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Moving breathersin a chain of magnetic pendulums
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We describean experimentamodelconsistingof ananharmoniachainof magneticpendulumsactingunder
gravity. Thisis a simpleparadigmfor the studyof moving breathers in a discretesystem.Thesehighly mobile
and strongly localized dynamically stable oscillating statesare observedexperimentallyand studied both

analyticallyand numerically.[S0163-182607)03810-1

I. INTRODUCTION

Nonlinearlocalized excitationswith internal oscillations,
called breathershavebeenexhibitedin a numberof model
nonlinearsystemsUnlike the more studiedtopologicalsoli-
tons, breathersneedno activationenergyfor their creation
andthis circumstancesxplainstheir importancefor bridging
the gap betweenthe highly nonlinear topological modes
(very stablg andthe linear phononmodeseasily excitedby
thermalexcitations.Generally,in nonintegrablesystemst is
known that localizedstationary breathemodesdo not exist
in the continuumlimit and the discreteness$s an important
featurefor explainingtheir existenceand stability > How-
everfew exactresultsareknown for moving breatheravhich
form the main subjectof this paper.

There is sometimessome confusion betweenthe word
“soliton” and “breather,” so a few words of explanation
may be in order. Single solitonstake the form of a single
bell-shapedr tanh-shapegulsein oneof thefield variables.
Stationarybreathersormally takethe form of a bell-shaped
pulsewhoseamplitudeis a periodic function of time. Mov-
ing breathersare a nonlinearversionof the well-known lin-
ear wave packet,with the envelope of the “carrier” wave
havinga bell shapeThusa movingbreatheiis oftenreferred
to asan envelopesoliton. In somestudiessuchasthe non-
linear Schralingerequationthe practicehasbeento dropthe
“envelope” part of the nameandrefer to modulatedpulses
simply as“solitons” where“breathers” would be morecor-
rect. A stronglylocalizedmoving breather(suchasthe ones
discussedn this papey will have only one or two wave-
lengthsof the carrierwave within the half width of the en-
velope.

Recent studies of nonlinear localized excitations in
homogeneouslattices (or with impurities) have attracted
interestto thesebreathemodes.In additionto the important
discoveryof the effect of discretenessuchexcitationshave
becomevery importantin the last few yearsbecauseof a
new mechanisnof growth: it hasbheenshownthatin nonlin-
ear latticesthe collision of suchlocalized excitationscould
give rise to localization of energy~’ and therefore such
large-amplitudeexcitationscould be found in real systems
despitenonzerofriction.

We shouldstressthat althoughbreathemodeshavebeen
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heavily studiedin humericalsimulationsof nonlinearlattice
models thereis no way of observingthemdirectly in atomic
systemsso the evidencefor their existences indirect. This
papercontainsa detailedaccountof the observatiorand ex-
perimentaktudyof breatherstheir existencen discretesine-
Gordon(SG) modelshasbeenknown for sometime®

Our motivationin this studyis the possibility thatmoving
breathersaareimportantfor describingthe transferof energy
from atomsor ions moving at relatively high speedto atoms
in a solid or crystal with which they collide. This interest
arosefrom the discoveryof tracksin dopedmuscovitemica
crystalsthat could be understoodin terms of the breather
modes’ Thesetracksoccurredundermeta-stableonditions
induced by supercoolingwhen perturbationsof the lattice
could trigger irreversible phase transitions'® Effectively
micaactsasa 300 million yearold particledetectorjn many
casesa morecost-effectivesystemfor studythanmoremod-
ern detectors.

The transfer of energyfrom highly energeticatomsor
ionsto a crystalunderliesmanyprocessesften of industrial
importance.Although usually occurring at a surface,as on
bladesin a gasturbine or on a spacevehicle shield, it can
also occur within the bulk material, as with neutronsin a
nuclearreactor.As aresult,the atomsin a solid gainenergy
with consequentise in the bulk temperaturewhich canbe
understoodn termsof phononsHowever,thereis a gapin
detailedunderstandingf the energyprocessesoupling the
energeticincident particles,with energiesin the rangel to
100eV or more,to phononswith energiesof 0.01eV or less.
This alsospansthe chemicalbinding energyrange.Difficul-
ties arise from the nonlinearnatureof the particle interac-
tions. The initial interactionbetweenan energeticatom or
ion andthe lattice is essentiallya two-body collisional prob-
lem but the subsequentransientbehaviorof the lattice is a
manybody problemwith its attendantlifficulties of analysis.
Moreover,all the interactionsinvolve nonlinearforcesand
this fact suggeststhat the equationsfor energy transport
might havesolitonlike or breatherlikesolutions.

