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Dynamical phase diagram of the dc-driven underdamped Frenkel-Kontorova chain
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The multistep dynamical phase transition from the locked to the running state of atoms in response to a dc
external force is studied by molecular-dynamics simulations of the generalized Frenkel-Kontorova model in the
underdamped limit. We show that the hierarchy of transition recently repfBtedinet al, Phys. Rev. Lett.

78, 1295(1997] strongly depends on the value of the friction constant. A simple phenomenological explana-
tion for the friction dependence of the various critical forces separating intermediate regimes is given.
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[. INTRODUCTION ticle is either locked or running depending on its initial ve-
locity. For a single particle, the bistability disappears at any
The nonlinear response of a system of interacting atomgonzero temperature. Besides, since the “forward” critical
to a dc driving force has recently attracted great intefest ~ force F¢, is independent of the friction, and the “backward”
[1-10 and references therginknowledge of themicro- forceFy, grows linearly with friction, the width of hysteresis
scopic mechanisms for mobility, friction, and lubrication vanishes aty> 7* =(Cm?/4a)\e/m.
processes is very important; in particular, for a better under- The problem ofinteracting particles in a periodic poten-
standing of solid friction at thenacroscopic levelas well as  tial is much more difficult. For the overdamped case
in various fields of applied science and technology such a§7> @o) the nonlinear mobility of the FK model has been
adhesion, contact formation, friction wear, lubrication, frac-Studied in a number of papef$—4,9. By contrast, investi-
ture, etc. gations of the underdamped case are very I|m|ted. In that
One generic example represents a layer of atoms adsorb&@Ntext, Perssof6] observed eystereticdynamical phase
on a crystalline surface. The adsorbate in this case is consi&r—.ans't'c.m’ similar to t.heT:Q one-particle case, In the .MD
ered an atomic subsystem and the remainder is modeled 3%:“'61“0” of a two-dimensiondRD) system of interacting

an external potential a damping constant. and a therma&iems subjected to a periodic potential. Besides, our recent
P ' ping ’ work [10] on the underdamped generalized FK model re-

bath. Such a system can be treated within the framework of g : . . )
generalized Frenkel-Kontorov&K) model[11—13. When vealed strong collective effects in the dynamics of the dc

lde ) lied h . force-driven layer of atoms. When the external force in-
an external dc force Is applied to such a system, Its respon@qaseg, the FK system exhibits a complex hierarchy of first-

can be very nonlinear and complex. By contrast, the drivenyqer gynamical phase transitions from the completely
motion of a single Brownian particle in the external periodicimmopbile state to the totally running state, passing through
potential has been studied in detail and is now well underseyera| “slip-stick” intermediate stages characterized by the
stood[14]. If the forceF is applied to the particle, the total running state of collectivejuasiparticle excitations of the
external potential in the directior of the force is a corru-  FK model known as kink§10]. The scenario of these inter-
gated plane, with a slopE. For small forces the potential mediate transitions depends on whether the concentration of
has local minima, and the particle iscked The local  atoms corresponds to trivial or complex atomic structure. All
minima disappear at forces higher thep=Cme/a, where  the observed transitions are hysteretic and, it is remarkable
& is the amplitude of the periodic potentialits period, and  that, by contrast with the case of noninteracting atoms, the
C a numerical factor depending on the shape of the potentiahysteresis survives atonzerotemperature of the system.
Thus, when the applied force is adiabatically increased, the However, the result§10] have been obtained for one
atom passes from the locked to thwning state at~¢5, and  value of the friction constanty only. That is why in the

the mobility B=(v)/F (where (v) is the drift velocity  present work we are interested in the question of how the
reaches its maximal valug:= 1/m», wherem is the atomic  observed dynamical transitions evolve when the friction
mass andy the friction coefficient. On the other hand, if one changed. We calculate dynamical “phase diagrams” of the
decreases the forde adiabatically starting from the running FK system in the E,#) plane for two generic atomic con-
state, the critical forcé=py=47\me/= for the backward centrations(Sec. Ill). We show that several critical forces,
transition to the locked state is different owing to inertia of separating intermediate stages during the transition from the
the system. Namely, in the underdamped lim#<€wy, locked state to the running state of the atoms are friction
wherewy is the frequency of atomic vibration in the external dependent, and we propose a simple phenomenological ap-
potentia), the inequalityF,,<F:, holds, and one can ob- proach(Sec. I\) that allows one to explain these depen-
servehysteresisin the bistableregionF,,<F <F;g, the par-  dences.
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Il. MODEL wyx=wo(1+5)/(1—s,), where wo=(ss/2m)Y¥42x/a,).

