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Nonlinear mobility of the generalized Frenkel-Kontorova model

Oleg M. Braun,* Thierry Dauxois,† Maxim V. Paliy,* and Michel Peyrard
Laboratoire de Physique, URA-CNRS 1325, Ecole Normale Supe´rieure de Lyon, 46 Alle´e d’Italie, 69364 Lyon Ce´dex 07, France

~Received 5 June 1996!

Nonlinear mobility of one-and two-dimensional systems of interacting atoms in response to the dc external
force is studied in the framework of a generalized Frenkel-Kontorova model. The atoms are subjected to a
three-dimensional external potential periodic in two dimensions and parabolic in the third dimension. When the
force increases, the system exhibits a transition from the low-mobility regime to the high-mobility regime, the
latter corresponds to the running state of atoms in the inclined substrate potential. During the transition the
system passes through intermediate states depending on whether the concentration of atoms corresponds to the
ground-state atomic structure with the simple or complex elementary cell. All the transitions are first-order
dynamical-phase transitions, i.e., they are discontinuous and exhibit a hysteresis even at nonzero system
temperature. The simulation results are explained with the phenomenological approach, which treats a system
of strongly interacting atoms as a system of weakly interacting quasiparticles~kinks!.
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I. INTRODUCTION

The study of the atomic processes occurring at the in
face of two materials when they are brought together, se
rated, and moved with respect to one another is centra
many technological problems, such as adhesion,contact for-
mation, friction wear, lubrication, fracture, etc. Owing to the
development of new experimental and theoretical works
studying these phenomena at the atomic scale, an un
standing is beginning to emerge of the molecular mec
nisms of tribology in thin films and at surfaces; the atom
force microscope from the experimental point of view or t
molecular-dynamics simulations on massively parallel co
puters are, for example, very powerful tools for the physic
to acquire a better understanding of the underlying phen
ena.

Here, we will consider one aspect of this problem: ma
and charge transport in systems with strong interatomic
teractions. We study particles, interacting with each oth
adsorbed on a crystalline surface. The adsorbate is con
ered as a subsystem and the remainder is modeled a
external potential and a thermal bath. Such a system ca
considered within the framework of the generalized Frenk
Kontorova~FK! model. Introduced to model the dynamics
dislocations in crystals@1#, the FK model describes in a mor
general context a system of interacting particles subjecte
a periodic substrate~on-site! potentialVsub. This model may
describe, for example, a closely packed row of atoms in c
tals @2#, a layer of atoms adsorbed on crystal surfaces@3#, a
chain of ions in a ‘‘channel’’ of quasi-one-dimensional co
ductors @4#, hydrogen atoms in hydrogen-bonded syste
@5#, etc.

In the presence of thermal fluctuations, the particles m
leave the original well and go to either the neighboring l
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or right well or they may move in the course of time to oth
wells which are further away: for long enough times t
particles will diffuse in every direction. This activated diffu
sion mechanism of interacting particles was studied, for
ample, in a previous work@6#. If an additional forceF is
applied, the particle will preferably diffuse in the direction
this force and on the average there is a drift velocity t
depends on the external force. For small forces, the mob
B defined bŷ v&5BF will be independent of the force~lin-
ear response!, but for arbitrary forcesF, the mobility will
depend on it~nonlinear response!. The problem is to calcu-
late this nonlinear mobility.

Transport properties of the FK model have been a sub
of intensive studies in the last decades. The linear mob
B05^v&/F, which describes the steady-state mean ato
velocity ^v& in response to the dc driving forceF in the limit
F→0, was considered in a number of works~e.g., see@7# and
references cited therein!. In the general case, the mobilityB
should depend on F; the total external potentia
Vtot(x)5Vsub(x)2Fx is a corrugated plane, with an averag
slope determined by the external forceF. For large forces,
Vtot(x) has no minima, whereas for intermediate and sm
forces, minima do exist. Denoting by« the amplitude of the
periodic potential,a its period, andC a numerical factor
depending on the shape of the potential~C51 for the sinu-
soidal potential!, the barriers of the substrate potential b
come completely degraded for forces greater th
Fr[Cp«/a and the system should behave as a homo
neous one; in this regime, the mobilityB(F) reaches its final
valueBf[(mh)21, wherem is the atomic mass andh the
viscous friction describing the energy exchange of the s
tem under consideration with the thermostat.

The nonlinear mobility of the FK model has been studi
only for theoverdampedcase~i.e., for the caseh@v0, where
v0 is a characteristic frequency of atomic vibration in t
external potential! with the trivial concentrationu51 ~the
dimensionless atomic concentrationu is defined as the ratio
of the number of atoms to the number of wells of the ext
nal potential!. The low-temperature limit for the sine-Gordo
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~SG! case~i.e., for strong interatomic interaction! was inves-
tigated by Buttiker and Landauer@8# with the help of the
generalized rate theory~see also@9#!. In this case the mag
nitude of the atomic flux is restricted by the rate of creat
of kink-antikink (kk̄) pairs @we recall that a kink~antikink!
describes the minimally possible topologically stable lo
compression~extension! of the commensurate structure
the FK model#. The driving force lowers the barrier for th
kk̄ pair nucleation, and this results in the increase of sys
mobility. The rate theory is adequate only providedF,Fr
i.e., as far as the system dynamics have an activated na
At high temperatures, the nonlinear mobility of theu51 FK
model was calculated within the random-phase~mean-field!
approximation ~RPA! @10,11#. In this case, the time
independent many-particle Schmoluchowsky equation m
be reduced to a one-particle equation with an effective
site potential and be solved numerically by the transf
integral method. The calculations showed that for low ext
nal force as well as for high force the atomic flux
proportional to the force~Ohm’s law!, but the high-F mobil-
ity may be many orders of magnitude greater than the lowF
mobility, so that the low-F and high-F regimes are separate
by a region of very nonlinear mobility.

In addition, Persson@12# has recently used the molecula
dynamics~MD! technique to study a two-dimensional~2D!
system of interacting atoms subjected to a 2D external p
odic potential; this model may be considered as a general
FK model. For theunderdampedcaseh!v0, he observed a
dynamical transition: with increasing of the forceF, the sys-
tem presents a discontinuous transition from the lo
mobility stateB0 to the high-mobility stateBf , and for de-
creasing force, the system exhibits a hysteresis. Becaus
value Bf corresponds to the maximum mobility of an is
lated atom in a uniform space, the simulation results indic
that in the high-mobility state the system does not feel
external potential at all. Using the well known Aubry pha
transition from the pinned state to the sliding state in the
model in the case of incommensurate atomic concentrat
@13#, Persson supposed that the high-mobility state in
simulation corresponds to the incommensurate sliding s
of the 2D system.