In collisional processeghe conservationof energyand
momentumsuggestssometype of solitons/breathersnight
be produced.However, until the mica study, there was no
directevidencefor their existencebetweerthe point of their
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FIG. 1. A circular chainof magneticpendulums.

supposedcreation and final demise.Detectionin flight is
nontrivial as solitons/breatherare unchargedand propagate
with little or no lossof energy.

Il. COUPLED MAGNETIC PENDULUMS

To study the conditionsleading to the tracksin mica,
moleculardynamicsmethodswere usedto determineinter-
particleforcesasa function of positionin the lattice. It was
found thatthe trackswere associatedvith particularcrystal-
line directionsin the lattice. The mechanismfor selecting
these particular one-dimensional(1D) motions in a two-
dimensional crystal has been studied in hard sphere
models!!

In the preferreddirections,the nonlinearityof potentialis
expresse@s ¥V (r)=ar?+ Bri+ 6r*, wherea=0.8 eV/IA2,
B=0.38eV/A3, and 6=0.14eV/A* (seeRefs.9 and12). It
is this one-dimensionaimotion we concentrateon in the
presentpaper.

To studythe dynamicalbehaviorin thesepreferreddirec-
tions, an analoguemodel of magneticpendulumswas con-
structedwith similar nonlinearity of force asin the musco-
vite system.The model consistsof eighteenshort dipole
magnetdreely suspendedby rigid strutsfrom pivots spaced
at equalintervalsto form a linear chain. In this model the
strutsprovide a centralizingrestraintanalogoudo the influ-
enceof the surroundindattice which constrainsatomsmov-
ing alongthe chainfrom oneunit cell to the next. The gravi-
tational potential mimics the onsite potential in the mica
causedyy layersaboveandbelow the 2D potassiunsheets.
The dipole-dipoleinteractionsbetweenthe magneticpendu-
lums approximatesn someway the atomic forcesbetween
the K atoms.

Experimentswith this model showedthat large impulses
rapidly evolvedto breatherlikesolitonsbut reflectionsfrom
the endsrapidly degradedhe signal. To overcomethis prob-
lem, a secondmodel was constructedalso with eighteen
magnetsbut arrangedn a circle (seeFig. 1), so that pertur-
bationscould propagatearoundthe circularchainunimpeded
by ends.To initiate a disturbancepne magnetwasheldfixed
andanimpulsewasgivento the nextmagnetithe fixed mag-
net being released before the propagating disturbance
reachedit. The responseof the model to various starting
conditions was recordedby sequentialflash photographs
(takenfrom abovethe circular chain from which instanta-
neousdisplacemenbf the magnetsfrom their equilibrium
positionscould be approximatelydetermined.

We stressthat this model and the resultswe report here
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FIG. 2. The experimentalobservationof the breathempropaga-
tion in the chain of magneticpendulumswith the initial excitation
0,(0)=0.1 andthe spacinga=4.0cm.

are relatively crude (the model was constructedn the first
author’'sgaragewithout any technicalor financial supporj.
For example thereis a fair bit of friction at the pivots, and
the needto go to a circular systemto avoid boundaryeffects
hasnot beenproperlymodeledin the numericalstudy.Nev-
erthelessthe reasonableoverall agreementetweentheory
and experimentis encouragingand we hopeto producea
more accurateanddetailedstudywhencircumstancesllow.

The generalbehaviorof impulsesin the model strongly
suggestedresonantcoupling betweenadjacentparticlesin
the lattice leading to nearly antiphasemotions. Small im-
pulsesspreadat a constantspeed,the resulting oscillations
havingmaximumamplitudenearthe impulsesite. Largeim-
pulsesrapidly evolvedinto compactwave packetsconcen-
tratedover a small numberof siteswhich propagatedreely
over many lattice sitesbeforebecomingdegradedseeFig.
2). It is these objects that we term breathers.Since the
breathertraversedthe ring severaltimes between photo-
graphs,in plotting Fig. 2 we representhe circular chain by
its linear analog, ignoring the complication that the low-
amplitude“radiation” will propagateoundthering andin-
terferewith the primary pulse.This effecteventuallyleadsto
degradationof the primary pulse as shownin the figure at
largertimes. In orderto emphasizethe breatheragainstthe
linear backgroundmodeswe haveplotted the square of the
horizontalcomponenbf the displacemend, = | sing, of each
pendulumin Fig. 2. Herel is the pendulumlengthand 6, is
the angulardeviationof eachpendulum.The averageveloc-
ity v=4.83 sites/seds representean the plot by a dotted
line.

