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Nonlinear mobility of the generalized Frenkel-Kontorova model
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Nonlinear mobility of one-and two-dimensional systems of interacting atoms in response to the dc external
force is studied in the framework of a generalized Frenkel-Kontorova model. The atoms are subjected to a
three-dimensional external potential periodic in two dimensions and parabolic in the third dimension. When the
force increases, the system exhibits a transition from the low-mobility regime to the high-mobility regime, the
latter corresponds to the running state of atoms in the inclined substrate potential. During the transition the
system passes through intermediate states depending on whether the concentration of atoms corresponds to the
ground-state atomic structure with the simple or complex elementary cell. All the transitions are first-order
dynamical-phase transitions, i.e., they are discontinuous and exhibit a hysteresis even at nonzero system
temperature. The simulation results are explained with the phenomenological approach, which treats a system
of strongly interacting atoms as a system of weakly interacting quasiparticies).
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I. INTRODUCTION or right well or they may move in the course of time to other
wells which are further away: for long enough times the
The study of the atomic processes occurring at the interparticles will diffuse in every direction. This activated diffu-
face of two materials when they are brought together, sepasion mechanism of interacting particles was studied, for ex-
rated, and moved with respect to one another is central tample, in a previous work6]. If an additional forceF is
many technological problems, such as adhesiontact for-  applied, the particle will preferably diffuse in the direction of
mation, friction wear, lubrication, fractureetc. Owing to the  this force and on the average there is a drift velocity that
development of new experimental and theoretical works fordepends on the external force. For small forces, the mobility
studying these phenomena at the atomic scale, an undeg-defined by(v)=BF will be independent of the forcgin-
standing is beginning to emerge of the molecular mechaear responge but for arbitrary forced=, the mobility will
nisms of tribology in thin films and at surfaces; the atomic-depend on itnonlinear respongeThe problem is to calcu-
force microscope from the experimental point of view or thelate this nonlinear mobility.
molecular-dynamics simulations on massively parallel com- Transport properties of the FK model have been a subject
puters are, for example, very powerful tools for the physicistof intensive studies in the last decades. The linear mobility
to acquire a better understanding of the underlying phenomB,=(v)/F, which describes the steady-state mean atomic
ena. velocity (v) in response to the dc driving foréein the limit
Here, we will consider one aspect of this problem: mas$—0, was considered in a number of worlksg., se¢7] and
and charge transport in systems with strong interatomic inreferences cited thereinin the general case, the mobiliB/
teractions. We study particles, interacting with each othershould depend onF; the total external potential
adsorbed on a crystalline surface. The adsorbate is consitk,(x) =V, {X) — Fx is a corrugated plane, with an average
ered as a subsystem and the remainder is modeled as slwpe determined by the external forEe For large forces,
external potential and a thermal bath. Such a system can bg,(x) has no minima, whereas for intermediate and small
considered within the framework of the generalized Frenkelforces, minima do exist. Denoting bythe amplitude of the
Kontorova(FK) model. Introduced to model the dynamics of periodic potential,a its period, andC a numerical factor
dislocations in crystalgl], the FK model describes in a more depending on the shape of the potenti@ak1 for the sinu-
general context a system of interacting particles subjected tsoidal potentigl the barriers of the substrate potential be-
a periodic substratéon-sitg potentialVg,,. This model may come completely degraded for forces greater than
describe, for example, a closely packed row of atoms in cryskF,=Cwe/a and the system should behave as a homoge-
tals[2], a layer of atoms adsorbed on crystal surfd@sa  neous one; in this regime, the mobilB(F) reaches its final
chain of ions in a “channel” of quasi-one-dimensional con- value B;=(m7) "%, wherem is the atomic mass ang the
ductors[4], hydrogen atoms in hydrogen-bonded systemssiscous friction describing the energy exchange of the sys-
[5], etc. tem under consideration with the thermostat.
In the presence of thermal fluctuations, the particles may The nonlinear mobility of the FK model has been studied
leave the original well and go to either the neighboring leftonly for theoverdampedase(i.e., for the case;> w,, where
wg IS a characteristic frequency of atomic vibration in the
external potential with the trivial concentrationd=1 (the
*Also at Institute of Physics, Ukrainian Academy of Sciences, 46dimensionless atomic concentratiéris defined as the ratio
Science Avenue, UA-252022 Kiev, Ukraine. of the number of atoms to the number of wells of the exter-
TElectronic address: tdauxois@physique.ens-lyon.fr nal potential. The low-temperature limit for the sine-Gordon
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(SG) case(i.e., for strong interatomic interactipwas inves-  acting atoms exhibits a dynamical first-order phase transi-
tigated by Buttiker and Landau¢8] with the help of the tion: when the external force increases, the system undergoes
generalized rate theorfsee alsd9)). In this case the mag- the locked-to-running transition &=F, while, when the
nitude of the atomic flux is restricted by the rate of creationforce is decreased, the reverse running-to-locked transition
of kink-antikink (kk) pairs[we recall that a kinkantikink)  takes place a =F, . However, at anyf #0, the phase tran-
describes the minimally possible topologically stable localsition disappears because thermal fluctuations cause transi-
compression(extension of the commensurate structure of tions of the system from the running to the locked state and
the FK mode]. The driving force lowers the barrier for the back[20-22. For a low fluctuation force and a temperature
kk pair nucleation, and this results in the increase of systerim=0, the bistable region is split into the running and locked
mobility. The rate theory is adequate only provideeF, subregions by a curvE (7)) [23]. WhenF<F_, the system

i.e., as far as the system dynamics have an activated natuiig. mainly in the locked state wherg(F)~B,, while for

At high temperatures, the nonlinear mobility of thel FK  F>F_, the system is mainly in the running state and
model was calculated within the random-ph&sean-field  B(F)~B;. Thus, when the forc& increases crossing the
approximation (RPA) [10,11. In this case, the time- valueF., the mobilityB(F) changes sharply frol, to B;.
independent many-particle Schmoluchowsky equation mayhen the temperature of the systénis increased, this tran-

be reduced to a one-particle equation with an effective onsition is smeared out.

site potential and be solved numerically by the transfer- Using these results, it is reasonable to suppose that the
integral method. The calculations showed that for low exterhigh-mobility state observed by Persson, corresponds not to
nal force as well as for high force the atomic flux is the sliding state of the incommensurate FK model as it was
proportional to the forc€Ohm’s law), but the highF mobil-  proposed12], but to the running state of atoms in the in-
ity may be many orders of magnitude greater than thefow- clined substrate potential. However, the transition in the sys-
mobility, so that the lowF and highF regimes are separated tem of noninteracting atoms is not a phase transition but a

by a region of very nonlinear mobility. smooth transition for any #0, while the transition observed
In addition, Perssofil2] has recently used the molecular- by Persson is a first-order phase transition with hysteresis.
dynamics(MD) technique to study a two-dimension@D) The aim of the present work is to study this transition in

