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We describeanexperimentalmodelconsistingof ananharmonicchainof magneticpendulumsactingunder
gravity.This is a simpleparadigmfor thestudyof moving breathers in a discretesystem.Thesehighly mobile
and strongly localized dynamically stable oscillating statesare observedexperimentallyand studied both
analyticallyandnumerically. � S0163-1829
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I. INTRODUCTION

Nonlinear
�

localizedexcitationswith internal oscillations,
calledbreathers,havebeenexhibitedin a numberof model
nonlinearsystems.Unlike the morestudiedtopologicalsoli-
tons, breathersneedno activationenergyfor their creation
andthis circumstanceexplainstheir importancefor bridging
the gap betweenthe highly nonlinear topological modes�
very stable	 andthe linear phononmodeseasilyexcitedby

thermalexcitations.Generally,in nonintegrablesystemsit is
known that localizedstationary breathermodesdo not exist
in the continuumlimit and the discretenessis an important
featurefor explaining their existenceand stability.1,2 How-
everfew exactresultsareknownfor moving breatherswhich
form the main subjectof this paper.

There is sometimessome confusion betweenthe word
‘‘soliton’’ and ‘‘breather,’’ so a few words of explanation
may be in order. Single solitons take the form of a single
bell-shapedor tanh-shapedpulsein oneof thefield variables.
Stationarybreathersnormally takethe form of a bell-shaped
pulsewhoseamplitudeis a periodic function of time. Mov-
ing breathersarea nonlinearversionof the well-known lin-
ear wave packet,with the envelope of the ‘‘carrier’’ wave
havinga bell shape.Thusa movingbreatheris oftenreferred
to as an envelopesoliton. In somestudiessuchas the non-
linearSchrödingerequation,thepracticehasbeento dropthe
‘‘envelope’’ part of the nameandrefer to modulatedpulses
simply as‘‘solitons’’ where‘‘breathers’’ would bemorecor-
rect.A stronglylocalizedmoving breather

�
suchasthe ones

discussedin this paper	 will have only one or two wave-
lengthsof the carrierwavewithin the half width of the en-
velope.

Recent studies of nonlinear localized excitations in
homogeneous3



lattices
� �

or with impurities4	 have attracted
interestto thesebreathermodes.In additionto the important
discoveryof theeffectof discreteness,suchexcitationshave
becomevery important in the last few yearsbecauseof a
newmechanismof growth: it hasbeenshownthat in nonlin-
ear latticesthe collision of suchlocalizedexcitationscould
give rise to localization of energy5–7

�
and
 therefore such

large-amplitudeexcitationscould be found in real systems
despitenonzerofriction.

We shouldstressthat althoughbreathermodeshavebeen

heavily studiedin numericalsimulationsof nonlinearlattice
models,thereis no way of observingthemdirectly in atomic
systems,so the evidencefor their existenceis indirect. This
papercontainsa detailedaccountof the observationandex-
perimentalstudyof breathers;their existencein discretesine-
Gordon

�
SG	 modelshasbeenknown for sometime.8

Our
�

motivationin this studyis thepossibility thatmoving
breathersare importantfor describingthe transferof energy
from atomsor ionsmovingat relativelyhigh speedto atoms
in a solid or crystal with which they collide. This interest
arosefrom the discoveryof tracksin dopedmuscovitemica
crystals that could be understoodin terms of the breather
modes.9

�
Thesetracksoccurredundermeta-stableconditions

inducedby supercoolingwhen perturbationsof the lattice
could trigger irreversible phase transitions.10 Effectively

�
micaactsasa 300million yearold particledetector,in many
casesa morecost-effectivesystemfor studythanmoremod-
ern detectors.

