (~kgT/2) betweenall three
degreesof freedom.But in our case,whereinteractionbe-
tween atomsis anharmonicand mobility is investigatedat
low temperaturesa reliable determinationof the effective
friction 7. is not possible.

By contrast,the study of chemical diffusion (Sec. V)
demonstrategualitative andguantitative agreemenbetween
MD simulationdataand the kink-gasapproach.The reason
is thatin the caseof thermaldiffusion, the chemicaldiffusion
coefficientD ,=kgTB/y doesnot changewith additionalde-
greesof freedomsincethe “external force” is providedby
the thermalenergyof the systemandis proportionalto the
gradientof the chemicalpotential u. As the Fick law (2)
may be rewritten as J=pBVu=pB(du/dp)Vp
=kgTB/xV p, where y=(dInp)/(du/kgT), it is clearthat an
additionaltransversalimensionto the systemleadssimulta-
neouslyto anincreaseof free energyandchemicalpotential
. In otherwords,the decreas®f the system’smobility due
to an extra transversadimensionof the systemis compen-
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satedby a correspondinglecreasef the susceptibilityy of
the system,so that D, remainsapproximatelythe same.
Our resultsallow usto concludethatthe phenomenologi-
cal kink-gas approachprovidesa good qualitative explana-
tion not only for moleculardynamicssimulationdataof mo-
bility and diffusivity versus atomic coverage in the
generalized®D FrenkelKontorovamodel, but alsofor some
experimentakesultson the coveragedependencef surface
diffusion. Obviously,for a betterdescriptionof real adsorp-
tion systemsthe Frenkel-Kontorovamodel shouldtake into
accountiong-range anisotropic realisticinteratomicinterac-
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tions andthe presenceof surfacedefects.
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