On the other hand, the Brownian motion ofnoninteract-
ing atoms placed on a one-dimensional periodic poten
and driven by the dc forceF had been studied in a number
works @14–18#. It was shown that the crossover from th
low-F mobility B0 to the high-F mobility Bf depends on the
friction coefficienth and the system temperatureT. Indeed,
when an atom is driven by the forceF from one top of the
total potentialVtot(x) to the next top in the absence of the
mal fluctuations~T50!, it gains the energy«15Fas over
one period, but at the same time it loses the energy«2

;hm^ẋ&as because of damping. If«1.«2 , the atom will
come finally to the ‘‘running’’ stationary state; in the opp
site case«1,«2 , the final state will be ‘‘locked.’’ It is clear
that the atomic motion is always running for the forc
F.Ft , whenVtot(x) has no minima. In addition, there exis
a second critical valueFh (Fh.4hAm«s/p) such that for
F,Fh the stationary state is always locked. The interme
ate regionFh,F,Fr is bistable: the motion is either run
ning or locked depending on the initial velocity of the ato
@19,14#. Thus, atT50, the underdamped system of noninte
l
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acting atoms exhibits a dynamical first-order phase tra
tion: when the external force increases, the system under
the locked-to-running transition atF5Fr while, when the
force is decreased, the reverse running-to-locked transi
takes place atF5Fh . However, at anyTÞ0, the phase tran-
sition disappears because thermal fluctuations cause tr
tions of the system from the running to the locked state a
back@20–22#. For a low fluctuation force and a temperatu
T.0, the bistable region is split into the running and lock
subregions by a curveFc~h! @23#. WhenF,Fc , the system
is mainly in the locked state whereB(F)'B0 , while for
F.Fc the system is mainly in the running state a
B(F)'Bf . Thus, when the forceF increases crossing th
valueFc , the mobilityB(F) changes sharply fromB0 to Bf .
When the temperature of the systemT is increased, this tran
sition is smeared out.

Using these results, it is reasonable to suppose that
high-mobility state observed by Persson, corresponds no
the sliding state of the incommensurate FK model as it w
proposed@12#, but to the running state of atoms in the in
clined substrate potential. However, the transition in the s
tem of noninteracting atoms is not a phase transition bu
smooth transition for anyTÞ0, while the transition observed
by Persson is a first-order phase transition with hysteres

The aim of the present work is to study this transition
greater detail. We consider the generalized FK model, wh
describes the 2D system of interacting atoms subjected to
3D external potential periodic in two dimensions and pa
bolic in the third dimension. The model may be used
describe a submonolayer film of atoms adsorbed on a cry
surface, so that the external potential corresponds to the
strate potential periodic in the directions parallel to the s
face and parabolic in the direction orthogonal to it. The m
interesting application of the model is connected with trib
ogy problems@24# ~e.g., the understanding of friction an
lubrication between two flat macroscopic surfaces! as had
been discussed in detail by Persson@12#. However, let us
emphasize here that in the usual solid friction at a mac
scopic scale, it is valid to use the zero-temperature appr
mation, since the heights of the energy barrier to be ov
come are much greater than the thermal energy. Studie
usual solid friction in the presence of amplitude-controll
noise would deserve experimental investigation@25#. The be-
havior of the hysteresis should be qualitatively in agreem
with results presented here in the context of microscopic f
tion where the effect of the temperature is very importan

Our results show that, contrary to the case of a sin
atom, in the system of interacting atoms the transition fr
the locked to the running regime becomes abrupt even
nonzero temperature, i.e., corresponds to a dynamical fi
order phase transition. In addition, we found that there
intermediate states between the locked and running regim
Using a phenomenological approach that treats a system
strongly interacting atoms as a system of weakly interact
quasiparticles~kinks!, we estimate the thresholds for diffe
ent concentrations and then we compare the simulation
estimation results. The results show also that at lowT for the
uÞ1 case the nonlinear mobilityB(F) exhibits a hierarchy
of steps.

We have organized this paper in the following way. T
model, the choice of its parameters, and the numer
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method are described in Sec. II Sections III and IV form t
heart of the paper. Simulation results are presented in
III, while Sec. IV is devoted to the phenomenological a
proach of the problem. Finally, Sec. V discusses the res
and conclusions.

II. THE MODEL

The displacement of an atom is characterized by th
variables:x andy describe its motion parallel to the surfac
while z describes its deviation orthogonal to the substra
For the substrate potential, we take the function

Vsub~x,y,z!5Vpr~x;asx ,«sx ,sx!1Vpr~y;asy ,«sy ,sy!

1Vz~z!, ~1!

where we use the deformable potential proposed by Pey
and Remoissenet@26#,

Vpr~x;a,«,s!5
1

2
«

~11s!2@12cos~2px/a!#

11s222s cos~2px/a!
, ~2!

which can be tuned to describe a real substrate pote
rather accurately. Thus,«sx(y) corresponds to the activatio
energy for diffusion of an isolated adatom on a substr
with the rectangular symmetry along thex or y direction,
asx(y) corresponds to the lattice constants, and the parame
sx(y) ~usu,1! describe the shape of the substrate poten
Namely, the frequencyvx of a single-atom vibration along
the x direction is connected to the shape parametersx
by the relationship vx5v0(11sx)/(12sx), where v0
[(«sx/2m)

1/2(2p/asx).
The potential perpendicular to the surface is modeled

the parabolic function

Vz~z!5 1
2mvz

2z2, ~3!

wherevz is the frequency of normal vibration of an isolate
adatom.

For the interaction between the atoms we take the ex
nential repulsion

Vint~r !5V0exp~2b0r !, ~4!

whereV0 is the amplitude andb0
21 determines the typica

range of the interaction. The potentialVint(r ) corresponds to
the usual repulsive branch of interatomic potentials t
come into play when one attempts to pack atoms at an a
age distance smaller than their equilibrium distance. In
merical simulation we can include only the interaction o
given adatom with a finite number of neighbors. Therefo
we have to introduce a cutoff distancer * and account only
for the interaction between the atoms separated by dista
lower than r * , as is usual in MD simulations. To reduc
errors caused by this procedure, we use instead of the in
action ~4! the potential

Ṽint~r !5Vint~r !2Vint~r * !2Vint8 ~r * !~r2r * !, ~5!

so that the potential and force vanish at the cutoff dista
Ṽint(r * )5Ṽint8 (r * )50 ~tilde will be omitted in what fol-
lows!. In addition, because we are using the repulsive in
e
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atomic interaction, we have to impose periodic bound
conditions in thex andy directions in order to fix the atomic
concentration. Therefore, we will placeN atoms in the fixed
areaLx3Ly , whereLx5Mxasx andLy5Myasy , so that the
dimensionless atomic concentration~the so-called coverage
in surface physics! is equal tou5N/M (M5MxMy).

To model the energy exchange with a thermal bath,
use the Langevin equations for atomic coordinatesxi

mẍi1mh ẋi1
d

dxi
FVsub~xi ,yi ,zi !1 (

j ~ jÞ i !
Vint~ urW i2rW j u!G

5F ~x!1dFi
~x!~ t !, ~6!

and similar equations fory andz. Hereh corresponds to the

rate of the energy exchange with the substrate,FW 5$F,0,0% to
the dc driving force, anddF is the Gaussian random forc
with correlation function

^dFi
~a!~ t !dF j

~b!~ t8!&52hmkBTdabd i jd~ t2t8!. ~7!