The transfer of energy from highly energeticatoms or
ionsto a crystalunderliesmanyprocesses,oftenof industrial
importance.Although usually occurringat a surface,as on
bladesin a gasturbine or on a spacevehicle shield, it can
also occur within the bulk material, as with neutronsin a
nuclearreactor.As a result,the atomsin a solid gain energy
with consequentrise in the bulk temperature,which can be
understoodin termsof phonons.However,thereis a gap in
detailedunderstandingof the energyprocessescoupling the
energeticincident particles,with energiesin the range1 to
100eV or more,to phononswith energiesof 0.01eV or less.
This alsospansthe chemicalbinding energyrange.Difficul-
ties arise from the nonlinearnatureof the particle interac-
tions. The initial interactionbetweenan energeticatom or
ion andthe lattice is essentiallya two-bodycollisionalprob-
lem but the subsequenttransientbehaviorof the lattice is a
manybodyproblemwith its attendantdifficulties of analysis.
Moreover,all the interactionsinvolve nonlinearforcesand
this fact suggeststhat the equationsfor energy transport
might havesolitonlike or breatherlikesolutions.

In collisional processesthe conservationof energyand
momentumsuggestssometype of solitons/breathersmight
be produced.However,until the mica study, there was no
direct evidencefor their existencebetweenthe point of their
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supposed� creation and final demise.Detection in flight is
nontrivial assolitons/breathersareunchargedandpropagate
with little or no lossof energy.

II. COUPLED MAGNETIC PENDULUMS

To
�

study the conditions leading to the tracks in mica,
moleculardynamicsmethodswere usedto determineinter-
particleforcesasa function of position in the lattice. It was
found that the trackswereassociatedwith particularcrystal-
line directions in the lattice. The mechanismfor selecting
these particular one-dimensional� 1D� motions in a two-
dimensional crystal has been studied in hard sphere
models.11

In
�

thepreferreddirections,thenonlinearityof potentialis
expressedas � (r) ��� r2 ��� r3


 ��� r4,� where � � 0.8 eV/Å 2,�� � 0.38eV/Å 3


,� and � � 0.14eV/Å 4

! � seeRefs.9 and12� . It
is this one-dimensionalmotion we concentrateon in the
presentpaper.

To studythedynamicalbehaviorin thesepreferreddirec-
tions, an analoguemodel of magneticpendulumswas con-
structedwith similar nonlinearityof force as in the musco-
vite system.The model consistsof eighteenshort dipole
magnetsfreely suspendedby rigid strutsfrom pivots spaced
at equal intervals to form a linear chain. In this model the
strutsprovidea centralizingrestraintanalogousto the influ-
enceof thesurroundinglatticewhich constrainsatomsmov-
ing alongthechainfrom oneunit cell to thenext.Thegravi-
tational potential mimics the onsite potential in the mica
causedby layersaboveandbelow the 2D potassiumsheets.
The dipole-dipoleinteractionsbetweenthe magneticpendu-
lums approximatesin someway the atomic forcesbetween
the K atoms.

Experimentswith this model showedthat large impulses
rapidly evolvedto breatherlikesolitonsbut reflectionsfrom
theendsrapidly degradedthesignal.To overcomethis prob-
lem, a secondmodel was constructedalso with eighteen
magnetsbut arrangedin a circle � seeFig. 1� , so that pertur-
bationscouldpropagatearoundthecircularchainunimpeded
by ends.To initiate a disturbance,onemagnetwasheldfixed
andanimpulsewasgivento thenextmagnet,thefixed mag-
net being released before the propagating disturbance
reachedit. The responseof the model to various starting
conditions was recordedby sequentialflash photographs� takenfrom abovethe circular chain� from which instanta-
neousdisplacementof the magnetsfrom their equilibrium
positionscould be approximatelydetermined.

We stressthat this model and the resultswe report here

are relatively crude � the model was constructedin the first
author’sgaragewithout any technicalor financial support� .
For example,thereis a fair bit of friction at the pivots, and
theneedto go to a circularsystemto avoidboundaryeffects
hasnot beenproperlymodeledin the numericalstudy.Nev-
erthelessthe reasonableoverall agreementbetweentheory
and experimentis encouraging,and we hope to producea
moreaccurateanddetailedstudywhencircumstancesallow.