system of interacting atoms subjected to a 2D external perigreater detail. We consider the generalized FK model, which
odic potential; this model may be considered as a generalizedescribes the 2D system of interacting atoms subjected to the
FK model. For theunderdampeaasen<w,, he observed a 3D external potential periodic in two dimensions and para-
dynamical transition: with increasing of the forEethe sys-  bolic in the third dimension. The model may be used to
tem presents a discontinuous transition from the low-describe a submonolayer film of atoms adsorbed on a crystal
mobility stateB, to the high-mobility statdB;, and for de- surface, so that the external potential corresponds to the sub-
creasing force, the system exhibits a hysteresis. Because tegate potential periodic in the directions parallel to the sur-
value By corresponds to the maximum mobility of an iso- face and parabolic in the direction orthogonal to it. The most
lated atom in a uniform space, the simulation results indicaténteresting application of the model is connected with tribol-
that in the high-mobility state the system does not feel theogy problems[24] (e.g., the understanding of friction and
external potential at all. Using the well known Aubry phaselubrication between two flat macroscopic surfacas had
transition from the pinned state to the sliding state in the FKbeen discussed in detail by Persqdr?]. However, let us
model in the case of incommensurate atomic concentrationsmphasize here that in the usual solid friction at a macro-
[13], Persson supposed that the high-mobility state in hiscopic scale, it is valid to use the zero-temperature approxi-
simulation corresponds to the incommensurate sliding statemation, since the heights of the energy barrier to be over-
of the 2D system. come are much greater than the thermal energy. Studies of
On the other hand, the Brownian motion mdninteract-  usual solid friction in the presence of amplitude-controlled
ing atoms placed on a one-dimensional periodic potentiahoise would deserve experimental investigafias]. The be-
and driven by the dc forcE had been studied in a number of havior of the hysteresis should be qualitatively in agreement
works [14-18. It was shown that the crossover from the with results presented here in the context of microscopic fric-
low-F mobility B, to the highF mobility B; depends on the tion where the effect of the temperature is very important.
friction coefficientz and the system temperatufe Indeed, Our results show that, contrary to the case of a single
when an atom is driven by the forde from one top of the atom, in the system of interacting atoms the transition from
total potentialV,,(X) to the next top in the absence of ther- the locked to the running regime becomes abrupt even at
mal fluctuations(T=0), it gains the energy,=Fas over  nonzero temperature, i.e., corresponds to a dynamical first-
one period, but at the same time it loses the energy order phase transition. In addition, we found that there are
~nm(x)as because of damping. ,>¢_, the atom will  intermediate states between the locked and running regimes.
come finally to the “running” stationary state; in the oppo- Using a phenomenological approach that treats a system of
site cases, <e_, the final state will be “locked.” Itis clear strongly interacting atoms as a system of weakly interacting
that the atomic motion is always running for the forcesquasiparticlegkinks), we estimate the thresholds for differ-
F>F,, whenV,,(x) has no minima. In addition, there exists ent concentrations and then we compare the simulation and
a second critical valu€ (Fn2477\/m_83/77) such that for  estimation results. The results show also that atTofwr the
F<F, the stationary state is always locked. The intermedi-6+1 case the nonlinear mobiliti(F) exhibits a hierarchy
ate regionF ,<F<F, is bistable: the motion is either run- of steps.
ning or locked depending on the initial velocity of the atom  We have organized this paper in the following way. The
[19,14). Thus, afT =0, the underdamped system of noninter-model, the choice of its parameters, and the numerical
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method are described in Sec. Il Sections Ill and IV form theatomic interaction, we have to impose periodic boundary
heart of the paper. Simulation results are presented in Seconditions in thex andy directions in order to fix the atomic
lll, while Sec. IV is devoted to the phenomenological ap-concentration. Therefore, we will pladé atoms in the fixed
proach of the problem. Finally, Sec. V discusses the resultareal, XL, , whereL,=M,as, andL,=M,a;,, so that the
and conclusions. dimensionless atomic concentratithe so-called coverage
in surface physigsis equal to6=N/M (M=M,M,).
Il. THE MODEL To model the energy exchange with a thermal bath, we

) ) ) use the Langevin equations for atomic coordinates
The displacement of an atom is characterized by three

variables:x andy describe its motion parallel to the surface, } i d
while z describes its deviation orthogonal to the substrate. MX+mz7Xi+ 4| VaudXi Yi z)+ X Vid|Fi— i)
For the substrate potential, we take the function ! 1G#1)

=FX+ s5FX (1), 6
Vsub(xay’z):Vpr(X;asxassxasx)+Vpr(y;asyvssyvsy) o ©

+V,(2), (1) and similar equations foy andz. Here  corresponds to the

) rate of the energy exchange with the substrﬁte,{F,O,(} to
where we use the deformable potential proposed by Peyrakfle qc driving force, andF is the Gaussian random force

and Remoissengp6], with correlation function
1 (1+s)1—co92mx/a)]

VelXa,8,8) =5 & 350 cog2mx/a)

) (SF(V (1) SFP(t)=29mkgT 8,58 8(t—t').  (7)

In the simulation we use a dimensional system of units,
easuring distance in Angstroms, energy and temperature in
electron volts. The mass of adatoms is chosen as umityl,

hich defines the time unit. In the result, the velocities are
measured in units af,=(1 eV/im)? and the force in units of

v=1 eV/A; we introduce also the characteristic time inter-
val to=2m/w,. In the remainder of the paper, the units of
other dimensional physical quantities will be omitted, but
they are expressed in terms of the above units.

which can be tuned to describe a real substrate potentiehl]
rather accurately. Thus,, corresponds to the activation
energy for diffusion of an isolated adatom on a substrat
with the rectangular symmetry along tlxeor y direction,
asx(y) COrresponds to the lattice constants, and the paramete
Sx(y) (Is|<1) describe the shape of the substrate potential
Namely, the frequencw, of a single-atom vibration along
the x direction is connected to the shape parameter

by the r%Izatlonsmp wx=wo(1+5/(1=s,), where w, In order to be closer to real physical systems, let us take

=(5,2m) (Z.W/asx)' . . the adsystem Na-{¥12) as an example to define the model
The pote_nt|al pe_rpend|cular to the surface is modeled b’barameters. Namely, in the simulation, we pyt=2.74 A

the parabolic function andag,=4.47 A, which are the distances between the neigh-

2,2 3) boring wells along and across the furrows on thél1¥?)

& surface, respectively, ang,=0.46 eV ande,,=0.76 eV for

wherew, is the frequency of normal vibration of an isolated the corresponding barrierghese values were taken from

Vy(2)=3me

adatom. [27]). To model the shape of the substrate potential, we have
For the interaction between the atoms we take the expd® know the parameters, ands, . They lie usually within
nential repulsion the interval[0.2, 0.4 [28]. For the sake of concreteness we
took s,=0.2 ands,=0.4, which leads to the following fre-
Vin(1)=Voexp(— Bof ), (4) quencies of adatom vibrationgi,=1.65 andw,=2.02, re-

spectively. For the vibration frequency normal to the surface,
whereV, is the amplitude angB,* determines the typical we took w,= %(w,+ wy)=1.84. Although these frequencies
range of the interaction. The potent\a},(r) corresponds to are taken rather arbitrarily, they are typical for metal atoms
the usual repulsive branch of interatomic potentials thatdsorbed on metal substratEg29,30. For the interatomic
come into play when one attempts to pack atoms at an avepotential (4), we took the parameter¥,=10 eV and
age distance smaller than their equilibrium distance. In nuB,=0.85 AL, This choice results in reasonable values for
merical simulation we can include only the interaction of athe adsysterfi31], since the interaction energies between two
given adatom with a finite number of neighbors. Thereforeadatoms, occupying the nearest wells along the furrow and
we have to introduce a cutoff distancé and account only across, are equal td(as,) ~0.97 eV andV,(as,)~0.22
for the interaction between the atoms separated by distance¥, respectively. Finally, we have to define the rate of en-
lower thanr*, as is usual in MD simulations. To reduce ergy exchange between the adatoms and substrate. We took
errors caused by this procedure, we use instead of the inter;=0.1w,=0.165 which again is a typical valU&0]. Note,