We have chosen typical valusg=0.2 ands,=0.4, which

The detailed description of the generalized FK model un{ead to the frequencies of atomic vibratiosg=1.65 and
der study, of the numerical procedure, and also the substarg(;y:zoz, respectively. Finally, we took,= %(warwy)

tiation Of_ the choice of mode_l parameter_s can be found in_ 1.84. Note that our choice of parameters does not claim to
Ref. [10]; here we only outline the main aspects of the

model. The atomic motion is governed by the Langevinbe & quantitative mterpretgﬂoq .Of the concrete adsystem, be-
cause the model is oversimplified. However, we do believe

equation ) o o . -
in a qualitative description of the effect under investigation
. : d - and claim that typical adsystems should exhibit similar be-
MX+MnXi+ o VsudXi i z) + 2 Vi [ri—r3]) haviors.
' 1z In the present work we study the behavior of the system
=FX™+ sFX(t) (1)  inawide range of frictions in the underdamped limi€ o, ,

corresponding to typical adsysterfs5]. In the simulation,
for thex coordinate of theth atom, and similar equations for we first look for the minimum_energy Configuration of the
y andz. Herem is the atomic mass/s,{x,y,z) the external  system. Then, we adiabatically increase temperature and
substrate potentialiy(r) the potential of pairwise interac- force and measure the mobiliy for given valuesT andF
tion between atomsy the viscous friction constant, which (this procedure was described in detail[k0]). In order to
corresponds to the rate of energy exchange with the sulsmphasize the phase transitions, the system is studied at a
strate,F ={F,0,0} the dc driving force, andF the Gaussian very low substrate temperaturé=0.0005 eV.
random force with correlation function An important parameter of the generalized FK model is
the atomic concentration. For the repulsive interatomic inter-
(SF{(1)6F(P(t"))=29mksT 8,8 8(t—t'). (2 action used in the present work, we have to impose the pe-
. riodic boundary conditions in the andy directions in order

For a better representation O.f the_natural miCI‘OSCOpI(iO fix the concentration. Namely, we plabeatoms into the
scale of the problem, we use a dimensional system of umt%ixed areal . x L whe.reL h M,a and Lo=M.a.. so
X yo x— WixAsx y— Wly9sy:

measuring distance in angstrom, energy and temperature {Hat the dimensionless atomic concentratitime so-called
electronvolts. The mass of atoms is chosen as unity:1. overage in surface physicsis equal to 6=N/M

In the remainder of the paper, the units of other dimensionaz - . L
physical quantities are omitted, but they are expressed i M=M,My) : The atomic: concentration in the FK system
plays a crucial role since it defines the number of quasipar-

terms of the above units. ticle excitations, i.e., the number of geometri¢edsidual
We use exponential interactions between atoms COMme&r ke Th ' t t be def gdf back d
sponding to the repulsion between atomic cores, INks. These exciiations can be detined for any backgroun
commensuratatomic structuredy= p/q, wherep andq are
V(1) = Voexp( — Bor ), (3)  relative prime integergl3,17,. If the concentratior slightly
deviates from the background valég, the ground state of
whereV,=10 eV is the amplitude and inverse §=0.85 the system corresponds to large domains with background
A~1 determines the range of interaction. commensurate coverag®, separated by localized incom-
To model the substrate, we used in the simulation the trugnensurate zones of compressitexpansion called kinks
3D external potential, periodic in thexy) plane(with the  (antikinks. When the background commensurate coverage is

rectangular symmetjyand parabolic in the direction, trivial, #,=1/q, the kinks defined on this structure are called
] ] trivial kinks[13]. Besides, a nontrivial background coverage
Vsud %,¥,2) =V X 8sx,€5x:Sx) T Vo Vi 8sy 85y, Sy) 6o=p/q (p#1, with complex elementary cells consisting of
41 2.2 p atomg can be represented as a lattice of trivial kinks,

5 Mw5z°%, (4)

defined on the background of the closest trivial structure.

where w, is the frequency of normal vibration of a single Therefore, in the latter case a deviation from #g=p/q

atom, and structure can be represented as a discommensuration in the
lattice of trivial kinks, i.e., a “kink in the kink lattice,”

1 (1+s)’[1—cog2mx/a)] called superkink[13].