The generalbehaviorof impulsesin the model strongly
suggestedresonantcoupling betweenadjacentparticles in
the lattice leading to nearly antiphasemotions. Small im-
pulsesspreadat a constantspeed,the resultingoscillations
havingmaximumamplitudenearthe impulsesite.Largeim-
pulsesrapidly evolved into compactwave packetsconcen-
tratedover a small numberof siteswhich propagatedfreely
over many lattice sitesbeforebecomingdegraded� seeFig.
2� . It is these objects that we term breathers.Since the
breather traversedthe ring several times betweenphoto-
graphs,in plotting Fig. 2 we representthe circular chainby
its linear analog, ignoring the complication that the low-
amplitude‘‘radiation’’ will propagateroundthe ring andin-
terferewith theprimarypulse.This effecteventuallyleadsto
degradationof the primary pulseas shown in the figure at
larger times. In order to emphasizethe breatheragainstthe
linear backgroundmodeswe haveplotted the square of the
horizontalcomponentof thedisplacementdn" � lsin# n" of$ each
pendulumin Fig. 2. Herel is the pendulumlengthand # n" is
the angulardeviationof eachpendulum.The averageveloc-
ity %&� 4.83 sites/secis representedon the plot by a dotted
line.

Despitemanyattemptsit wasfoundto bevirtually impos-
sible to generateany othertype of disturbance,in particular,
a Toda-like soliton. Further study showedthat the internal
structureof breathersmoves with a phasevelocity much
greaterthanthe groupvelocity.

Experimentsexploredthe evolutionof breathersfrom si-
multaneousimpulses to several adjacentparticles in the
chain and from multiple impulsesto the first particle. The

FIG.
'

1. A circular chainof magneticpendulums.

FIG. 2. The experimentalobservationof the breatherpropaga-
tion in the chainof magneticpendulumswith the initial excitation(

2(0)
)+*

0.1 andthe spacinga , 4.0 cm.
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model also demonstratedthe stability of breathersagainst
small random defectsor perturbations.Other experiments
with this model demonstratedthe creationof oppositelydi-
rectedpairsof breatherswithin thechainandthecreationof
stationary breathers,the survival of oppositely directed
breathersafter their mutualinteractions,their reflectionfrom
boundariesand discontinuities.Much of this behavior is
characteristicof integrablesystems,but it is emphasizedhere
that thesebreatherswill almost certainly not satisfy exact
solitonicconditionsin connectionwith their long-termstruc-
tural andlateralstability or in their collisional properties.

Suchphysicalmodelsarevery instructivebut theycannot
easily yield quantitativeresults.Hence,it is difficult to ex-
plore in detail the behaviorfor different impulse strengths
and for long propagationpaths.To makefurther studiesof
breatherbehaviorin this mechanicalmodel,it is necessaryto
useanalyticalandnumericalmethods.

III. THEORETICAL MODEL

Now
�

we developthe dynamicaltheoryof this model.As
shownin Fig. 3 - themagnetsmovein theplane,tangentialto
the circular backbone. , the chainparametersarethe spacing
a, thependulumlengthl, massM , andthemagneticmoment
m /1020 0

354 Idl. Here 0 0
3 / 4 687 109 7 H/m

: ;
1.2577 109 6

H/m is the magneticconstant,0</ 1 is the magneticperme-
ability of vacuum.ThemassesM aresubjectedto thegravi-
tationalfield with the constantg

;
9.8 N/kg. The sizeof the

magnetis assumedto besmallcomparedto thelengthl. The
Hamiltonianof this systemis - we neglectfrictional effects
andthe effect of the curvatureof the chain.