In the simulation we use a dimensional system of un
measuring distance in Angstroms, energy and temperatu
electron volts. The mass of adatoms is chosen as unitym51,
which defines the time unit. In the result, the velocities a
measured in units ofv05~1 eV/m!1/2 and the force in units of
F051 eV/Å; we introduce also the characteristic time inte
val t052p/vx . In the remainder of the paper, the units
other dimensional physical quantities will be omitted, b
they are expressed in terms of the above units.

In order to be closer to real physical systems, let us t
the adsystem Na-W~112! as an example to define the mod
parameters. Namely, in the simulation, we putasx52.74 Å
andasy54.47 Å, which are the distances between the nei
boring wells along and across the furrows on the W~112!
surface, respectively, and«sx50.46 eV and«sy50.76 eV for
the corresponding barriers~these values were taken from
@27#!. To model the shape of the substrate potential, we h
to know the parameterssx and sy . They lie usually within
the interval@0.2, 0.4# @28#. For the sake of concreteness w
took sx50.2 andsy50.4, which leads to the following fre
quencies of adatom vibrations:vx51.65 andvy52.02, re-
spectively. For the vibration frequency normal to the surfa
we tookvz5

1
2 (vx1vy)51.84. Although these frequencie

are taken rather arbitrarily, they are typical for metal ato
adsorbed on metal substrates@29,30#. For the interatomic
potential ~4!, we took the parametersV0510 eV and
b050.85 Å21. This choice results in reasonable values
the adsystem@31#, since the interaction energies between tw
adatoms, occupying the nearest wells along the furrow
across, are equal toVint(asx)'0.97 eV andVint(asy)'0.22
eV, respectively. Finally, we have to define the rate of e
ergy exchange between the adatoms and substrate. We
h50.1vx50.165 which again is a typical value@30#. Note,
that our choice of the parameters does not claim to b
detailed quantitative interpretation of the Na-W~112! adsys-
tem because the model is still oversimplified for real ads
tems. However, we do believe in a qualitative description
the effect under investigation and claim that typical ads
tems should exhibit similar behaviors. Finally, for a nume
cal solution to the Langevin equations~6!, we use the stan-



te
s

y
pr
he

u
to

c

m
t

ve
rd

t
at

e

m

on
-

se
it
re
a
ce
th
an

x

ls
.

he
the

ver-

r

ig. 1

he

rst
-
g
a

the
-
it is

p

f
-

and
hav-
rce
tem
f

55 3601NONLINEAR MOBILITY OF THE GENERALIZED . . .
dard fourth-order Runge-Kutta method with the time s
Dt5t0/2050.19, and the cutoff radius is taken a
r *52asy58.94 Å.

III. SIMULATION RESULTS

A. Numerical procedure

In the simulation, we first look for the minimum-energ
configuration of the system. Thus, we start with an appro
ate initial configuration and allow the atoms to relax to t
minimum of the total potential energy, keepingT50 and
F50 ~this procedure was described in detail in a previo
work @32#!. Then we increase the system temperature up
given temperatureT by small stepsDT5T/50 during the
time t therm5100t0. At that point, we start to increase the d
forceF by small stepsDF50.01 up to a valueFmax. At each
step we wait the timetwait5100t0 in order to allow the sys-
tem to reach a stationary state. Then, for the discrete ti
t i5 i t 0 , we measure the system characteristics such as
average velocity of the atomŝvx& or the effective system
temperatureTe defined by the equation

31
2kBTc5

1
2m (

a5x,y,z
^~va2^va&!2&. ~8!

The measures are carried out during the timet run5100t0, so
that we get 100 points to compute averaged values for e
value ofF. In addition, at some steps we saved the coo
nates and velocities of all atoms.

The external force is increased up to the valueFmax, and
then decreased to zero with the same steps. In the simula
we mainly studied the system behavior for two substr
temperatures: zero temperature@in fact we used a very low
but nonzero temperatureT55.8 K ~kBT50.0005 eV! for
technical reasons# and room temperatureT5290 K
~kBT50.025 eV!. However, we also present results corr
sponding to different temperatures.

To simplify the study of the problem, we first begin fro
a simpler quasi-one-dimensional case, puttingMy51 so that
all chains are moving in the same way~but the interaction
between the atoms still has the 2D character!. In the second
part, we consider the full 3D case.

In the present work we restrict ourselves to concentrati
within the interval 0.5,u,1. The results for the trivial com
mensurate concentrationsu50.5 andu51 are not included in
the paper~although we made several runs for these ca
too!, because in these cases theB(F) dependences exhib
only one transition from the locked state to the running
gime at a relatively high threshold. At that point we emph
size that the results strongly depend on the atomic con
tration of the system because of the essential role of
geometrical kinks. These excitations can be defined for
commensurate atomic structureu05s/q, wheres andq are
relative prime integers. As background structure, we will e
tensively discuss here the coveragesu05

1
2, u05

2
3, and the

golden mean because of the Aubry transition, but we a
studied other concentrations to clarify our understanding
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B. Quasi-one-dimensional FK model

1. Commensurate concentration

Let us first describe the results of simulations for t
u521/41 case which corresponds to a system of kinks on
background of theu051/2 structure. Namely, theT50
ground state corresponds to a kink superstructure with a
age distance between the kinks equal to 41as ~in simulation
we tookN5105 andMx5205, thus having five kinks ove
the length under investigation!. TheB(F) andTe(F) depen-
dences for zero-substrate temperature are presented in F
for F varying from zero toFmax50.40. As seen from Fig.
1~a!, with increasing force the system evolves from t
locked stateB50 to the running stateB5Bf , passing
through two intermediate stages. The transition to the fi
intermediate state takes place atF'0.14, the second transi
tion occurs atF'0.20, and the third transition to the runnin
state is atF'0.28. The behavior of the system exhibits
large hysteresis: when the forceF decreases starting from
Fmax, it remains in the running state down toF'0.14 and
then jumps directly to the locked state. At the same time,
effective temperatureTe @see Fig. 1~b!# increases at the in
termediate states, while in the locked and running states
close to zero.

All the transitions are discontinuous~at least with our
resolutionDF50.01!. In Fig. 2, we plot a stroboscopic ma
~an analog of the Poincare´ section which is widely used in
stochastic dynamics!. Namely, during the timet run for each

FIG. 1. Hysteresis.The mobilityB is presented as a function o
the external forceF in ~a!, while ~b! depicts the effective tempera
tureTe vs F ~in fact we plotkBTe measured in eV!. The plus signs
and the solid curve correspond to force increase, the cross signs
the dashed curve to force decrease. The arrows indicate the be
ior of the mobility on increasing and decreasing the external fo
F. This picture corresponds to the quasi-one-dimensional sys
~N5105,Mx5205, andMy51!, i.e., kinks on the background o
theu051/2 structure. The substrate temperature iskBT50.0005 eV.
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3602 55BRAUN, DAUXOIS, PALIY, AND PEYRARD
step of force changing we saved the atomic velocities at
discrete time momentst i5 i t 0 , i51 100. To plot the sections
we chose the (Te ,B) plane, although another choice may
used as well. The resulting set of points is presented in
2, where we plotted all points in the same figure, so tha
may be considered as the evolution of the steady-state
tem attractor with variation of the external force. The st
boscopic map shows few well-separated areas, one co
sponding to the low-mobility regime withB'B0 andTe'T
~B050 for theT50 case!, another to the running regime wit
B'Bf andTe'T, and also two intermediate areas.