P 1+s?— 2scog2mx/a) ©) As in the simulation we study finite systems, we have to
choose an appropriate system size to inskrkinks into the

is the deformable Peyrard-Remoissenet poterfi&], and 6= p/gq commensurate background structure; the intetyers

the parametes, |s|<1, describes its shape. The choice ofandM must satisfy the equatidi7]

the lattice constantsas,=2.74 A, andag,=4.47 A, and of

the energy barriers;,=0.46 eV ande¢,=0.76 eV, provide

a high anisotropy of this potential, which can be viewed as qN=pM+N,a, (6)

the set of “channels” with corrugated bottoms, oriented

along thex direction. This potential is typical for the fur-

rowed crystal surfaces, namely, our parameters were chosavhere the topological charge is o=+1 for the kink and

for the Na-W(112 adsystem10]. The frequencyw, of a o= —1 for the antikink. As background structures, we dis-

single-atom vibration along the direction is connected to cuss here two interesting cases, the trivial coveragel/2,

the shape parametsg by the relationship and the complex coveragg=2/3.

Vpl(X;a,e,8)=



56 DYNAMICAL PHASE DIAGRAM OF THE dc-DRIVEN ... 4027

lll. SIMULATION RESULTS a) 0=21/40 7=0.120,
1,0_——7777777»7777;13“:,1%-:-1“5-%

To simplify the problem, in the present work we only [
consider the quasi-one-dimensional case, putiing=1, so 05l
that all chains move in the same wéyowever, the interac- I
tion between the atoms, as well as the atomic motion, still 061
has 3D charact@rLet us note here that this simplified choice [
leads only to a minor difference in system behavior in com-
parison with true 2D FK system withl,>1 [10]. Namely,
the exact critical force depends slightly on the external con-
ditions, which means that the transitions do not occur simul-
taneously in all the chains. A careful examination of the
behavior in different chains shows an enhanced transition to
sliding state due to cooperative effects in the second dimen-
sion with an exponential lapl0]. On the contrary, the tran-
sition of a chain to the locked state is almost independent of Lof
neighboring chains.

Bn

0.4

0.2

0.8

A. Trivial 6,=1/2 background coverage 0.6f

First, let us consider the ground state, which corresponds & T

to domains of the triviald,=1/2 coverage separated by 0-41

trivial kinks: 6=21/40. Namely, we tookN=105 and i

M,=200, having thus ten kinks over the length under inves- 02r

tigation with an average spacing of &) between kinks. i

The genericB(F) dependence for the friction constant 0.0
7=0.12w, is presented in Fig.(). In this figure, as well as 0.0 oL 0203 04 05 06

in all figures below, it will be convenient to express fofee

in units of the constant “forward” critical force for a single FIG. 1. The mobilityB vs external force= for the quasi-one-
particle F ;o= Cmeqy/as,~0.607 (C~1.15 for the shape of dimensional FK model(a) for 6=21/40 coveragétrivial kinks on

the external potential used in the present simulatiBuring  the background of triviaby= 1/2 structurg (b) for #=21/31 cov-

the force-increasing process, one can distinguish severglage(superkinks on the background of the compix=2/3 struc-
steps in theB(F) dependence, which correspond to a hierar-ture). The plus signs and the solid curve correspond t_o increasing
chy of depinnings of kinks[10]. Namely, at F<Fy force, tr_le Cross signs and th_e dashed curve to decreqsmg force. The
~0.2F, the system is in the completely immobile State,arro‘\{vs |nd|c?te the hystere_S|s. The fofedés expressed in Fermg of
while atF>F,, the system has nonzero mobiliy, due to the forward. force for a single atonf ;= Cegy/asy defined in

the running stateof trivial kinks [Fig. 2(a)]. It was shown in the Introduction.

[10] that the forceF,, is related to the degradation of the ) ) . . .
periodic Peierls-Nabarro potentiaby for the trivial kinks: As mentioned in the Introduction, for a single Brownian
the kinks start to slide aE>F~mepy/asy. The second partlcle 'ghe “forward” forceFsg is mdependent of the fric-
abrupt increase of the mobility to the val@s, takes place tion, while the “backward™ forceFy, is linearly propor-
when the force exceeds a certain threshjgi~0.35 (o, tlona! to the frICtIOI’I: By contrast, the situation is more com-
connected with the vanishing of the energy barrier for creblex |n_the case of .|nteract|.ng atoms. Figure 3 represents the
ation of additional kink-antikink pairs in the system, so thedynamical phase diagram in th& () plane, where we plot
number of mass carriers in the system increases, leading B¢ critical forcesFy , Fpqir, Fr, andF,, versus the friction
the increase of the mobility. The remarkable tendency for th&oefficienty. . -