H />=
n"@? n" />=

n"
pA n"2

2M B U CED n" ,� D n"GF 1 H B V CED n" H ,� - 1.
where ? n" is the energyper the nth site, pn" / Ml D˙ n" is the
conjugatemomentumand D n" is

I
the angledeviationfrom the

equilibrium position of the nth pendulum - seeFig. 3. , and
the dot denotesthe differentiation with respectto time t.
Here the intersite potential U is given in terms of the

dipole-dipole interaction of adjacent magnets, i.e.,
U( D n" ,� D n"GF 1)

J / D(mn" ,� mn"GF 1 ,� rn" )J , where

rn"2 / l2
K C cosL D n"GF 1 M cosD n" H 2

K
BON aP B l C sin� D n"QF 1 M sinD n" HSR 2

K
- 2.

is the distancebetweenthe nth and (n B 1)th magnets.The
interactionbetweentwo magneticdipolesm1 and
 m2 withT a
separationr is definedby

D C m1 ,� m2 ,� r H / 1

4 6U0 0
3 C m1 m2

K HVM 3 C m1 nH C m2
K nH

r3

 .

- 3.
Here n / r/r is the unit vector along the radius-vectorr
which connectsthe magnets.The last term in the Hamil-
tonian - 1. is theon-sitepotentialfor eachpendulumresulting
from its interaction with the gravitational field, so that
V( D )

J / Mgl(1 M cosD ).J
Next, the dipole-dipole interaction can be rewritten in

termsof the anglesD n" as
 follows:

U CED n" ,� D n"GF 1 H / D0
3 aP 3


N cosL CED n"QF 1 M D n" HVM 3cosW n" cosLYX

n" R
rn"3 ,�

- 4.
where the constant D0

3 is
I

defined by
D0
3 / D(m1 ,� m2 ,� a) Z\[

1 ] 0, [ 2 ] 0 / m2
K
/4
^ 6U0 0

3 aP 3


,� m /_Z m Z . The

angles W n" and
 X
n" are
 given in termsof D n" and
 D n"QF 1 as


cosW n" / C m
`

n" nH
ma / sinD n" Mcb N 1 M cosCdD n"GF 1 M D n" HSR

rn" /
^
a

,

cosX n" / C mn"QF 1 nH
ma / sinD n"QF 1 B b N 1 M cosCdD n"QF 1 M D n" HSR

rn" /
^
a

,

- 5.
where b / l/a.

Thesolitondynamicswasobservedexperimentallyin the
circular chain consistingof 18 magneticpendulumswith
l / 0.118m. The magnitudeof the dipole magneticmoment
m cannotbemeasureddirectly, so theway to determineit is
to measurethefrequencyof small-amplitudeoscillationsof a
pendulumwhenits nearestneighborsarefixed. To this end,
we considerthe linearizedversion of equationsof motion.
Expandingall the terms in the Hamiltonian - 1. up to the
secondorder,we find

D¨ n" / M C aP 0
3 B g/l H D n" M a1 CED n" 9 1 B D n"GF 1 H ,� - 6.

where a0
3 / 2(12 b 2 M 1)D0

3 /
^
Ml2 and
 a1 / M 2(1

B 6 b 2
K
)
J
D0
3 /
^
Ml2
K
. Then the linear dispersionlaw of small-

amplitudewaves D n" (e t) /�D 0
3 expf N ig (nq Mih tj )R is

I
given by

h 2 / h 0
32 M 2a1 C 1 M cosq H ,� h 0

32 /_C Mg
k

l M 6D0
3 H /^ Ml 2,� - 7.

whereq is the wavenumber, Z ql Znmo6 .
Considernow theoscillationsof the nth pendulumin Eq.- 6. whenthe(n M 1)th and(n B 1)th neighborsarefixed, i.e.,D n" 9 1 />D n"GF 1 / 0. Thenthefrequencyof theseoscillationscan

easilybe calculatedand,asa result,we obtain

FIG. 3. Theschematicrepresentationof themodelof interacting
magneticpendulums.
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p 2
KGq g

l
r s 12l2 t a2

2 u&v 0
3 Ml2

K
aP 5
� ma 2
K
. w 8x

Themagnitudeof thedipolemomentm wascalculatedfrom
Eq. w 8x by measuringthefrequencyp . Thus,for thedistance
a
q

6.0 cm the periodof oscillationsis T
q

0.587y 0.001sec
andthereforewe found m

q
3.77z 10{ 7 H A

:
m.