action (4) the potential that our choice of the parameters does not claim to be a
_ detailed quantitative interpretation of the Nal4¥2) adsys-
Vind(1) = Vind 1) = Vind(r*) = Vi (r*)(r=r*), (5  tem because the model is still oversimplified for real adsys-

tems. However, we do believe in a qualitative description of
so that the potential and force vanish at the cutoff distancehe effect under investigation and claim that typical adsys-
Vin(r*)=V,(r*)=0 (tilde will be omitted in what fol- tems should exhibit similar behaviors. Finally, for a numeri-
lows). In addition, because we are using the repulsive intercal solution to the Langevin equatiof®), we use the stan-
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dard fourth-order Runge-Kutta method with the time step
At=1,/20=0.19, and the -cutoff radius is taken as

1.0f7

r*=2a,,=8.94 A. 0.8
- 0.6f
g
Ill. SIMULATION RESULTS B 0.4t
A. Numerical procedure 0.2}

In the simulation, we first look for the minimum-energy 0.0l : .
configuration of the system. Thus, we start with an appropri- 0.00 0.10 0.20 0.30 0.40
ate initial configuration and allow the atoms to relax to the F/F,
minimum of the total potential energy, keepifig=0 and
F=0 (this procedure was described in detail in a previous 0.20F
work [32]). Then we increase the system temperature up to a
given temperaturd by small stepsAT=T/50 during the 0.15] ®
time ty,em=100,. At that point, we start to increase the dc =
forceF by small stepa\F=0.01 up to a valu& ... At each 2 o.10
step we wait the time,,,;=10Q, in order to allow the sys- =
tem to reach a stationary state. Then, for the discrete times 0.05}
t;=ity, we measure the system characteristics such as the <
average velocity of the atomw,) or the effective system 0.00 L . . . -
temperaturel ., defined by the equation 0.00 0.10 g./z}% 0.30 0.40

3ikgTe=2m X, ((va— (v )?). (8) FIG. 1. HysteresisThe mobility B is presented as a function of
a=X,Y,Z

the external forcé- in (a), while (b) depicts the effective tempera-

ture T, vs F (in fact we plotkg T, measured in e} The plus signs

and the solid curve correspond to force increase, the cross signs and
The measures are carried out during the tigg=100,, SO  the dashed curve to force decrease. The arrows indicate the behav-
that we get 100 points to compute averaged values for evergr of the mobility on increasing and decreasing the external force
value of F. In addition, at some steps we saved the coordiF. This picture corresponds to the guasi-one-dimensional system

nates and Veloc|t|es Of a” atoms. (N:].OS, MX:205! andMy:].), i.e., kinks on the background of
The external force is increased up to the vaiyg,, and the 6,=1/2 structure. The substrate temperaturegi§=0.0005 eV.
X1
then decreased to zero with the same steps. In the simulation B. Quasi-one-dimensional FK model

we mainly studied the system behavior for two substrate

temperatures: zero temperatyie fact we used a very low

but nonzero temperaturé=5.8 K (kgT=0.0005 eV for Let us first describe the results of simulations for the

technical reasons and room temperatureT=290 K  6§=21/41 case which corresponds to a system of kinks on the

(kgT=0.025 eV). However, we also present results corre-background of thef,=1/2 structure. Namely, thel'=0

sponding to different temperatures. ground state corresponds to a kink superstructure with aver-
To simplify the study of the problem, we first begin from age distance between the kinks equal taAdn simulation

a simpler quasi-one-dimensional case, putfiig=1 so that W€ t00kN=105 andM, =205, thus having five kinks over

all chains are moving in the same wéyut the interaction the length under investigationThe B(F) andTe(F) depen-

between the atoms still has the 2D character the second dences for zero-substrate temperature are presented in Fig. 1
part, we consider the full 3D case. for F varying from zero toF,,,,=0.40. As seen from Fig.

In the present work we restrict ourselves to concentration%(a)’ with increasing force the system evolves from the

within the interval 0.5:6<1. The results for the trivial com- |0¢ked stateB=0 to the running stateB=By, passing
. . . . through two intermediate stages. The transition to the first
mensurate concentratiods=0.5 andd=1 are not included in

th ralthough we mad veral runs for th intermediate state takes placeFat0.14, the second transi-
€ paperiaithough we made several runs for these Cas€gq, .o s afF~0.20, and the third transition to the running
t00), because in these cases BF) dependences exhibit state is atF~0.28. The behavior of the system exhibits a

only one transition from the locked state to the running '®jarge hysteresis: when the forée decreases starting from
g_ime at a relatively high threshold. At that point we empha-Fmax, it remains in the running state down Fo~0.14 and
size that the results strongly depend on the atomic concefnen jumps directly to the locked state. At the same time, the
tration of the system because of the essential role of th@ffective temperaturd, [see Fig. 1b)] increases at the in-
geometrical kinks. These excitations can be defined for anyermediate states, while in the locked and running states it is
commensurate atomic structufg=o/q, wheres andqg are  close to zero.

relative prime integers. As background structure, we will ex-  All the transitions are discontinuougt least with our
tensively discuss here the coveraghgs-3, 6,=3, and the resolutionAF=0.01). In Fig. 2, we plot a stroboscopic map
golden mean because of the Aubry transition, but we alsgan analog of the Poincargection which is widely used in
studied other concentrations to clarify our understanding. stochastic dynamigsNamely, during the time,,,, for each

1. Commensurate concentration
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FIG. 2. Stroboscopic map in thel§,B) plane for the system FIG. 3. Static kinksTime dependence of the positions of all the
evolution shown in Fig. 1. atoms of the9=21/41 chain with periodic boundary condition for

the F=0.05 step; curves are plotted for edghAtom 62 is marked
by filled diamonds to show clearly the trajectory of one atom. The

step of force changing we saved the atomic velocities at th@arker regions correspond to increased atomic density, i.e., to kinks.
discrete time moments=it,, i=1 100. To plot the sections, The figure shows that neither the kinks, nor the individual atoms
we chose theT,,B) plane, although another choice may be move for this low force.
used as well. The resulting set of points is presented in Fig.
2, where we plotted all points in the same figure, so that it The second intermediate state exists within the interval
may be considered as the evolution of the steady-state sy8-20<F <0.28 and occupies the region 0:9K;T,<0.18 eV
tem attractor with variation of the external force. The stro-and 0.78;<B=<0.83; in the (T.,B) plane. Simulation re-
boscopic map shows few well-separated areas, one corrsults show the following characteristic features of this state.
sponding to the low-mobility regime witB~By andT.~T First, it exhibits a well-defined hysteresis shown in Fig. 5,
(Bo=0 for theT=0 case, another to the running regime with where we increase and then decrease the external force up to
B~B; andT,~T, and also two intermediate areas. the maximum value of 0.20. Moreover, from the atomic tra-