Now let us describe the intermediate states in greater
tail. Starting at a very low external force and switching
the force, the mobility remains zero. When we plot t
atomic trajectories forF50.05, we see in Fig. 3 that th
atoms are in a completely frozen state: the black diamo
show explicitly that this atom and consequently all others
static. We can also distinguish the five topological defe
locked in their ground state, i.e., in the state where they
equidistant from one another. This picture verifies that
mobility is zero.

The first transition atF5Fk'0.14 presents a hysteresi
too, as can be seen in Fig. 4~a!, where we increase the ex
ternal force up to the maximum value of 0.17 and then
crease the force. When we plot the atomic trajectories for
F50.17 step in Fig. 4~b!, we clearly see that the five topo
logical defects are moving and one can even see a tend
of these kinks to come together~a similar effect for atoms
will be described later in this section!. However, the black
diamonds showing the position of a single atom versus t
emphasize that the atoms are moving much more slow
Therefore, this first step corresponds to the transition
tween locked and running statesfor the kinksconstructed on
the background structure and the calculated mobility is no
ing but the mobility of these kinks. This kink-running sta
survives up toF'0.19 and is characterized by a mobili
B'0.025Bf .

FIG. 2. Stroboscopic map in the (Te ,B) plane for the system
evolution shown in Fig. 1.
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The second intermediate state exists within the inter
0.20&F&0.28 and occupies the region 0.07&kBTe&0.18 eV
and 0.75Bf&B&0.85Bf in the (Te ,B) plane. Simulation re-
sults show the following characteristic features of this sta
First, it exhibits a well-defined hysteresis shown in Fig.
where we increase and then decrease the external force
the maximum value of 0.20. Moreover, from the atomic tr
jectories, it is possible to see that this state corresponds
regime of creation of kink-antikink pairs in addition to th
first geometrical kinks. However, the different excitations a
much more difficult to distinguish than in Fig. 4~b! and that
is why we did not represent the picture here. Second, as
be seen from Fig. 6, the distribution of atomic velociti
P(vx) shows two peaks, while the velocity distributions
they andz directions~perpendicular to the chain! are Gauss-
ian. It means that in thex direction some of the particle
have a large velocity due to the external force in compari
with the values due to the temperature. Third, one can
that in the intermediate regime the mobilityB is slightly
decreasing when the force increases. This ‘‘coexistence
gime’’ will be discussed in greater detail in Sec. IVD.

For a higher substrate temperature, the range of hyste
decreases and at room temperature, we found no hyste
for theu521/41 case, as can be seen in Fig. 7. The mobi
is still a strongly nonlinear function of the external force, b
the transition is smooth. However, for a higher atomic co
centration the hysteresis survives even at room tempera
as, for example, in theu52/31kinks case where we took
N5105 andMx5155. The simulation results for this cas
are presented in Fig. 8. At zero temperature we may dis
guish several steps on theB(F) dependence~solid curve on
the figure!, which may be explained as those correspond
to transitions of superkinks and then trivial kinks to runni

FIG. 3. Static kinks.Time dependence of the positions of all th
atoms of theu521/41 chain with periodic boundary condition fo
theF50.05 step; curves are plotted for eacht0. Atom 62 is marked
by filled diamonds to show clearly the trajectory of one atom. T
darker regions correspond to increased atomic density, i.e., to ki
The figure shows that neither the kinks, nor the individual ato
move for this low force.
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FIG. 4. Running kinks.The hysteresis of the mobility fo
Emax50.17 in theu521/41 chain at zero temperature is presented
~a!, while time dependence of the positions of all the atoms of
u521/41 chain with periodic boundary condition is plotted in~b!;
curves are plotted for eacht0 for the F50.17 step. Atom 21 is
marked by filled diamonds to show clearly the trajectory of o
atom. The darker regions of increased atomic density~kinks! are
now driven by the force. Individual atoms do not move except wh
a kink passes through their position as shown by the trajector
the marked atom.

FIG. 5. Creation of kink-antikink pairs.The hysteresis of the
mobility for Fmax50.2 in theu521/41 chain at zero temperature
states, as discussed in Sec. IV. At room temperature,
dotted curve shows that all abrupt transitions have dis
peared owing to ‘‘melting’’ of the kink superstructures, an
the B(F) dependence becomes smooth. The effect of
temperature will also be discussed below.

2. Golden-mean concentration

The next simulation was made for theu534/47 concen-
tration ~we tookN5170 andMx5235!, which is close to the
incommensurate concentrationugm5 (31A5)/(51A5)

n
e

n
of

FIG. 6. Distribution of atomic velocities atF50.20 for the
u521/41 case at zero substrate temperature. Full curve corresp
to P(vx), broken curve corresponds toP(vy), and dotted curve
corresponds toP(vz).

FIG. 7. Mobility B is presented as a function of the extern
force F. Same as Fig. 1~a!, but for room temperaturekBT50.025
eV.
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'0.724. As this noble irrational number is mathematica
equivalent@33# to the golden mean, we also call it golde
mean; if G is the golden mean, we hav
ugm5(21G)/(31G). We recall that for an incommensura
concentration, Aubry showed that theT50 ground state~GS!
of the system may correspond to two different states depe
ing on the magnitude of the average elastic constantgeff @13#.
For lowgeff, geff,gAubry ~wheregAubry'1 for u5ugm! the GS

FIG. 8. Hysteresis ofB(F) for kinks on theu052/3 background
~N5105, Mx5155, andMy51!. The solid curve corresponds t
zero temperature and the dotted curve to room temperature.

FIG. 9. Hysteresis ofB(F) for ~a! zero temperature and~b!
room temperature for kinks for the golden-meanu534/47 case~N
5170,Mx5235, andMy51!.
d-
is pinned, while forgeff.gAubry , the GS is sliding and has n
activation barrier for motion at anyFÞ0. For our choice of
the model parameters we havegeff;0.24, thus the system
should be in the pinned state, but rather close to the Au
transition point. Therefore, if the force is increased the s
tem will reach the Aubry point owing to the lowering of th
barriers of the inclined substrate potential. Indeed, simula
results presented in Fig. 9~a! show that the system exhibit
nonzero mobility for a small forceF'0.06 in the case of
zero-substrate temperature. However, we can see that
above the transition, the mobility is much smaller than t
final mobility Bf , contrary to the infinite mobility expected
for the frictionlessh50 case. When we further increase th
external forceF, the mobility B shows a slow increase
which should consist@34# of an infinite countable number o
steps as for the Devil’s staircase, but it is very difficult
study this behavior in detail. Then, atF'0.17, the Devil’s-
staircase-like behavior is destroyed and, after the interm
ate state corresponding to the kink-antikink nucleation
gime, the mobility sharply increases to the maximum va
B'Bf . Figure 9~b! shows that the hysteresis does exist
room temperature and is very similar to theu52/3 case.

Thus, the main result of the quasi-one-dimensional sim
lations is thatfor the chain of interacting atoms the hyste
esis exists for any atomic concentrationu.0 and survives
for temperatures that are not too high. Of course, these re
sults deserve to be checked in the full two-dimensional
model whereMy is not equal to one.