IV. NUMERICAL SIMULATIONS

We
|

carriedout numericalstudiesof the time evolutionof
the localizedexcitationin the chainof pendulumsby using
the standardfourth-orderRunge-Kuttamethodto integrate
the dynamicalequationsresultingfrom the Hamiltonian w 1x .
In orderto exhibit thebreatherunclutteredwith radiation,we
worked with a long chain with fixed boundaryconditions.
The numericalsimulationsof the formationandpropagation
of breatherexcitationshave been carried out at the same
initial conditionsasin theexperimentsduringthetime of the
order of 200 periods of breatheroscillations. Initially the
conditionswere a deflectionof the secondpendulum( } 2),

J
and we observedthe propagationof a narrow pulse with
relativelypermanentshapeandvelocity w seeFig. 4x . Theplot
showsthetime dependenceof thedimensionlesstotal energy
E(n, ~ )J q�� n" (e t)/D0

3 per� the nth site against dimensionless
time ~ qO� D

�
0
3 /
^
Ml2
K
tj . We variedthespacinga andcalculated

the breathervelocity � . The resultsof thesesimulationsare
presentedin Table I. The experimentaland computational
valuesof thevelocity � are
 in reasonableagreement,consid-
ering the variability of the magneticandmechanicalproper-

ties alongthe chain,the neglectof friction, andthe approxi-
mation of dipole-dipole interactionswhen the separation
lengthsarecomparablewith the sizeof the magnets.With a
larger initial deflectionin the numericalsimulation,we ob-
taineda cleanerbreatherprofile, asshownin Fig. 5.

V.
�

A CONNECTION WITH AN INTEGRABLE DISCRETE
MODEL

Now
�

we considersomeanalyticalapproximationswhich
enableus to makecontactwith an integrablediscretemodel,
the Ablowitz-Ladik model.13 To

�
study large-amplitude

waveswe needto keepnonlineartermsin the Hamiltonianw 1x . First, we can expandall the expressionsin the Hamil-
tonian w 1x up to the fourth order.As a result, after lengthy
but straightforwardcalculationswe obtain a truncatedver-
sion of the Hamiltonian w 1x and derive the following equa-
tions of motion:

}¨ n" s_� aP 0
3 s g/l � } n" s a1 � } n" { 1 s } n"Q� 1 � s b1 � } n" � } n" { 1

t } n"Q� 1 �
s_� } n"G� 1

2 t } n" { 1
2 � /2^�� s_� c� 0

3 t g/6l � } n"3 s c1 � } n"2 � } n" { 1

s } n"G� 1 � s_� } n" { 1
3 s } n"G� 1

3 � /3^�� s c2 } n" � } n" { 1
2 s } n"G� 1

2 �V� 0,

w 9x
wherea0

3 and
 a1 havebeendefinedabovewhile the remain-
ing coefficients are b1

q
12 � (1

e s 5 � 2
K
)
J
D0
3 /
^
Ml2
K
,� c0

3q
(1/3t 97 � 2 s 120� 4)

J
D0
3 /
^
Ml2,� c1

q
(1 t 12 � 2 t 180 � 4)

J
z D0

3 /
^
Ml2
K
,� and c2

q
(1/2s 129� 2

K
/2
^ s 180� 4

!
)
J
D0
3 /
^
Ml2
K
. We

usetherotatingwaveapproximation14 and
 look for solutions
to Eq. w 9x in theform } n" (e t) q�� n" (e t)exp(t i p 0

3 tj ) s c.c.,where�
n" (e t) is thecomplexamplitudeof large-amplitudependulum

oscillations. Applying this approximation,i.e., keeping in
Eq. w 9x only terms with exp(t i p 0

3 tj ), and assumingthat� �
˙

n" (e t) �n� p 0
3 � �

n" � ,� Eq. w 9x canbe reducedto a perturbedver-
sionof theAblowitz-Ladik equation.Thecoefficientsof this

FIG.
'