running kinks is to come closer to each other, thus bunching L&t us consider first the forward transition from the
into compact groups. This tendency is especially enhancel@cked to the running state. One can distinguish two regions
after the second threshofel,;;, where the concentration of qf friction corresponding to different scenarios of the transi-
kinks is large. The bunched kinks build up dense groups oflon-

immobile atoms withd=1, while the rest of the system con-

sists of running atomé&orresponding to the running state of regime of running kinks

force-excited antikinkKs This state, which is very reminis- ) O+O+0+0+0+08+0+0+0 +0 +0 +O

cent of atraffic jam[Fig. 2(b)], survives until the last thresh- o ‘

old force F;~0.53,, after which all the atoms are sliding B) +ens @ or ﬁicg‘geé’“g 00 0 &rt Ot O

over the periodic potential, and the system reaches the high-

est possible value of the mobilify; = 1/m7. FIG. 2. lllustration of the atomic motion in the regime of run-

During the force-decreasing process, the system jumpsing kinks(a) and in the “traffic jam” regime(b). Immobile atoms
back to the immobile state at the critical forEg, and one  are denoted by gray circles, running atoms and atoms in the kink
can see a large hysteresis, which, contrary to the one-particlegions are denoted by black circles; arrows indicate the direction
case, survives at nonzero temperafir@). of atomic motion.
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FIG. 4. Dynamical phase diagram in thE,@) plane for the

FIG. 3. Dynamical phase diagram in thg, () plane for the  y_59/31 coverage. The fordeis scaled in the same way as in Fig.
quasi-one-dimensional FK model at the=21/40, i.e., for the 1.

trivial kinks on the background of simpl@,=1/2 structure. The

force F is scaled in the same way as in Fig. 1. occurs, and only at some<F;, the mobility vanishes fi-

nally.
(i) At very low frictions, 7<0.05w,, there are no inter-

mediate stages. When the force increases, the system jumps B. Complex 6,=2/3 background coverage
from the locked to the running state directly at the foFge
this force being exactly equal to the critical foreg, for the
kink transition to the running state.

Now let us describe the behavior of the system at the
concentrationd=21/31 (we usedN=105 andM,=155).

. - The ground state in this case corresponds to domains of com-
(i) By cqntrast3 at Iargc_ar frlct|onsn>_0.05wx,_ all t_he lex 6,=2/3 commensurate structure, separated soy
abpve-mentloned |nt.ermed|ate stages with running Ignks dQerkinkswith an average spacing &Q, between them. On
exist. The second difference from the very low friction re- o other hand, thé= 2/3 structure can be viewed as a dense
gion is that the “forward” forceF; and the kink-antikink |atiice of trivial kinks defined on the background of the
nucleation forceF ., are friction-dependentnamely, they g =1/2 structure.

grow with friction increasing, while the critical “kink” force This specificity clearly manifests itself in tfF) depen-

Fu remains constant. At not too high frictions, the critical dence plotted in Fig. (b) for the same friction constant
force F¢ first increases approximately linearly with the fric- 5=0.12w, as in Fig. 1a). During the force-increasing pro-
tion », while at higher frictions the increase &% slows cess, one can distinguish two sharp steps of increasing of the
down, and finally tends to a constant valeg, close to the mobility B. The first one, aF ~F = 0.08 ¢, corresponds
valueF o for noninteracting atoméFig. 3). to the situation where thesuperkinksstart to slide[10],

Unfortunately, we failed to plot the critical fordé,, in  whereas the second step, occurring Ft=0.18, for
Fig. 3 at»>0.14w,, because the “traffic jam” regime is not 7=0.12w,, corresponds to the transition of thévial kinks
well defined anymore at these higher frictions, probably beto the running state, as can be seen from the phase diagram
cause of the small number of atoms in the immobile grougn Fig. 4. At higher forces the increase of the mobility is
[Fig. 2(b)] at #=21/40 for the finite-size system. However, smoother, and the system again reaches an intermedifte
at a higher concentratio®=21/31 (see next subsection fic jamregime withB=B,,, where the mobility depends on
[l B), where the immobile groups are larger, the “traffic the coverage a8,,(0)<B:(1—6)/6, B;=1/mzn being the
jam” regime is well defined at all studied frictions. maximum mobility[10].