C. Two-dimensional FK model

1. Hysteresis of the mobility

At room temperature for theu'ugm case, we took
N51020,Mx547, andMy530, so thatu534/47 as in the

FIG. 10. The mobilityB is plotted vsF in ~a!, while ~b! presents
the effective temperatureTe ; both pictures correspond to the golde
mean u534/47 at room substrate temperature for the tw
dimensional FK model~N51020,Mx547, andMy530!.
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55 3605NONLINEAR MOBILITY OF THE GENERALIZED . . .
one-dimensional case described above. Figure 10 show
B(F) andTe(F) dependences for this case. We note that
2D system displays a well-defined hysteresis too. The dis
bution of atomic velocities for the external forceF50.24 is
presented in Fig. 11. On the one hand, in Fig. 11~a!, for the
state achieved with increasing force, there are two group
atoms: one with velocitiesvx;vy;vz;v thermal and another
with velocitiesvy;vz;v thermal but vx'v f[F/mh. On the
other hand, in the state obtained for a decreasing force
atoms are in the running state@see Fig. 11~b!#, since there is
only one bell curve forP(vx) centered around the valu
v f5F/mh.

Surprisingly, we did not find essential differences b
tween the behavior of the 1D and 2D systems. We recall
owing to interaction of kinks in the nearest neighboring~NN!
channels, the NN kinks are arranged into domain walls~DW!
or domain lines for the 2D system and this fact modifies
system-phase diagram as well as its dynamics@3#. For the
repulsive interatomic interaction studied in the present wo
kinks in the NN channels repel each other for theu51 cov-
erage, but for anyu,1 the kinks are attractive and should b
arranged in domain lines. However, for the short-range~ex-
ponential! interaction studied in our simulation, two kink
belonging to NN channels are attractive according to the
Vkk(x)}uxu, contrary to the usual widely studied law@3#
Vkk(x)}x

2. That is why the DW stiffness in our model van
ishes and the DW structure should be destroyed for anyTÞ0
or FÞ0. Of course, in a more realistic 2D model with lon
range interatomic forces such as elastic or dipole-dip
forces arising due to the substrate, the role of the DW str
ture might be more essential.

FIG. 11. Distribution of atomic velocities at theF50.24 step for
the two-dimensionalu534/47 model at room temperature. Fu
curve corresponds toP(vx), broken curve corresponds toP(vy),
and dotted curve corresponds toP(vz). ~a! corresponds to the stat
achieved during the force increase, and~b! to force decrease.
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However, there are some differences with respect to
1D case: comparison of Figs. 9~b! and 10~a! as well as the
stroboscopic map of Fig. 12 shows that the transition in
2D case is smoother than that in the 1D case descr

FIG. 12. Stroboscopic map in the (Te ,B) plane for the two-
dimensional systemu534/47. The parameters are the same as
Fig. 11.

FIG. 13. Time dependence of the positions of all the atoms
the 2D systemu534/47 atF50.24. ~a! and ~b! present two neigh-
boring channels; curves are plotted for eacht0. The finite time
interval between the snapshots results in a stroboscopic effect
ing a wrong impression for atomic trajectory. In order to show o
actual trajectory, one atom has been marked by black diamo
while others are indicated by unfilled diamonds.
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FIG. 14.Growth of islands.Moving channels
~see text for definition! are represented with blac
points at different times. The pictures correspo
to different external forces indicated by the title
The first four panels correspond to increasi
force while the last four correspond to decreasi
force.
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above. When one looks at the atomic positions and veloc
at a given time moment, one sees that in the 2D system
transition to the running state does not take place simu
neously in all channels, but due to thermal fluctuations
starts in a single channel~with a random number!, while
other channels remain in the coexistence regime where
groups of atoms exist. With further increase of the for
other channels are also transferred to the running state
that is why, in the two-dimensional case, the region of
transition is smeared out. In subsection 2 we will study
greater detail the growth of these moving channels versus
external force.

2. Growth of moving islands

We studied the motion of atoms in different channe
Figure 13 shows, for example, the atomic trajectories for t
neighboring lines in thex direction. The black diamond
emphasize the motion of one atom and clearly indicate
behaviors: in Fig. 13~a!, the atom is always moving in th
positive x direction, while in Fig. 13~b!, the atom has an
oscillatory behavior between the static and the running st
once the atom has reached a static group, it stays in
frozen state until its preceding atom has moved away, all
ing the motion to begin again. It is interesting to note he
the usual motion of cars in a traffic jam!

Now, let us look more carefully at the transversal grow
of these moving regions. In the remainder of this paper,
will call moving linesthe channels where all the atoms a
moving, as is the case in Fig. 13~a!. More precisely, we
consider that a line is moving if, at a given time and for
given external force, all its atoms have a velocity grea
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than a threshold chosen between the two bells in theP(vx)
plot @see Fig. 11~a!#, namely, we have chosenvx.0.8. Fig-
ure 14 presents the results for different forces; the ordinat
the index of the channel and the abscissa correspond
several measurements. The black points correspond to m
ing channels, i.e., channels where all particle velocities
greater than the threshold.

First, we can see that the range of force is rather sm
between the first picture, where almost all lines are sta
~F50.27!, and the picture where the whole system is movi
~F50.30!; therefore, to obtain quantitative results, we ha
to increase the force in very small increments. We can a
see that, at the beginning, a few moving lines are created
necessarily neighbors, and then for a slight force increa
these moving channels induce the motion of the neighbo
channels, yielding an increase of the width of the movi
island. The coalescence of the islands plays the final r
These illustrations also show an interesting difference
tween the dynamics during the increase of the force~first
four panels! and, on the contrary, the dynamics during t
decrease of the force~last four panels!. We clearly see the
horizontal lines in the first four panels, which means that i
channel is moving, it almost never stops. On the contra
during decrease of the force, the dynamics is different, si
one channel could move, be stopped just a small time la
and then move again; this generates a scattered picture.

To quantify these illustrations, we introduce thewidth of
the moving islands as follows. Callingw( i ) the number of
moving islands whose width isi channels, we define the
quantity

^ i &5
1

My

( iw~ i !i

( iw~ i !
. ~9!
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55 3607NONLINEAR MOBILITY OF THE GENERALIZED . . .
The prefactor is used in order to have a definition indep
dent of the transversal size of the lattice. In Fig. 15,
diamonds show the evolution of the width^ i & versus the
force in the caseu521/31, at room temperature. We used
lattice with 60 chains in they direction in order to have good
precision for the width because of the final exponential
crease. We have fitted the width by the exponen
exp[(F2F0)/DF]. The solid curve in Fig. 15, correspond
ing to the valuesF050.276 andDF50.002, shows that this
expression is very accurate. We can also check that the v
of F0 corresponds to the transition to the running state, p
ted in Fig. 9.