Now let us describe the intermediate states in greater dgectories, it is possible to see that this state corresponds to a
tail. Starting at a very low external force and switching onregime of creation of kink-antikink pairs in addition to the
the force, the mobility remains zero. When we plot thefirst geometrical kinks. However, the different excitations are
atomic trajectories fofF=0.05, we see in Fig. 3 that the much more difficult to distinguish than in Fig(k} and that
atoms are in a completely frozen state: the black diamondis why we did not represent the picture here. Second, as can
show explicitly that this atom and consequently all others arde seen from Fig. 6, the distribution of atomic velocities
static. We can also distinguish the five topological defectsP(v,) shows two peaks, while the velocity distributions in
locked in their ground state, i.e., in the state where they aréhey andz directions(perpendicular to the chaimre Gauss-
equidistant from one another. This picture verifies that thean. It means that in the direction some of the particles
mobility is zero. have a large velocity due to the external force in comparison

The first transition aF =F,~0.14 presents a hysteresis, with the values due to the temperature. Third, one can see
too, as can be seen in Fig@} where we increase the ex- that in the intermediate regime the mobilig is slightly
ternal force up to the maximum value of 0.17 and then dedecreasing when the force increases. This “coexistence re-
crease the force. When we plot the atomic trajectories for thgime” will be discussed in greater detail in Sec. IV D.
F=0.17 step in Fig. é), we clearly see that the five topo- For a higher substrate temperature, the range of hysteresis
logical defects are moving and one can even see a tendendgcreases and at room temperature, we found no hysteresis
of these kinks to come togethéa similar effect for atoms for the §=21/41 case, as can be seen in Fig. 7. The mobility
will be described later in this sectinnHowever, the black is still a strongly nonlinear function of the external force, but
diamonds showing the position of a single atom versus tim¢he transition is smooth. However, for a higher atomic con-
emphasize that the atoms are moving much more slowlycentration the hysteresis survives even at room temperature
Therefore, this first step corresponds to the transition beas, for example, in th&=2/3+kinks case where we took
tween locked and running statfs the kinksconstructed on N=105 andM,=155. The simulation results for this case
the background structure and the calculated mobility is nothare presented in Fig. 8. At zero temperature we may distin-
ing but the mobility of these kinks. This kink-running state guish several steps on tiB{F) dependencésolid curve on
survives up toF~0.19 and is characterized by a mobility the figurg, which may be explained as those corresponding
B~0.023;. to transitions of superkinks and then trivial kinks to running
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500
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200
100§ FIG. 6. Distribution of atomic velocities af=0.20 for the
0=21/41 case at zero substrate temperature. Full curve corresponds
0 20 40 60 80 100 to P(vy), broken curve corresponds ®(v,), and dotted curve
(TIME) /t,
corresponds t&(v,).

FIG. 4. Running kinks.The hysteresis of the mobility for ) )
Enax=0.17 in thed=21/41 chain at zero temperature is presented inStates, as discussed in Sec. IV. At room temperature, the
(a), while time dependence of the positions of all the atoms of thedotted curve shows that all abrupt transitions have disap-
6=21/41 chain with periodic boundary condition is plotted(b); ~ P€ared owing to “melting” of the kink superstructures, and
curves are plotted for eacty for the F=0.17 step. Atom 21 is the B(F) dependence becomes smooth. The effect of the
marked by filled diamonds to show clearly the trajectory of onetemperature will also be discussed below.
atom. The darker regions of increased atomic dengityks) are
now driven by the force. Individual atoms do not move except when 2. Golden-mean concentration
a kink passes through their position as shown by the trajectory of

the marked atom. The next simulation was made for tige=34/47 concen-

tration (we tookN=170 andM,=235), which is close to the
incommensurate concentratiofy,,= (3+ \J5)/(5+/5)

T T 1 v T T [ T T T [ T T [ T 7

1.0 -

0.6

B/B,
B/B,

0.2

0.0 =

F/F,

FIG. 7. Mobility B is presented as a function of the external
FIG. 5. Creation of kink-antikink pairsThe hysteresis of the force F. Same as Fig. (&), but for room temperaturkgT=0.025
mobility for F,.,=0.2 in the#=21/41 chain at zero temperature. eV.
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0.0

0.00 0.10 0.20 0.30 0.40
F/F,

B/B,

FIG. 8. Hysteresis oB(F) for kinks on thef,=2/3 background 0.00; , ; ; ,
(N=105, M,=155, andM,=1). The solid curve corresponds to 0.00 0.10 0.20 0.30 0.40
zero temperature and the dotted curve to room temperature. F/F,

~0.724. As this noble irrational number is mathematically ~F!G- 10. The mobilityB is plotted v~ in (), while (b) presents
equivalent[33] to the golden mean, we also call it golden the effective temperatufg, ; both pictures correspond to the golden
mean: if G is the golden mean, we have mean 6=34/47 at room substrate temperature for the two-

fgm=(2+ G)/(3+ G). We recall that for an incommensurate dimensional FK modeiN=1020,M,=47, andM=30).

concentration, Aubry showed that tiie=0 ground statéGS) s pinned, while fOlge™>aubry» the GS is sliding and has no
of the system may correspond to two different states depenchctivation barrier for motion at anlf #0. For our choice of

ing on the magnitude of the average elastic consignfl3].  the model parameters we haggqy~0.24, thus the system
For Iow gesi Jefr<Uaubry (Wheregapy~1 for 6=6,,) the GS  should be in the pinned state, but rather close to the Aubry
transition point. Therefore, if the force is increased the sys-
tem will reach the Aubry point owing to the lowering of the
barriers of the inclined substrate potential. Indeed, simulation
results presented in Fig(#® show that the system exhibits
nonzero mobility for a small forc&~0.06 in the case of
zero-substrate temperature. However, we can see that just
above the transition, the mobility is much smaller than the
final mobility B¢, contrary to the infinite mobility expected
for the frictionlessyp=0 case. When we further increase the
external forceF, the mobility B shows a slow increase,
which should considt34] of an infinite countable number of
steps as for the Devil's staircase, but it is very difficult to
F/F, study this behavior in detail. Then, Bt=0.17, the Devil's-
staircase-like behavior is destroyed and, after the intermedi-
ate state corresponding to the kink-antikink nucleation re-

B/B,

1.0 gime, the mobility sharply increases to the maximum value
osl B~B;. Figure 9b) shows that the hysteresis does exist at
room temperature and is very similar to the 2/3 case.
. 0.6 Thus, the main result of the quasi-one-dimensional simu-
g lations is thatfor the chain of interacting atoms the hyster-

esis exists for any atomic concentratié®0 and survives
for temperatures that are not too higlbf course, these re-

o.2} . > A
sults deserve to be checked in the full two-dimensional FK
0.0 : : . , model whereM, is not equal to one.
0.00 0.10 0.20 0.30 0.40

F/F, C. Two-dimensional FK model
FIG. 9. Hysteresis oB(F) for (a) zero temperature antb) 1. Hysteresis of the mobility
room temperature for kinks for the golden-me@n34/47 casgN At room temperature for theg~6, case, we took
=170,M,=235, andM=1). N=1020,M,=47, andM,=30, so that¢=34/47 as in the
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FIG. 12. Stroboscopic map in thd {,B) plane for the two-
dimensional systen9#=34/47. The parameters are the same as in
Fig. 11.