The backward transition from the running to the locked The dynamical phase diagrant(y) for the complex
state has one interesting feature. Namely, the “backward’coveragefd=21/31 is shown in Fig. 4, where we pl&t,,
critical force Fy, grows with  increasingnotice that at not  F¢, Fy, (as in Fig. 3 and, additionallyF,. However,F
too high frictions, F,(%) exactly matches the law is not plotted because the system goes to the “traffic jam”
Fb0:4n\/m_ss/7-r for noninteractingatoms, shown by the regime quite smoothly, and therefore it is difficult to resolve
dashed line in Fig. B If the friction is high enoughFy is  Fpa-
larger than the critical force for kinkis, = const. Therefore, One can see first that the critical force for superkifkg
at #<0.1w, the system jumps back to the completllgked  is independent of friction, while the forde, increases with
state of atoms, while ap>0.1w, the backward transition the friction » and reaches the constant vakig~0.24F;, at
has also a multistep character: when the force decreases, fitigh friction, which almost exactly matches the value
a drop of the mobilityB from B; to kink-mobility valueBy,  F=~0.23, for the case o= 21/40 coverage.
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The noticeable difference with the casedt 21/40 cov-  However, at higher frictionsy>0.05w, , the kink can move
erage is in the dependence of the forward critical forceas a stable quasiparticle, and the transition to the running
F:(7). First, as the value oF, is very low, the low-friction  state takes place at a higher forEgx 7 (Fig. 3). Such a
region withF;=const is very narrow#<0.0lw,), and was linear dependence holds aléand even bettgrfor the cov-
not resolved in the simulatiorBecondthe initial linear in- eragef#=21/31 at not too high frictiorisee Fig. 4. Unfor-
crease of; with » has a larger slope than for tl#e=21/40  tunately, we failed to find the value of the critical velocity
case; at high frictions the critical fordé; also tends to a explicitly, because we do not know the values for the kink
constant valug=§ ~F,. Third, there are some irregularities massm and the friction coefficient;, . However, we ob-
in the F¢(%) dependence at intermediate frictions. Namely,served that this critical velocity. is proportional to the
from the plotsB(F) at higher frictions[similar to the case sound velocity ¢ [defined as c?~a3Vi(as), Where
plotted in Fig. 1b)] we found that in the “traffic jam” re- aa=as/6y is the average interatomic distance along the
gime the mobility does not have a constant vajgas for  chainl. Indeed, from the slopes of dotted lines in Figs. 3 and
lower frictions[the last plateau in Fig.(h)], but at certain 4 the ratio of the critical velocities for both studied coverages
intervals of frictionsB(F) exhibits an additional plateau with is v ?*4%, (223D~ 72+0.07, and the corresponding ratio
a larger value of the mobilityB=B/, (B,<B,,<B;). This  of the sound velocities for the background coverages is
should result in a lower value of the critical forée due to  ¢/2/c®¥ = 0.74.
the larger kinetic energy of the system in this intermediate At higher frictions,»>0.1w,, F; starts to deviate signifi-
state(see discussion in the next section cantly from the simple linear law, and finally tends to a con-

Finally, we observed that the “backward” critical force stantvalue=§ . This behavior may be qualitatively explained
F, is almost independent of coverage, and its dependence dhwe take into account that theinning kinks stimulate the
friction is again well described by the corresponding exprestransition of the system to the totally running state. Indeed,

sion for noninteracting atoms. owing to their nonzero kinetic energy., the running
kinks effectively reduce the average energy barrier for the
IV. DISCUSSION transition of all the atoms to the running state; therefore the

] . . _effective barriere o should be lower thar,. Let us ap-
~The most interesting feature of both phase diagrams ifyoximate the effective barrier as.=e<,— Ty, Where
Figs. 3 and 4 is that the critical forces, separating various, . «(y,)2xF2/ 52 Then, the critical force for the transi-

intermediate stages during the forward transition,faoion o to the running stater ;= Crre /@y, is determined by
dependentexcept the first critical force, which corresponds i, following equation:

to the completely locke@recedingstage. From this, we may

conclude that the kinetic energy of the system inpheced- o

ing stage defines the transition to tfwlowing stage. Below —ZFf+ Fi=F}, (7)
we present a discussion that allows one to rationalize the

contribution of the kinetic energy of the running kinks to the

dynamical phase transition towards the running state of aﬁNDere a>0 is a phenomenological coefficient, and