4. The time evolution of the breatherenergy density
E(n, � )� in the chainwhenonly the secondpendulumis disturbed:�

2(0) � 0.1, ��� 2.95 (a � 4.0 cm� . � Inset: amplitudeof breatherat��� 20.�

TABLE
�

I. The soliton velocitiesfor different valuesof � .�
�

2(0) ��� l/a ��� Mgl/D0
�   , sites/sec

Experimental Numerical

0.1 1.18 1100 1.75 2.01
1.87 276 2.51 4.23
2.95 71 4.83 5.20

FIG. 5. The time evolution of the breatherenergy density
E(n, � ) in the chainwhenonly the secondpendulumis disturbed:�

2(0)
) � 0.25, ��� 1.87 (a � 6.31 cm� . � Inset: amplitudeof breather

at ��� 20.�
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equationf dependon theperturbativetermswe choose.We fit
themin sucha way thattheperturbativetermsarenegligible.
Thus, if the amplitudes¡ n" (e t)’s vary smoothly from site to
site in the chain, then omitting the perturbativeterms, the
Ablowitz-Ladik equation takes the following approximate
form:

i ¡ ˙ n"Q¢¤£¦¥ ¡ n"G§ 1 ¨ 2 ¡ n"G¢ ¡ n"Q© 1 ª ¢¬«2 ­ ¡ n" ­ 2
K ¥ ¡ n"G© 1 ¢ ¡ n"Q§ 1 ªV® 0,¯

10°
with the coefficients £ ®O¨ a1/2

^²±
0
3 and
 « ® (Mgl ¨ 24D0

3 )/J
8Ml2 ±

0
3 . Theseexplicit valueswere the main goal of the

analyticalcalculations.Havingthem,onecaneasilywrite the
resultingapproximatebreathersolutionof Eq.

¯
9° for large-

amplitudependulumoscillations

³
n"´¥ tj ªVµ ³ 0

3 sech� n¶ ¨�· tj
L

cosL ¥ nq¶ ¨ ± tj ª . ¯
11°

Note,that theamplitude
³

0
3 and
 wavenumberq arearbitrary

parameters.Here
³

0
3 and
 the breatherwidth L arerelatedby

1

L
¸ ® ln

³
0
3 2

¹ «£ ¢ 2
¹ ³

0
32«£ ¢ 1 .

¯
12°

The group
¯
breather° velocity · and
 the carrier frequency±

are
 given by

·U® 2 £ L
¸

sinh¥ 1/L ª sin� q,

± ® ± 0
3 ¢ 2 £¦º 1 ¨ cosh¥ 1/L ª cosL q » . ¯

13°
At least,in the continuumlimit (L ¼ a) the approximateso-
lution of Eq.

¯
9° given by Eqs.

¯
11° – ¯ 13° is valid. However,

we havealsocheckedthis approximationnumericallyin the
caseof narrowersolutionswhen L/a is small. To this end,
we usedEqs.

¯
11° – ¯ 13° asinitial conditionfor simulationsof

the equationsof motion. As a result, we obtainedstable
breatherspropagatingwith constantshapeandvelocity, and
againtherewasa goodcorrespondencewith theexperiments.
In this approximationwe obtaineda clear breathersolution
which separatesitself from the parasiticoscillations,asone
can seefrom the plot of the energydistribution E(n, ½ ) i

J
n

Fig. 6.
VI. CONCLUSION

In this paperwe havepresenteda nonlinearmodelwhich
seemsto be the first experimentalexamplewhich visually

demonstratesstablemoving breathers̄envelopesolitons° in
anharmoniclatticeswith in-line on-sitepotentials.This type
of nonlinearexcitationsis different from thewell-knownsu-
personicToda-like solitonswhich describethe propagation
of a lattice deformationof a constantprofile. Finally, we
wish to point out that the mechanismof moving breathers
shouldbe importantin variousphysical15 and
 industrialpro-
cessessinceit allowsthetransportof vibrationalenergyover
long distancesby nondiffusional mechanisms.The model
hasinterestin its own right asa pedagogicaltool in thestudy
of nonlinearlattices.
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