IV. DISCUSSION

A. Introduction and remarks

Now, let us show that most of the simulation results ab
the mobility of the FK system may be described in a simi
way to the behavior of the system of noninteracting atom
we consider kinks instead of atoms. The kink is a quasip
ticle, characterized by its widthd, an effective massmk and
the rest energy«k . The kink can move along the chain b
this motion is carried out in an effective Peierls-Naba
~PN! potential with the amplitude«pn. The kink parameters
are determined by the dimensionless elastic constantgeff de-
fined as

geff5
asx
2

2p2«sx
Vint9 ~aA!, ~10!

whereaA5asx/u is the average interatomic distance alo
the chain. For our choice of the model parameters, we h
geffP@0.06,0.6# for theuP@0.5,1# coverages, so that the cha
corresponds to the low-coupling limit and the kink para
eters may be approximately calculated by the express
presented in Ref.@7#. In particular, for kinks on theu05s/q

FIG. 15. For the caseu521/31, the diamonds depict the widt
of the moving island and the solid line corresponds to the appr
mate expression~see text!.
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background~s andq are relative prime integers!, the effec-
tive kink mass is equal tomk'm/q2. However, instead of
using the approximate expressions for«k and«pn, which are
too crude in the casegeff;1, we have calculated these p
rameters numerically by the method described in detai
@35,36#. In particular, for kinks on theu051/2 background
we found «pair[«k1« k̄'0.759 eV and«pn

(k)'0.0849 eV.
Now let us interpret the simulation results described in S
III, with the help of the quasiparticle-gas approach@37,7#
valid at low temperatureskBT,«k .

B. Geometrical kinks

For theu521/41 case, the mass transport along the ch
is carried out by ‘‘trivial’’ kinks constructed on the back
ground of theu051/2 structure as shown in Fig. 4~b!; the
position of the atom represented by black diamonds mo
just for a few lattice sites while the five kinks almost com
pletely cross the system during 100t0. As the averaged dis
tance between the kinks is large~equal to 41asx in the
ground state!, the kink-kink interaction is small; the atomi
flux is therefore restricted by the need for the kinks to ov
come the PN barriers. When the driving forceF is increased,
the PN barriers are lowered@simultaneously with the origina
barriers ofVtot(x)# in the direction of the force, resulting in
the increase of the single kink mobility. So, at zero tempe
ture the crossover from the lockedB050 state to the kink-
running state is expected to take place at the fo
F;Fk'Cp«pn/as , where the factorC is approximately
1.15 for the chosen shape of the substrate potential~we as-
sumed that the PN potential has the same shape as the
nal substrate potential!. Substituting the value of«pn

(k) found
numerically, we obtainFk'0.112 which is close to the valu
Fk'0.14 found in the simulation. In addition, the kink
running state exactly coincides with the expected value
the mobilityB'ukBf , whereuk51/41 is the dimensionles
kink concentration. Namely, we foundB/Bf50.025 as
shown in Fig. 4~a!. Moreover, this picture confirms that th
mobility presents a hysteresis: the quasiparticle approach
the kinks is a very good description to explain this behavi

For higher forcesF.Fk , the residual-kink flux is satu-
rated and an increase in mobility may be achieved owing
the creation of new kink-antikink pairs with their followin
motion in opposite directions. When forceF increases, the
energy threshold for thekk̄ nucleation decreases from«pair to
«̃pair5«pair2Fx* , wherex* is the saddle point determined b
the solution of the equationv

k k̄
8 (x)5F andvk k̄(x) describes

the energy of kink-antikink attraction~see details in@8#!. The
external force lowers the saddle-point energy, thus increa
the rate of kink-antikink pairs.

We know @38,35,7# that in the weak-coupling case th
kink-antikink attraction at large distances behaves
ṽk k̄(x)}exp(2guxu), where g5min~j/d,b0!, j'
2Ageff lngeff , d5aAgeff is the kink width, anda52asx is
the period of theu51/2 background structure. Because
short distances we haveṽk k̄(0)52«pair, we may use for the
kink-antikink interaction the interpolating formulaṽk k̄(x)
'2«pair/cosh(gx). In addition, in the discrete chain the kin
motion is carried out in the PN potential

i-
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vpn~x!'
«pn

~k!

2

~11s2!@12cos~2px/a!#

@11s222s cos~2px/a!#
~11!

so that the total potential for thekk̄ pair nucleation may be
written asvk k̄(x)' ṽk k̄(x)1vpn(x). Using this expression
we obtain that the barrier for thekk̄ nucleation is totally
degraded atF5Fpair'0.22 which again is close to the simu
lation thresholdFpair'0.20.

C. Superkinks

Now let us consider within the quasiparticle-gas appro
the more complicated case of the concentrationu521/31.
Numerical calculations for this coverage gave the val
«pair'0.170 eV and«pn

(k)'0.019 eV. According to the phe
nomenological theory@7#, the first step on theB(F) curve
should correspond to the transition of ‘‘superkinks’’, i.e., t
kinks constructed on the background of theu052/3 structure,
to the running state; this step is therefore expected to
place atFsk'Cp«pn

(k)/asx50.025, which may be compare
with the simulation value 0.06. Then, the second increas
of B(F) atF5Fsk-pair will be associated with the creation o
sk-sk pairs, but as we do not know the law forsk-sk inter-
action, unfortunately, we are unable to calculate it.

For higher external forces,F.Fsk-pair, the superkinks
cannot be any longer considered as well-defined quasip
cles, because they are destroyed by the driving force.
now, we may consider theu052/3 structure as a superstru
ture of the residual~‘‘geometrical’’! trivial kinks constructed
on the background of theu051/2 structure. Therefore, w
may expect that the next increasing ofB(F) will take place
at Ftk'0.14, as we have found in the previous paragra
and then atF5Ftk2pair'0.22, as it was for theu51/2 cov-
erage. However, the mobility of the trivial kinks as well
the tk-tk nucleation rate is essentially suppressed owing
huge concentration of residual kinks.

D. Coexistence regime

The transition of the system to the totally running sta
B5Bf exhibits the existence of an intermediate state wit
lower mobility Bm in the quite large interval of force
@Fpair,Fr#. This state, attributed in Sec. III B 1 to the regim
of the creation of the kink-antikink pairs, will be called th
coexistence regime because it corresponds to the coexis
of two groups of atoms: mobile and immobile. If this sta
~as well as other intermediate stages! is not observed for the
trivial coveragesu51/2, u51, etc., it exists for all nontrivial
coverages in the coverage interval studied@0.5, 1# and has
some universal features. It is therefore interesting to dwel
its characteristics with the variation of coverage in grea
detail. For simplicity, we will restrict our discussion to th
quasi-one-dimensional FK model at low temperatureT50,
even if the discussion is also valid for the general 2D c
and nonzero temperature.