Despitemanyattemptst wasfoundto bevirtually impos-
sible to generateany othertype of disturbancein particular,
a Toda-like soliton. Further study showedthat the internal
structure of breathersmoveswith a phasevelocity much
greaterthanthe group velocity.

Experimentsexploredthe evolution of breatherdrom si-
multaneousimpulses to several adjacent particles in the
chain and from multiple impulsesto the first particle. The
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FIG. 3. Theschematiaepresentationf the modelof interacting
magneticpendulums.

model also demonstrateahe stability of breathersagainst
small random defectsor perturbations.Other experiments
with this modeldemonstratedhe creationof oppositelydi-
rectedpairsof breatherswithin the chainandthe creationof
stationary breathers,the survival of oppositely directed
breathersaftertheir mutualinteractionstheir reflectionfrom
boundariesand discontinuities.Much of this behavior is
characteristiof integrablesystemsbutit is emphasizedhere
that thesebreatherswill almost certainly not satisfy exact
solitonic conditionsin connectionwith their long-termstruc-
tural andlateral stability or in their collisional properties.

Suchphysicalmodelsarevery instructivebut they cannot
easily yield quantitativeresults.Hence,it is difficult to ex-
plore in detail the behaviorfor different impulse strengths
andfor long propagationpaths.To make further studiesof
breathetbehaviorin this mechanicamodel, it is necessaryo
useanalyticaland numericalmethods.

1. THEORETICAL MODEL

Now we developthe dynamicaltheory of this model.As
shownin Fig. 3 (themagnetsnovein the plane,tangentiako
the circular backbong the chainparametersre the spacing
a, thependulumengthl, massM, andthe magneticonoment
m=uuefldl. Here uo=4mwx10 7 H/m =1.257x10 ©
H/m is the magneticconstant,u =1 is the magneticperme-
ability of vacuum.The massedM are subjectedo the gravi-
tationalfield with the constantg=9.8 N/kg. The size of the
magnetis assumedo be smallcomparedo thelengthl. The
Hamiltonian of this systemis (we neglectfrictional effects
andthe effect of the curvatureof the chain

2

p

H=2 &=2 |5t +U(bn, 6h) TV(60) |, (1)
n n

where &, is the energyper the nth site, p,=MI 6, is the
conjugatemomentumand 6, is the angledeviationfrom the
equilibrium position of the nth pendulum(seeFig. 3), and
the dot denotesthe differentiation with respectto time t.
Here the intersite potential U is given in terms of the
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dipole-dipole interaction of adjacent magnets, i.e.,
U(6,,6,11)=D(m,,m,q,r,), Where

r2=12(cody, . 1— cOH,) 2+ [a+1(sing, , ,—sind,) 1>
2
is the distancebetweenthe nth and (n+1)th magnetsThe

interactionbetweentwo magneticdipolesm; andm, with a
separatiorr is definedby

1 [(my-my)—3(my-n)(my-n)
3 .

D(ml’mz’r):477[1/0 r

3

Here n=r/r is the unit vector along the radius-vectorr
which connectsthe magnets.The last term in the Hamil-
tonian(1) is the on-sitepotentialfor eachpendulumresulting
from its interaction with the gravitational field, so that
V(6)=Mgl(1—cos).

Next, the dipole-dipole interaction can be rewritten in
termsof the angleséd, asfollows:

(8. 80 r)= Doa’[coq 6,1~ 03) —3c05,c053,] ’
rﬁ
4
where the constant D, is defined by
Do=D(My,M;,8)|5,-0,6,-0=M/4muoa, m=|m|. The
anglesa, and B, aregivenin termsof 6, and 6, ., as

(m,-n) _sind,— 7[1—cog 6p, 1~ 6n)]
m ra/a

cosy,=

cosB :(mn+1'n) :Sin0n+l+ n[1—cog 6y 1~ 6p)]
n m r,/a '

(5

where n=I/a.