FIG. 11. Distribution of atomic velocities at tf'e=0.24 step for However, there are some differences with respect to the
the two-dimensionalf=34/47 model at room temperature. Full 1D case: comparison of Figs(l® and 1@a) as well as the
curve corresponds t@(vy), broken curve corresponds ®(v,),  stroboscopic map of Fig. 12 shows that the transition in the

and dotted curve correspondsRqu ). (a) corresponds to the state 2D case is smoother than that in the 1D case described
achieved during the force increase, dbylto force decrease.

(a)

one-dimensional case described above. Figure 10 shows the

B(F) andT(F) dependences for this case. We note that the 1201
2D system displays a well-defined hysteresis too. The distri- 100
bution of atomic velocities for the external forée=0.24 is 80
presented in Fig. 11. On the one hand, in Figal,ifor the =
state achieved with increasing force, there are two groups of = 60
atoms: one with velocities ,~vy~v,~ v nema @nd another 40
with velocitiesvy~v ,~ v iherma DUt v, ~v=F/m». On the 20
other hand, in the state obtained for a decreasing force, all o |
atoms are in the running stdteee Fig. 11b)], since there is 0 20 40 60 80 100
onIyF(;nme bell curve forP(v,) centered around the value (TIME)/t,
Vi= n.
Surprisingly, we did not find essential differences be-
tween the behavior of the 1D and 2D systems. We recall that 120}
owing to interaction of kinks in the nearest neighboriNgN) 100L
channels, the NN kinks are arranged into domain w@4/) 80
or domain lines for the 2D system and this fact modifies the =
system-phase diagram as well as its dynam&s For the % 60
repulsive interatomic interaction studied in the present work, 40
kinks in the NN channels repel each other for #hel cov- 50
erage, but for any<1 the kinks are attractive and should be o

arranged in domain lines. However, for the short-ratme 0 20 0 * 50 100

ponential interaction studied in our simulation, two kinks (TIME)/t,
belonging to NN channels are attractive according to the law
ka(x)“|x| contrary to the usual widely studied lalg] FIG. 13. Time dependence of the positions of all the atoms for

Vi(x)ex®. That is why the DW stiffness in our model van- e 2p systemy=234/47 atF=0.24.(a) and (b) present two neigh-
ishes and the DW structure should be destroyed forlen®  poring channels; curves are plotted for edgh The finite time

or F#0. Of course, in a more realistic 2D model with long- interval between the snapshots results in a stroboscopic effect giv-
range interatomic forces such as elastic or dipole-dipoléng a wrong impression for atomic trajectory. In order to show one
forces arising due to the substrate, the role of the DW strucactual trajectory, one atom has been marked by black diamonds
ture might be more essential. while others are indicated by unfilled diamonds.
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F=0.27 F=0.29 F=0.30
ofF T :
22
4
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z
G 10p-
LL SR 0L . 0L 0 FIG. 14. Growth of islandsMoving channels
( 20 40 60 80100 0 2040 60 80100 0 20 40 60 80100 0 20 40 60 80100 (see text for definitionare represented with black
TIME/t, TINE/, TIME/t, TIHE/t, points at different times. The pictures correspond
to different external forces indicated by the title.
F=0.26 F=0.24 F=0.22 F=0.20 The first four panels correspond to increasing
30 ' 30k ' 30k of L force while the last four correspond to decreasing
| ; ' force.
a2t ) RS R
Z Z Z | Z
Z Z z | Z
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v 10f @) 10j o 10F o 10
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0 20 40 60 80100 0 20 40 60 80100 0 20 40 60 80100 0 20 40 60 80100
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above. When one looks at the atomic positions and velocitiethan a threshold chosen between the two bells inRfwe,)

at a given time moment, one sees that in the 2D system thglot [see Fig. 14a)], namely, we have chosen>0.8. Fig-
transition to the running state does not take place simultadre 14 presents the results for different forces; the ordinate is
neously in all channels, but due to thermal fluctuations ithe index of the channel and the abscissa corresponds to
starts in a single channéWith a random numbgr while ~ several measurements. The black points correspond to mov-
other channels remain in the coexistence regime where twihd channels, i.e., channels where all particle velocities are
groups of atoms exist. With further increase of the force dreater than the threshold. ,

other channels are also transferred to the running state to: First, we can see that the range of force is rather small

that is why, in the two-dimensional case, the region of thePetween the first picture, where almost all lines are static
transition is smeared out. In subsection 2 we will study intF =0-27, and the picture where the whole system is moving
Q}:.:O.BO); therefore, to obtain quantitative results, we have

greater detail the growth of these moving channels versus tr} ; ,
external force. 0 increase the forqe in very small increments. We can also
see that, at the beginning, a few moving lines are created, not
necessarily neighbors, and then for a slight force increase,
2. Growth of moving islands these moving channels induce the motion of the neighboring

We studied the motion of atoms in different channels.channels, yielding an increase of the width of the moving

Figure 13 shows, for example, the atomic trajectories for twdSland. The coalescence of the islands plays the final role.
neighboring lines in thex direction. The black diamonds These illustrations also show an interesting difference be-

emphasize the motion of one atom and clearly indicate tw ween the dynamics during the increase of 'the fdmt
behaviors: in Fig. 1&), the atom is always moving in the our panel$ and, on the contrary, the dynamics during the

o oS S decrease of the forc@ast four panels We clearly see the
positive x d|rect|9n, while in Fig. 13.3)' the atom hgs an horizontal lines in the first four panels, which means that if a
oscillatory behavior between the static and the running state, - nnel is moving, it almost never stops. On the contrary

once the atom has reached a static group, it stays in thicefuring decrease of the force, the dynamics is different, since

frozen state until its preceding atom has moved away, alloWge channel could move, be stopped just a small time later,

ing the motion to begin again. It is interesting to note here;nq then move again; this generates a scattered picture.

the usual motion of cars in a traffic jam! To quantify these illustrations, we introduce telth of
Now, let us look more carefully at the transversal growthipe moving islands as follows. Calling(i) the number of

of these moving regions. In the remainder of this paper, wenoving islands whose width is channels, we define the

will call moving linesthe channels where all the atoms are quantity

moving, as is the case in Fig. (. More precisely, we o
consider that a line is moving if, at a given time and for a Q)= 1 Zw(i)i ©
given external force, all its atoms have a velocity greater My Zw(i)
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background o andq are relative prime integexsthe effec-
tive kink mass is equal ton,~m/q?. However, instead of
using the approximate expressions #Qrandes,,, which are
too crude in the casg.~1, we have calculated these pa-
rameters numerically by the method described in detail in
[35,36. In particular, for kinks on thed,=1/2 background
we found ey =e+e~0.759 eV ande{)~0.0849 eV.
Now let us interpret the simulation results described in Sec.
lll, with the help of the quasiparticle-gas approd@v,7]
valid at low temperaturekgT<e, .