Let us apply the kink-gas terminology to the descripti
of this coexistence stage. First, we should note that at h
enough values of force, corresponding to the state stud
we only have to consider the simplest kink excitation
namely, trivial kinks constructed on the background of t
u051/2 structure, for the entire coverage interval@0.5, 1#,
h
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since other types of kinks~superkinks!, which may exist in
the coverage interval for lower forces, are much more su
and are not well-defined quasiparticles for higher forces.
a given concentrationu, the coexistence stage is characte
ized by an approximately constant mobilityBm , lower than
the maximum mobilityBf , when the applied forceF is var-
ied within a quite wide interval. A careful examination of th
B(F) dependences shows that the mobilityB is even slightly
decreasing with increasing force~see Figs. 1, 8, and 9!. The
maximum mobility at this stage occurs for lower forces, im
mediately after the kink-antikink nucleation thresholdFpair.
Then the kinks~theNg geometrical kinks and theNk force-
excited kinks! start to bunch into compact groups and t
decrease of the mobility can be understood in terms of
so-calledbunchingeffect for kinks, introduced in the contex
of the Josephson-junction arrays where the kinks prese
tendency to come closer together@39,40#. These compact
groups of kinks are in fact dense immobile atomic islan
with the coverageui51 ~the subscripti andm mean immo-
bile and mobile, respectively!. With the gradual increase o
the applied force~note, that according to the numerical pr
cedure, the evolution time increases too!, one can expect tha
the mobility will slightly decrease to some saturation val
Bm due to the coalescence of these immobile islands of
oms. Indeed, as explained in the next paragraph, the
atom of an immobile group has a lower energy barrier
escape from this group, and therefore the number of co
pletely locked atoms increases when immobile groups c
lesce.

At the end of this coalescence process, the numbe
atoms in the immobile group isNi . The rest of the system is
mobile and consists ofNm mobile ~or running! atoms with
maximal possible velocity in the direction of forcev f5BfF.
It is remarkable, that the coverageum in this mobile group of
atoms was found to be constant, slightly lower than the ki
antikink background coverageu051/2: the value isum'0.4
within the studied interval@0.5, 1#. Let us emphasize that i
the explanation is derived here in the one-dimensional c
the generic picture Fig. 13~b! corresponding to the two
dimensional case verifies that this value is also valid in
2D case.

It is clear thatNi andNm satisfy the relations

Ni1Nm5N, Mi1Mm5Mx , ~12!

where N is the total number of atoms in the system
Mi5Ni /u i (Mm5Nm/um) are the sizes of the parts of th
system occupied by the immobile~mobile! subsystem, and
Mx is the total system size.

Thus the system in the coexistence regime is split into t
subsystems, namely, a dense immobile group with a co
ageui51 and a mobile subsystem where the atoms are
namically arranged in more-or-less regular structure w
um'0.4. Therefore, the total mobility of the system in th
coexistence regime isBm5(Nm/N)Bf and has a simple de
pendence on coverage.

Let us show how the expression for the functionBm~u!
and the conditionum5const arise from the kink-gas ap
proach. For the mobile subsystem of sizeMm consisting of
Nm atoms, the number of antikinks defined on the ba
ground ofu05s/q structures isNk̄5sMm2qNm , i.e., for
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our case, whereu051/2 andNk̄5Mm22Nm . Combining
this expression with Eq.~12! and using that for the dens
immobile subsystemMi5Ni ~since ui51!, we obtainNm
5Mx2N2Nk̄ and Mm52(Mx2N)2Nk̄ . The last ques-
tion is therefore to find the number of force-excited antikin
Nk̄ depending on the total system sizeMx and on the total
number of atomsN.

For all coverages 1/2,u,1 ~i.e. N.Mx/2!, there is al-
ways some excess of the atomic ‘‘material’’ needed to cre
new pairs of kinks and antikinks on theu051/2 background
structure. Therefore, in this coverage region, the main
striction on the number of the kink-antikink pairsNk̄ , which
can be excited in the system by some external factor~tem-
perature, force!, is the ‘‘free room’’ left in the system. There
fore, we can writeNk̄.a(Mx2N) where the constanta is
lower than 1/2 and does not depend on bothN and Mx .
Physically,a corresponds to the saturation number for forc
driven kink-antikink excitations atF.Fpair but it is, unfor-
tunately, too difficult to estimate it reliably. Nevertheless, w
obtain for the mobile subsystemNm5(Mx2N)(12a) and
Mm5(Mx2N)(22a); we are therefore able to derive th
value of the coverageum5Nm/Mm of the mobile subsystem

um5
12a

22a
5const ~13!

and the expression for the total mobility of the syste
Bm5(Nm/N)Bf in the coexistence regime

Bm5Bf~12a!
12u

u
5Bf

um
12um

12u

u
. ~14!

Figure 16 shows the values ofBm obtained in simulation for
variousu ~symbols!, and the approximate expression~14! for
um50.4 ~solid curve!. We see that this curve provides a
excellent fit of the simulation data for almost all studi

FIG. 16. MobilityBm in the coexistence regime vs the covera
u. The diamonds correspond to the simulation data and the s
curve to Eq.~14!.
te

-

-

coverages@in the vicinity of u51/2 coverage, the number o
excited kink-antikink pairs deviates slightly from the simp
expressionNk̄.a(Mx2N)].

The coexistence of the mobile and immobile groups
atoms explains also the typicalTe(F) dependence in this
regime @see, e.g. Figs. 1~b! and 10~b!#. Indeed, the mean
velocity in the immobile domain is of course zero while th
mean-squared atomic velocity in the immobile domain isv i
'AkBT/m. In the mobile domain, the mean velocity
v f'BfF5F/mh, while the mean-squared atomic velocity
Av f21kBT/m. Finally, substituting the mean velocity in thex
direction ^vx&5(Nm/N)v f into the expression of the effec
tive system temperature defined by Eq.~8!, it is easy to ob-
tain that in the coexistence regimeTe5T1[(Nm/N)(1
2Nm/N)]mv f

2/3kB . Thus, within the coexistence regime
the effective temperatureTe increases asF

2.

E. Critical forces

Now let us consider the coverage and temperature de
dences of the forward critical forceFr for the transition from
the coexistence regime to the totally running state, and
backward critical forceFb for the transition from the running
state to the immobile state~or, for certain coverages, to th
state with a nonzero mobility of the system, provided
kinks!.

The dependences ofF r
0 andF b

0 versus coverageu at low
temperatureT50.0005 are plotted in Fig. 17. It is seen, th
at coveragesu51/3, u51/2, u51, etc., corresponding to th
trivial ground states, the forceF r

0 is high and has values
close to the value 0.6 for the case of noninteracting ato
By contrast, the entire coverage interval@0.5,1# is character-
ized by reduced values ofF r

0, which are approximately two
times lower than those for trivial coverages~apart from small
variations probably arising from variations of the kink p
rameters with coverage!. This difference is easy to under
stand if one takes into account the system’s separation
dense immobile and more rarefied mobile groups of ato

lid
FIG. 17. Critical forcesF r

0 andF b
0 at zero temperature vs cov

erageu for B50.9Bf .
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during the coexistence regime. Indeed, because of the st
asymmetry of its environment~dense island behind it an
rarefied island in front of it!, the first atom of each immobile
group has a much lower energy barrier to jump in the dir
tion of the external force than in the case of a homogene
film. Therefore, an inhomogeneous islandlike system in
coexistence regime 1/2,u,1 is much easier to transfer t
the running state than the homogeneous system at trivial
erages.

On the other hand, the forceF b
0 corresponding to the

backward transition has a smoother dependence on the
erage~see Fig. 17!. For low concentration, the transition t
the locked state corresponds to the external forceFb

0

54hAm«s/p, as for noninteracting atoms. However, we s
that this critical force increases with concentration: when
concentration is high, the particles are closer and the in
action potential becomes important, leading to an increas
the effective barrier between wells. It is interesting to no
that for coverages less thanu'0.66, the transition corre
sponds to a direct jump to the completely immobile state
the system, while for higher coverages the system jum
back to the state with a nonzero mobility; in the last case
further decrease of the force yields the same decrease in
mobility as during the force-increasing process.