The soliton dynamicswas observedexperimentallyin the
circular chain consistingof 18 magnetic pendulumswith
| =0.118m. The magnitudeof the dipole magneticmoment
m cannotbe measuredlirectly, sothe way to determineit is
to measureghe frequencyof small-amplitudeoscillationsof a
pendulumwhenits nearesheighborsarefixed. To this end,
we considerthe linearizedversion of equationsof motion.
Expandingall the termsin the Hamiltonian (1) up to the
secondorder,we find

On=—(8o+0/1) Oh—a1(6p 1+ Ons1), 6)

where  a,=2(127°—1)Dy/MI?2  and a;=-2(1
+67?)Dy/MI2. Then the linear dispersionlaw of small-
amplitudewavesd,(t) = 6pexdi(ng— wt)] is given by

2

w?=wj—2a;(1-cogy), wj=(Mgl—6Dy)/MI?

(7)

whereq is the wave number,|q|< 7.

Considemow the oscillationsof the nth pendulumin Eg.
(6) whenthe (n—1)th and(n+ 1)th neighborsarefixed, i.e.,
0, 1= 6,,1=0. Thenthefrequencyof theseoscillationscan
easilybe calculatedand, as a result, we obtain
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FIG. 4. The time evolution of the breatherenergy density
E(n, ) in the chainwhen only the secondpendulumis disturbed:
0,(0)=0.1, n=2.95(a=4.0 cm). (Inset: amplitudeof breatherat
7=20)

g 12%2-a?

2
bR
' 277/.L0M|28.5

0 = (8)
The magnitudeof the dipole momentm wascalculatedrom
Eq. (8) by measuringhe frequencyw. Thus,for the distance
a=6.0 cm the period of oscillationsis T=0.587+ 0.001sec
andthereforewe foundm=3.77x10 ' HA m.

IV. NUMERICAL SIMULATIONS

We carriedout numericalstudiesof the time evolution of
the localizedexcitationin the chainof pendulumsby using
the standardfourth-order Runge-Kuttamethodto integrate
the dynamicalequationgesultingfrom the Hamiltonian(1).
In orderto exhibit the breathemunclutteredwith radiation,we
worked with a long chain with fixed boundaryconditions.
The numericalsimulationsof the formationand propagation
of breatherexcitationshave been carried out at the same
initial conditionsasin the experimentgluringthetime of the
order of 200 periodsof breatheroscillations. Initially the
conditionswere a deflectionof the secondpendulum(6,),
and we observedthe propagationof a narrow pulse with
relatively permanenshapeandvelocity (seeFig. 4). Theplot
showsthetime dependencef the dimensionlessotal energy
E(n,7)=¢&,(t)/Dy per the nth site againstdimensionless
time 7= \Do/MI%t. We variedthe spacinga andcalculated
the breathervelocity v. The resultsof thesesimulationsare
presentedn Table I. The experimentaland computational
valuesof thevelocity v arein reasonabl@agreementconsid-
ering the variability of the magneticand mechanicaproper-

TABLE I. The soliton velocitiesfor different valuesof ».

0,(0) n=I1la  y=Mgl/D,y v, sites/sec
Experimental Numerical
0.1 1.18 1100 1.75 2.01
1.87 276 251 4.23
2.95 71 4.83 5.20
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FIG. 5. The time evolution of the breatherenergy density
E(n,7) in the chainwhenonly the secondpendulumis disturbed:
0,(0)=0.25, »=1.87 (a=6.31 cm). (Inset: amplitudeof breather
at 7=20)

ties alongthe chain,the neglectof friction, andthe approxi-
mation of dipole-dipole interactionswhen the separation
lengthsare comparablewith the size of the magnetsWith a
larger initial deflectionin the numericalsimulation,we ob-
taineda cleanerbreatherprofile, asshownin Fig. 5.