1.0
0.8

0.6

WIDTH

0.4

0.2 _ B. Geometrical kinks

For the#=21/41 case, the mass transport along the chain
is carried out by “trivial” kinks constructed on the back-

o0 ground of thef,=1/2 structure as shown in Fig(h); the
0.265 0.270 0.275 0.280 position of the atom represented by black diamonds moves
F/F, just for a few lattice sites while the five kinks almost com-

pletely cross the system during X@0As the averaged dis-
FIG. 15. For the cas#=21/31, the diamonds depict the width tgnce between the kinks is largequal to 4&, in the
of the moving. island and the solid line corresponds to the approxi-ground statg the kink-kink interaction is small; the atomic
mate expressiofsee text flux is therefore restricted by the need for the kinks to over-
. . . come the PN barriers. When the driving folfeés increased,
The prefactor is used in order to have a definition indepeng, o pN parriers are lowerdgimultaneously with the original

dent of the transversal size of the lattice. In Fig. 15, thebarriers ofV,(x)] in the direction of the force, resulting in

diamonds show the evolution of the width) versus the . . . .
. . the increase of the single kink mobility. So, at zero tempera-
force in the cas®=21/31, at room temperature. We used a .
ture the crossover from the lockd®})=0 state to the kink-

lattice with 60 chains in thg direction in order to have good : ;
running state is expected to take place at the force

precision for the width because of the final exponential in- = ; .
crease. We have fitted the width by the exponentiaf ~Fk=C7ep/as, where the factorC is approximately
exp[(F—Fo)/AF]. The solid curve in Fig. 15, correspond- 1-1° for the chosen shape of the substrate potetvialas-

ing to the values ;=0.276 andAF =0.002, shows that this sumed that the PN potential has the same shape as the origi-
expression is very accurate. We can also check that the valui@l substrate potentialSubstituting the value o) found

of F, corresponds to the transition to the running state, plothumerically, we obtairr,~0.112 which is close to the value
ted in Fig. 9. Fy~0.14 found in the simulation. In addition, the kink-
running state exactly coincides with the expected value of
the mobility B~ 6,B;, where §,=1/41 is the dimensionless
kink concentration. Namely, we foun®/B;=0.025 as
shown in Fig. 4a). Moreover, this picture confirms that the

A. Introduction and remarks mobility presents a hysteresis: the quasiparticle approach for

Now, let us show that most of the simulation results abouth€ kinks is a very good description to explain this behavior.
the mobility of the FK system may be described in a similar  For higher forces=>F,, the residual-kink flux is satu-
way to the behavior of the system of noninteracting atoms ifatéd and an increase in mobility may be achieved owing to
we consider kinks instead of atoms. The kink is a quasiparthe creation of new kink-antikink pairs with their following
ticle, characterized by its widttl, an effective mass, and ~ Motion in opposite directions. When forée increases, the
the rest energy, . The kink can move along the chain but €nergy threshold for thiek nucleation decreases frosg,; to
this motion is carried out in an effective Peierls-Nabarro® pair=&pair—FX*, Wherex* is the saddle point determined by
(PN) potential with the amplitude,,. The kink parameters the solution of the equatiomll;(x): F andv(x) describes
are determined by the dimensionless elastic congfantle-  the energy of kink-antikink attractiofsee details ifi8]). The
fined as external force lowers the saddle-point energy, thus increasing
the rate of kink-antikink pairs.

We know [38,35,7 that in the weak-coupling case the
kink-antikink attraction at large distances behaves as
vik(X)=exp(-yx), _ where  y=min(&d,B), &~
wherea,=a,,/ 6 is the average interatomic distance along— VOeft INGert, d=2ay/ger is the kink width, anda=2ay, is
the chain. For our choice of the model parameters, we havthe period of the#=1/2 background structure. Because at
Jerr€[0.06,0.6 for the #<[0.5,1] coverages, so that the chain short distances we hawg(0)= — &y, We may use for the
corresponds to the low-coupling limit and the kink param-kink-antikink interaction the interpolating formulay ()
eters may be approximately calculated by the expressions — & p,/cosh@x). In addition, in the discrete chain the kink
presented in Ref.7]. In particular, for kinks on th&d,=o/q motion is carried out in the PN potential

IV. DISCUSSION

2
_ Agx "
Geft™ 2772‘95x Vint( aA)v (10)
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83;) (1+?)[1—cog2mx/a)] since other types of kinkésuperkinks, which may exist in

Upn(X)~ - [1+s2— 25 cos 2mx/a)] (11 the coverage interval for lower forces, are much more subtle
and are not well-defined quasiparticles for higher forces. For

a given concentratio, the coexistence stage is character-
ized by an approximately constant mobiliy,, lower than
the maximum mobilityB; , when the applied forcg is var-
ied within a quite wide interval. A careful examination of the
B(F) dependences shows that the mobibtys even slightly
decreasing with increasing foré¢see Figs. 1, 8, and)9The
maximum mobility at this stage occurs for lower forces, im-
C. Superkinks mediately after the kink-antikink nucleation threshélg,,.

Now let us consider within the quasiparticle-gas approach Nen the kinks(the N, geometrical kinks and th, force-
the more complicated case of the concentratior21/31. excited kinkg start to bunch into compact groups and the

Numerical calculations for this coverage gave the Va|ue§iecreﬁlse of tEg m?fbility can be understood in terms of the
£par~0.170 €V andsgﬁ)~0.019 eV. According to the phe- S07€@ edbunchingeffect for kinks, introduced in the context

of the Josephson-junction arrays where the kinks present a
tendency to come closer togethg89,40. These compact
groups of kinks are in fact dense immobile atomic islands

so that the total potential for thiek pair nucleation may be
written aswvy(X) =vy(X) +vpn(X). Using this expression,
we obtain that the barrier for thkk nucleation is totally
degraded aF = F ,,;~0.22 which again is close to the simu-
lation thresholdF ,,;~0.20.

nomenological theory7], the first step on th&(F) curve
should correspond to the transition of “superkinks”, i.e., the
kinks constructed on the background of #e=2/3 structure,

: s . ith the coverage, =1 (the subscript andm mean immo-
to the running sta(tke), this step is th_erefore expected fo tak ile and mobileg réspeg:tive)l.yWith tphe gradual increase of
place atFg~Cmep,/as,=0.025, which may be compared w6 forcenote, that according to the numerical pro-

h . i . %edure, the evolution time increases)tame can expect that

of B(F) e_ltF:FSk-Paif will be associated with the ge_atmn o the mobility will slightly decrease to some satur«aﬁion value

sk-sk pairs, but as we do not know the law fsk-skinter- g qye to the coalescence of these immobile islands of at-

action, unfortunately, we are unable to calculate it. oms. Indeed, as explained in the next paragraph, the first
For higher external forcesh>Fgcpay, the superkinks  atom of an immobile group has a lower energy barrier to

cannot be any longer considered as well-defined quasipartsscape from this group, and therefore the number of com-

cles, because they are destroyed by the driving force. Bjetely locked atoms increases when immobile groups coa-
now, we may consider thé,=2/3 structure as a superstruc- |ggce.

ture of the residual‘geometrical”) trivial kinks constructed At the end of this coalescence process, the number of
on the background of thé,=1/2 structure. Therefore, we atoms in the immobile group i, . The rest of the system is
may expect that the next increasing®fF) will take place  mopjle and consists df,, mobile (or running atoms with

at Fy~0.14, as we have found in the previous paragraphmayimal possible velocity in the direction of forcg=B;F.

and then aF =Fy_p4~0.22, as it was for th@#=1/2 cov- |t js remarkable, that the coveragg in this mobile group of
erage. However, the mobility of the trivial kinks as well as atoms was found to be constant, slightly lower than the kink-
thetk-tk nucleation rate is essentially suppressed owing to @ntikink background coverag&=1/2: the value is,,~0.4

huge concentration of residual kinks. within the studied interva]0.5, 1. Let us emphasize that if
the explanation is derived here in the one-dimensional case,
D. Coexistence regime the generic picture Fig. 1B) corresponding to the two-