Let us show now that it is possible to derive the expr
sion of the critical forceFb versus temperature. As dis
cussed, at zero temperature the back transition approxima
corresponds, for low concentration, to the external forceFb

0

54hAm«s/p. For nonvanishing temperatures, we can co
sider that the system goes to the locked state when the p
ability that the velocities will be lower thanF b

0/mh is
greater than a thresholdP0. Then, it is rather straightforward
to derive that the critical force follows the law

FIG. 18. Width of hysteresis.The diamonds~triangles! corre-
spond to the position of the transition to the running~locked! state
for different temperatures in the caseu521/31, while the squares
corresponds to the transition to the locked state foru521/41. The
threshold was chosen to beB50.9Bf . The solid and dashed curve
correspond to the phenomenological approach discussed in the
ng

-
us
e

v-

ov-

e
e
r-
of
e

f
s
a
the

-

ely

-
b-

Fb5Fb
01A2mkBTh2erf21~122Pc!

5Fb
01dAT, ~15!

where erf21 is the inverse of the error function. WithFb
0

54hAm«s/p.0.144, the solid curve on Fig. 18 shows th
this expression scales very accurately with the above exp
sion if d50.35.

The evolution of the forward transition versus tempe
ture is much more complicated even if it is clear that beca
of the fluctuations due to the temperature, the particles
feel a smoother potential and a smaller barrier to overco
therefore, the system will jump to the final running state
lower external forces. Numerical results plotted in Fig. 18
the caseu521/31 scaled with the expressionFr5F r

02jAT,
if we choseF r

050.37 andj50.44. While such a law is valid
for other concentrations, the parameters significantly dep
on the concentration, contrary to the law forFb .

V. CONCLUSION

Let us now summarize the results, discuss their relati
with other investigations of similar problems, and outlin
interesting topics for future studies. When an external fo
is increased, a system of interacting atoms exhibits a tra
tion from the low-mobility regime withB5B0 ~the linear
regime! to the high-mobility state withB'Bf . The latter
regime corresponds to the running state of atoms in the
clined external potential, where the atoms gain more ene
from the dc force than they can lose due to damping. T
running regime may be achieved at high enough force
any atomic concentrationu; the high-B state does not corre
spond to the sliding state, contrary to the assumption of P
sson@12#, and therefore, it is not connected with incomme
surability effects. This is confirmed by our results obtained
different coverages.

When u51/q so that theT50 GS is trivial; there is no
intermediate state; as in the case of noninteracting adato
the system goes directly from the locked to the running st
For a more complicated atomic structureu5s/q wheres.1,
i.e., when the GS of the system may be considered a
hierarchy of subsequently ‘‘melted’’ superkink structure
theB0-to-Bf transition passes through a series of interme
ate states corresponding to the successive role of these
perstructures. In particular, for an incommensurate GS,
system exhibits a devil’s-staircase behavior@34#.

The factor that restricts the system mobility is either t
amplitude of the PN barriers, when the interparticle inter
tion is low, or the energy ofkk̄ pair creation, when the in-
teraction is strong. The atoms in the intermediate states
split into two groups characterized by low and high velo
ties along the driving force. The high-velocity atoms are
ganized into compact groups, this fact is in accordance w
the simulation results of@41# where the creation of newkk̄
pairs was observed just behind the moving kink~domain
line!. Our simulations have also shown that the intermedi
state is chaotic, although we did not study in detail the ch
acteristics of the system attractor.

The transitions between different states are abrupt~first-
order! even at nonzero temperature provided the correspo
ing superstructure is not melted at a given temperature. T

xt.
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55 3611NONLINEAR MOBILITY OF THE GENERALIZED . . .
is the main difference between the system of interacting
oms and that consisting of noninteracting ones, where
transition is smooth for anyTÞ0. This fact may be explained
in the following way: in a chain of interacting atoms, a sing
atom cannot jump alone from the locked state to the runn
state; the chain should jump as a whole between the diffe
states. A more detailed investigation@42# of the simplified
FK model showed that these transitions occurred thro
avalanches.

The present simulation has also shown that for anyu.0
and a temperature that is not too high, theB(F) function
exhibits hysteresis: the reverseBf-to-B0 transition takes
place at a lower forceF5Fb than the direct transition. Again
this effect may be explained as occurring owing to the c
lective character of motion in the system of interacting
oms. A single atom cannot jump from the running state
the locked state because it will be immediately pulled off
the neighboring running atoms. In connection with this qu
tion we have to mention the paper of Ariyasu and Bish
@43#, where it was shown that during the force-decreas
process the SG system passes through a countable s
intermediate states corresponding to different concentrat
of kink-antikink pairs.

Comparing the 1D and 2D systems, we did not find
essential difference in their behavior except that the 2D s
tem exhibits smootherB0-to-Bf transitions. This difference is
connected with the fact that the transition in the 2D syst
does not take place simultaneously in the whole system,
starts in a single~random! channel and then is spread ov
other channels. Such an effect of creation of mobile ato
‘‘rivers’’ when F is increased was studied earlier for the 2
system of atoms placed in the external potential of rando
distributed pinned impurities@44#. We have shown that the
width of the rivers as a function ofF scales with an expo
nential law.

The present work was initiated to an essential degree
Persson’s papers@12#, where similar questions were studie
for 2D array of Xe atoms adsorbed on the Ag~100! surface.
y,
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We emphasize, however, that Persson studied theisotropic
2D system, while we have investigated thehighly aniso-
tropic 2D array of atoms placed in 3D external potential,
the behavior of these two models might not be identical.

However, we made some simulations in the triangu
case, which is one of the most isotropic lattices. Namely,
have taken the same energetic barriers in both transve
directions and have chosen the distance between chan
equal to the distance between lattice sites in thex direction.
The results showed that the hysteresis survived at non
temperatures even if the width of hysteresis decreased. H
ever, the intermediate states have disappeared for
u521/41 coverage certainly because, in the triangular latt
the interaction of neighboring kinks is different and giv
rise to new dynamical features.

We confirmed one of Persson’s results: the low-mobilit
to–high-mobility transition is a first-order phase transitio
i.e., is abrupt and exhibits the hysteresis even at nonz
temperature. In addition, we have shown that the high-B re-
gime corresponds to the running state of the system and
the transition should pass through intermediate states. On
other hand, we do not confirm the relationsh
Fback'0.5Fdirect @12#. We also found that the increase of th
effective temperature is due to the non-Gaussian velo
distribution in the intermediate states.

In this article, we have considered the nonlinear friction
an atomistic level. The role of the hysteresis is found to
crucial, as was found in mesoscopic friction@45,46#. Of
course, since solid-state physicists and chemists have
recently begun to study the microscopic friction, new expe
ments and theoretical approaches are needed in order to
plete our understanding, for example concerning the frict
properties at the surfaces of two bodies. Work along this l
is in progress.
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