oms. Ff~F¢=Cmeg./asy. Equation(7) provides a qualitative
First let us consider the lowest interval of frictions, agreement with the simulation data: at smalthe forward
7<0.1lw, in the phase diagrams of Figs. 3 and 4. The explaforce is proportional tay, F¢(7)=\Ff/an, while at 7—»
nation of the dependence &f on friction 7 in this region  we haveF;—F¥ . Unfortunately, the quantitative agreement
can be done solely with the help of kinetic arguments in thas not satisfactory. Even if Eq7) can provide a rather good
following way. Assume that there is a “critical” velocity of fitting of the F¢(#) dependence in Fig. 3, the nonmonotonic
kink v., above which therunning kink cannot exist as a peculiarities ofF¢( %) in Fig. 4 remain unexplained. We re-
stable quasiparticléas was found by Peyrard and Kruskal call, however, that the main simplification made above is that
[18], such a critical velocity does exist for the running kinks the friction coefficient for the running kinks, is equal to.
in the frictionless cage Then, if at given values of the force But the running kink experiences also therinsic friction
F and the frictionz the kink drift velocity(v,)=F/my7, is int, SO that the correct expression ig= n+ 7, where
higher thanv, the kink should destroy itself as soon as it 7;,, depends very nonlinearly angsonantlyon the kink
starts to move, this immediately will cause an avalancherelocity (v,) [18—20. The intrinsic part of friction arises
driving the whole system to the totally running state of at-because the propagating kink excites small-amplitude waves
oms. (phonons in the discrete atomic chain. At certain drift ve-
If one makes the simplifying assumption thet~ 7, the  locities the translational motion of kink.e., the frequency
drift velocity of kinks is{v\)eF/# and, therefore, the region with which kinks “hit” the particles can come in a reso-
in the phase diagramF( #»), where the running kinks are nance with the allowed phonon frequencies, which results in
stable, is bounded by the straight likecv .. This simple bigger losses of energy by kink and increases effective
linear dependence describes quite well the dependenaamping. This is very likely why one can observe nonmono-
F:(#n) for <0.lw, (see dotted lines in Figs. 3 angl Zhus, tonic variation ofF¢( %) in Fig. 4.
for instance, in thed=21/40 casgFig. 3 for 7<<0.05w,, The proposed qualitative picture may be applied not only
when the applied force exceeds the threshg|d, the sta- to F¢, but also to other intermediate critical forces, such as
tionary drift velocity for the kink is higher than;, and the  F; or Fy in the case of the complex backgroufie: 21/31
system goes directly to the running state of atoms. Thisoverage. For example, the critical force for the trivial kinks
mechanism provides thef;=F;, = const in this region. Fyincreases with the friction in the=21/31 case, when the
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preceding stage is characterized by the running superkinkhe “forward” transition are friction dependent, except the
(Fig. 4); Fy tends to the constant value found for trivial first critical force, which corresponds to the transition from
background coveragé=21/40 only at high frictions, when the completely locked ground state. This reflects the dynami-
the kinetic energy contribution of superkinks to the initial- cal nature of transitions between intermediate stages,
ization of the trivial kinks motion becomes unessential. namely, that the kinetic energy of running kinks in fne-
Finally, let us comment on the fact that the asymptoticceding stage significantly contributes to the transition to-
(p—=) forward critical forceF} , for both studied cover- wards thefollowing stage.
ages, has been found to be equal to the critical force for a On the basis of simulation results, we have proposed a
single atomF ;= Cmes,/as,. This is easy to understand if phenomenological approach that qualitatively explains the
one takes into account that the studied atomic chain corredbserved friction dependences of the critical forces. Accord-
sponds to a low-coupling limi{t13], because the dimension- ing to this approach, for low frictions the critical quantity
less elastic constargeq= (a2/2m2e5)V/,(ay) is well be-  determining the criterion for the transition to the totally run-
low unity for both studied coverages, namelg,; Ning state of atoms is the drift velocity of kinks at the pre-
€[0.06,0.9 for Ae[1/2,2/3. Therefore, the interaction be- Ceding stage. This approach leads to the simple phenomeno-
tween atoms should not lead to a significant change of théodical equation(7) for the dependence of the forward
barrier for the transfer of an atom to the running stateess ~ Cfitical force on friction. However, for a better quantitative

the running kinks contribute to this transition. description of the simulation results one has to take into
account the resonant interaction of the running kinks with the
V. CONCLUSIONS phonons excited in the atomic chdih8—20. Work along

these lines is in progress.

Thus, we have studied the dynamical phase transition
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