The transition of the system to the totally running StatedlmenS|onaI case verifies that this value is also valid in the

B=B; exhibits the existence of an intermediate state with £D case. : .

lower mobility B, in the quite large interval of force 't IS clear thatN; andNp, satisfy the relations

[F,air.F]- This state, attributed in Sec. Il B 1 to the regime , _ _ _

of the creation of the kink-antikink pairs, will be called the Nit Nn=N, - Mi+Mm =My, 12

coexistence regime because it corresponds to the coexistence

of two groups of atoms: mobile and immobile. If this stagewhere N is the total number of atoms in the system,

(as well as other intermediate stap&snot observed for the M;=N;/6; (M,=N,/6,,) are the sizes of the parts of the

trivial coverages#=1/2, =1, etc., it exists for all nontrivial system occupied by the immobilenobile) subsystem, and

coverages in the coverage interval studjécb, 1] and has M, is the total system size.

some universal features. It is therefore interesting to dwell on Thus the system in the coexistence regime is split into two

its characteristics with the variation of coverage in greatesubsystems, namely, a dense immobile group with a cover-

detail. For simplicity, we will restrict our discussion to the age 6 =1 and a mobile subsystem where the atoms are dy-

guasi-one-dimensional FK model at low temperatlire0,  namically arranged in more-or-less regular structure with

even if the discussion is also valid for the general 2D cas#),,~0.4. Therefore, the total mobility of the system in the

and nonzero temperature. coexistence regime iB,,=(N,/N)B; and has a simple de-
Let us apply the kink-gas terminology to the descriptionpendence on coverage.

of this coexistence stage. First, we should note that at high Let us show how the expression for the functiBp(6)

enough values of force, corresponding to the state studie@nd the conditiond,,=const arise from the kink-gas ap-

we only have to consider the simplest kink excitations,proach. For the mobile subsystem of sidg, consisting of

namely, trivial kinks constructed on the background of theN,, atoms, the number of antikinks defined on the back-

6,=1/2 structure, for the entire coverage interyals, 1], ground of §,=0a/q structures iN,=oM,—gN,,, i.e., for



55 NONLINEAR MOBILITY OF THE GENERALIZED . .. 3609

.o T [T T [T T T T T T [T T T T T T T T T T T T T

0.350 -
N
[ 0\ 4
L 4 L 5\\0
L - P ~ 1
0.8 0.30F Seo s
MRS r o~ 1
_ < \\\\
~a
7 0.25 Tl 4
o 1 o F j
=
™3 <
m <

0.0 Liuivin Loivienies Lo tenenin Levoviiny Loy O3y

0.50 0.60 0.70 0.80 0.90 1.00 0.00 0.02 0.04 0.06 0.08
COVERAGE TEMPERATURE (eV)

FIG. 16. Mobility B, in the coexistence regime vs the coverage  FIG. 17. Critical forces? andF { at zero temperature vs cov-
6. The diamonds correspond to the simulation data and the solidraged for B=0.9B; .
curve to Eq.(14).

- o coveragesin the vicinity of §=1/2 coverage, the number of
our case, whergg=1/2 andN,=My,—2N,,. Combining  excited kink-antikink pairs deviates slightly from the simple
this expression with Eq(12) and using that for the dense expressiomN = a(M,—N)].
immobile subsystenM;=N; (since §=1), we obtainNp The coexistence of the mobile and immobile groups of
=My—N-N and M,=2(M,—N)—Ny". The last ques- atoms explains also the typicdl,(F) dependence in this
tion is therefore to find the number of force-excited antikinksregime [see, e.g. Figs. (b) and 1Qb)]. Indeed, the mean
Ny depending on the total system siki, and on the total velocity in the immobile domain is of course zero while the

number of atoms\. _ _ mean-squared atomic velocity in the immobile domaim;is
For all coverages 1R6<1 (i.e. N>M,/2), there is al-  ~ k;T/m. In the mobile domain, the mean velocity is

ways some excess of the atomic “material” needed to creatg ~ B F=F/my, while the mean-squared atomic velocity is

new pairs of kinks and antikinks on thgg=1/2 background 227\ T/ Finall - T
X . | i Jo? B . y, substituting the mean velocity in tle
structure. Therefore, in this coverage region, the main rediréction<vx>=(Nm/N)vf into the expression of the effec-

striction on _the number of the kink-antikink pal§., which /o system temperature defined by E8), it is easy to ob-
can be excited in the system by some external fagtmn- tain that in the coexistence regim&.=T+[(N,/N)(1

perature, forcg is the “free room” left in the system. There- _ IN)]mo 2/3kg . Thus, within the coexistence regime,
fore, we can writeN = a(M,—N) where the constant is 4 gffective temperaturg, increases as>.

lower than 1/2 and does not depend on bbthand M, .
Physically,a corresponds to the saturation number for force-
driven kink-antikink excitations af >F ,; but it is, unfor- E. Critical forces
tunately, too difficult to estimate it reliably. Nevertheless, we
obtain for the mobile subsystei,,=(M,—N)(1—«) and
Mn=(M,—N)(2—«); we are therefore able to derive the
value of the coveragé,,=N,/M, of the mobile subsystem

Now let us consider the coverage and temperature depen-
dences of the forward critical forde, for the transition from
the coexistence regime to the totally running state, and the
backward critical forcé=, for the transition from the running
state to the immobile stat@r, for certain coverages, to the
Hmzl_—azconst (13 state with a nonzero mobility of the system, provided by
2—« kinks).
The dependences &f° andF  versus coveragé at low
and the expression for the total mobility of the systemt€émperaturel=0.0005 are plotted in Fig. 17. It is seen, that
B,,= (N,/N)B; in the coexistence regime at coverage®=1/3, 6=1/2, 6=1, etc., corresponding to the
trivial ground states, the forcE? is high and has values
_0 0. 1-0 close to the value 0.6 for the case of noninteracting atoms.
=B — (14) By contrast, the entire coverage intery@l5,1] is character-
0 1-6, 6 ized by reduced values &, which are approximately two
times lower than those for trivial coveragegpart from small
Figure 16 shows the values Bf,, obtained in simulation for variations probably arising from variations of the kink pa-
various# (symbolg, and the approximate expressid®) for ~ rameters with coverageThis difference is easy to under-
6,=0.4 (solid curvg. We see that this curve provides an stand if one takes into account the system’s separation into
excellent fit of the simulation data for almost all studied dense immobile and more rarefied mobile groups of atoms

1
Bn=Bi(1—«a)
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0.6 ————T————T—— Fo=Fp+V2mksT nerf 1(1-2P,)
=F2+5VT, (15)

where erf! is the inverse of the error function. With}
=47\med m=0.144, the solid curve on Fig. 18 shows that
this expression scales very accurately with the above expres-
sion if =0.35.

The evolution of the forward transition versus tempera-
ture is much more complicated even if it is clear that because
of the fluctuations due to the temperature, the particles will
ozl o ) feel a smoother potential and a smaller barrier to overcome;

’ -7 : therefore, the system will jump to the final running state for
e 2 T lower external forces. Numerical results plotted in Fig. 18 for
a-o ] the caseg=21/31 scaled with the expressih=F 2— &, T,
if we choseF 2=0.37 and¢=0.44. While such a law is valid
for other concentrations, the parameters significantly depend
0.0 on the concentration, contrary to the law fog.