V. A CONNECTION WITH AN INTEGRABLE DISCRETE
MODEL

Now we considersomeanalyticalapproximationswvhich
enableusto makecontactwith anintegrablediscretemodel,
the Ablowitz-Ladik model'®* To study large-amplitude
waveswe needto keepnonlineartermsin the Hamiltonian
(1). First, we can expandall the expressionsn the Hamil-
tonian (1) up to the fourth order. As a result, after lengthy
but straightforwardcalculationswe obtain a truncatedver-
sion of the Hamiltonian(1) and derive the following equa-
tions of motion:

Ot (8g+0/1) Oyt a1(6y 1+ O 1) by 0n(6n 1~ O 1)
+ (62, 1= 62_1)12]+(co—gl6l) O3+ Cel 63( 61
FOpi1) (O3 + 63, )31+ Cr0,(02_ 1+ 62, ,)=0,

9

wherea, anda,; havebeendefinedabovewhile the remain-
ing coefficients are b;=129(1+57%%)Dy/MI%, ¢,

=(1/3—97%°+120p*)Do/MI12, c,;=(1—12%%—18073%

XDo/MI?, and c,=(1/2+1297%/2+ 180p*)Dy/MI2. We
usethe rotatingwaveapproximatio* andlook for solutions
to Eq. (9) in theform 6,(t) = ¢,(t)exp(—iwgt) + c.c.,where
$n(t) isthe complexamplitudeof large-amplitudgpendulum
oscillations. Applying this approximation,i.e., keepingin

Eq. (9) only terms with exp(—iwgt), and assumingthat
| pa(t)| < wo| Pal, Eq. (9) canbe reducedto a perturbedver-
sion of the Ablowitz-Ladik equation.The coefficientsof this
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equationdependon the perturbativetermswe choose We fit
themin suchaway thatthe perturbativeermsarenegligible.
Thus, if the amplitudes¢,(t)’s vary smoothlyfrom site to
site in the chain, then omitting the perturbativeterms, the

Ablowitz-Ladik equationtakes the following approximate

form:

.- A
| ¢n+0(¢n+1_2¢n+ ¢n71)+ §| ¢n|2(¢nfl+ ¢n+1) :01
(10)
with the coefficientso= —a;/2w, and A\=(Mgl —24D)/
8MI2w,. Theseexplicit valueswere the main goal of the
analyticalcalculationsHavingthem,onecaneasilywrite the

resultingapproximatebreathersolution of Eq. (9) for large-
amplitudependulumoscillations

n—ut
On(t)= Hosecvs L

cogng— wt). (11

Note, thatthe amplituded, andwavenumberq arearbitrary
parametersHere 6, andthe breathemwidth L arerelatedby

2\ 2605\
6o 74‘ p +1

The group (breathey velocity v and the carrier frequency
o aregiven by

1 —
E—In . (12)

v=2cLsinh(1/L)sinqg,

w=wy+20[1—cosH1/L)cog]. (13

At least,in the continuumlimit (L>a) the approximateso-
lution of Eq. (9) givenby Egs.(11)—(13) is valid. However,
we havealso checkedthis approximationnumericallyin the
caseof narrowersolutionswhenL/a is small. To this end,
we usedEgs.(11)—(13) asinitial conditionfor simulationsof
the equationsof motion. As a result, we obtainedstable
breathergpropagatingwith constantshapeand velocity, and

againtherewasa goodcorrespondenceith the experiments.

In this approximationwe obtaineda clear breathersolution
which separatedtself from the parasiticoscillations,as one
can seefrom the plot of the energydistribution E(n,7) in
Fig. 6.

VI. CONCLUSION

In this paperwe havepresented nonlinearmodelwhich
seemsto be the first experimentalexamplewhich visually

RUSSELL,ZOLOTARYUK, EILBECK, AND DAUXOIS 55

E(n;T)

FIG. 6. The time evolution of the breatherenergy density
E(n,7) in the chain with the Ablowitz-Ladik initial conditions
(11)—(13): §p=0.1, »=1.87(a=6.31cm), q=1.5.

demonstratestablemoving breathergenvelopesolitong in
anharmonidatticeswith in-line on-site potentials.This type
of nonlinearexcitationsis differentfrom the well-known su-
personicToda-like solitonswhich describethe propagation
of a lattice deformationof a constantprofile. Finally, we
wish to point out that the mechanismof moving breathers
shouldbe importantin variousphysicat® andindustrial pro-
cessesinceit allowsthetransportof vibrationalenergyover
long distancesby nondiffusional mechanismsThe model
hasinterestin its own right asa pedagogicatool in the study
of nonlinearlattices.
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