0.2 0.4 0.6 0.8 1.
COVERAGE

0.4 b

CRITICAL FORCES

V. CONCLUSION

FIG. 18. Width of hysteresisThe diamondgtriangles corre-
spond to the position of the transition to the runnifarked state
for different temperatures in the cage-21/31, while the squares
corresponds to the transition to the locked stateéfe21/41. The

Let us now summarize the results, discuss their relations
with other investigations of similar problems, and outline
interesting topics for future studies. When an external force

threshold was chosen to Be=0.98; . The solid and dashed curves is increased, a system of interacting atoms exhibits a transi-

correspond to the phenomenological approach discussed in the tefion from the low-mobility regime withB=B, (the linear
regime to the high-mobility state wittB~B;. The latter

, , , regime corresponds to the running state of atoms in the in-
during the coexistence regime. Indeed, because of the stroRgineq external potential, where the atoms gain more energy
asymmetry of its environmen(dense island behind it and fom the dc force than they can lose due to damping. The
rarefied island in front of ){ the first atom of each immobile running regime may be achieved at high enough force for
group has a much lower energy barrier to jump in the direCyny atomic concentratiog; the highB state does not corre-
tion of the external force than in the case of a homogeneougyond to the sliding state, contrary to the assumption of Per-
film. Therefore, an inhomogeneous islandlike system in theson12], and therefore, it is not connected with incommen-
coexistence regime 14/20<1 is much easier to transfer to g rapjlity effects. This is confirmed by our results obtained at
the running state than the homogeneous system at trivial COyyitferent coverages.
erages. 0 ) When 6=1/q so that theT=0 GS is trivial; there is no

On the other hand, the forcB;, corresponding to the jntermediate state; as in the case of noninteracting adatoms,
backward transition has a smoother dependence on the cope system goes directly from the locked to the running state.
erage(see Fig. 1. For low concentration, the transition t0 Fqr 3 more complicated atomic structute o/q whereo>1,
the locked state corresponds to the external foFfe  je. when the GS of the system may be considered as a
=4n\meg/ , as for noninteracting atoms. However, we seehjerarchy of subsequently “melted” superkink structures,
that this critical force increases with concentration: when thehe B,-to-B; transition passes through a series of intermedi-
concentration is high, the particles are closer and the interate states corresponding to the successive role of these su-
action potential becomes important, leading to an increase @ferstructures. In particular, for an incommensurate GS, the
the effective barrier between wells. It is interesting to notesystem exhibits a devil's-staircase beha\via4].
that for coverages less tha#~0.66, the transition corre-  The factor that restricts the system mobility is either the
sponds to a direct jump to the completely immobile state oamplitude of the PN barriers, when the interparticle interac-
the system, while for higher coverages the system jumpgon is low, or the energy okk pair creation, when the in-
back to the state with a nonzero mobility; in the last case, aeraction is strong. The atoms in the intermediate states are
further decrease of the force yields the same decrease in thglit into two groups characterized by low and high veloci-
mobility as during the force-increasing process. ties along the driving force. The high-velocity atoms are or-

~ Let us show now that it is possible to derive the expresganized into compact groups, this fact is in accordance with
sion of the critical forceF,, versus temperature. As dis- the simulation results di41] where the creation of newk
cussed, at zero temperature the back transition approximatepairs was observed just behind the moving kiflomain
corresponds, for low concentration, to the external fdffe  line). Our simulations have also shown that the intermediate
=4yymed/ . For nonvanishing temperatures, we can con-state is chaotic, although we did not study in detail the char-
sider that the system goes to the locked state when the probeteristics of the system attractor.
ability that the velocities will be lower thadr Y/mz is The transitions between different states are abf(firsit-
greater than a threshol},. Then, it is rather straightforward ordep even at nonzero temperature provided the correspond-
to derive that the critical force follows the law ing superstructure is not melted at a given temperature. This
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is the main difference between the system of interacting atWWe emphasize, however, that Persson studiedshieopic

oms and that consisting of noninteracting ones, where th@D system, while we have investigated theghly aniso-
transition is smooth for an§+0. This fact may be explained tropic 2D array of atoms placed in 3D external potential, so
in the following way: in a chain of interacting atoms, a single the behavior of these two models might not be identical.
atom cannot jump alone from the locked state to the running However, we made some simulations in the triangular
state; the chain should jump as a whole between the differef@@se, which is one of the most isotropic lattices. Namely, we
states. A more detailed investigati¢f2] of the simplified have taken the same energetic barriers in both transversal

FK model showed that these transitions occurred througﬁiirections and have chosen the distance between channels
avalanches. equal to the distance between lattice sites inxhdrection.

The present simulation has also shown that for amp ;I'he resntJIts showeqf :Eat thdethhyfs;]eret&s s'urglved at rgjonHzero
and a temperature that is not too high, &) function emperatures even If the width of nysteresis decreased. How-

exhibits hysteresis: the reverd®-to-B, transition takes ever, the intermediate states have disappeared for the
place at a lower forc€ = F,, than the direct transition. Again #=21/41 coverage certainly because, in the triangular lattice,

this effect may be explained as occurring owing to the colIN€ interaction of neighboring kinks is different and gives
lective character of motion in the system of interacting at.M15€ to new dynamical features.

oms. A single atom cannot jump from the running state to We confirmed one of Persson’s results: the low-mobility—

the locked state because it will be immediately pulled off by!©~Nigh-mobility transition is a first-order phase transition,

the neighboring running atoms. In connection with this ques!®" is abrupt and (_exhibits the hysteresis even at nonzero
9 g 9 g temperature. In addition, we have shown that the HBgte-

tion we have to mention the paper of Ariyasu and Bishop .
bap y P ime corresponds to the running state of the system and that

[43], where it was shown that during the force-decreasin o ; )
process the SG system passes through a countable set(f transition should pass through |n'Fermed|ate statgs. Oq the
er hand, we do not confirm the relationship

intermediate states corresponding to different concentratio )
P 9 back~0-5F girect [12]. We also found that the increase of the

of kink-antikink pairs. factive t : s due to th G . locit
Comparing the 1D and 2D systems, we did not find ang. ?qt;\/?' empt(—;-]ra_u;e IS d”? Ot te nhon-Gaussian velocity
essential difference in their behavior except that the 2D sys—IS ribution In the intermediate states. . -
In this article, we have considered the nonlinear friction at

tem exhibits smoothdB-to-B; transitions. This difference is tomistic level. The role of the hvst is is found to b
connected with the fact that the transition in the 2D systerriij atomistic level. 1he role of tn€ hysteresis 1S found 1o be
ucial, as was found in mesoscopic fricti¢a5,46. Of

does not take place simultaneously in the whole system, bt ) lid-state phvsicist d chemists h |
starts in a singldrandom channel and then is spread over course, since solid-staté physICiSts and cheémists have only
-(gecently begun to study the microscopic friction, new experi-

ments and theoretical approaches are needed in order to com-
lete our understanding, for example concerning the friction
roperties at the surfaces of two bodies. Work along this line
is in progress.

“rivers” when F is increased was studied earlier for the 2D
system of atoms placed in the external potential of randoml
distributed pinned impuritief44]. We have shown that the
width of the rivers as a function df scales with an expo-
nential law. - . ACKNOWLEDGMENT
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