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Dynamical phase diagram of the dc-driven underdamped Frenkel-Kontorova chain
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The multistep dynamical phase transition from the locked to the running state of atoms in response to a dc
external force is studied by molecular-dynamics simulations of the generalized Frenkel-Kontorova model in the
underdamped limit. We show that the hierarchy of transition recently reported@Braunet al., Phys. Rev. Lett.
78, 1295~1997!# strongly depends on the value of the friction constant. A simple phenomenological explana-
tion for the friction dependence of the various critical forces separating intermediate regimes is given.
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I. INTRODUCTION

The nonlinear response of a system of interacting ato
to a dc driving force has recently attracted great interest~see
@1–10# and references therein!. Knowledge of themicro-
scopic mechanisms for mobility, friction, and lubricatio
processes is very important; in particular, for a better und
standing of solid friction at themacroscopic level, as well as
in various fields of applied science and technology such
adhesion, contact formation, friction wear, lubrication, fra
ture, etc.

One generic example represents a layer of atoms adso
on a crystalline surface. The adsorbate in this case is con
ered an atomic subsystem and the remainder is modele
an external potential, a damping constant, and a ther
bath. Such a system can be treated within the framework
generalized Frenkel-Kontorova~FK! model @11–13#. When
an external dc force is applied to such a system, its respo
can be very nonlinear and complex. By contrast, the dri
motion of a single Brownian particle in the external period
potential has been studied in detail and is now well und
stood@14#. If the forceF is applied to the particle, the tota
external potential in the directionx of the force is a corru-
gated plane, with a slopeF. For small forces the potentia
has local minima, and the particle islocked. The local
minima disappear at forces higher thanF f 0[Cp«/a, where
« is the amplitude of the periodic potential,a its period, and
C a numerical factor depending on the shape of the poten
Thus, when the applied force is adiabatically increased,
atom passes from the locked to therunningstate atF f 0, and
the mobility B5^v&/F ~where ^v& is the drift velocity!
reaches its maximal valueBf[1/mh, wherem is the atomic
mass andh the friction coefficient. On the other hand, if on
decreases the forceF adiabatically starting from the runnin
state, the critical forceFb0.4hAm«/p for the backward
transition to the locked state is different owing to inertia
the system. Namely, in the underdamped limit (h!v0,
wherev0 is the frequency of atomic vibration in the extern
potential!, the inequalityFb0,F f 0 holds, and one can ob
servehysteresis: in thebistableregionFb0,F,F f 0, the par-
561063-651X/97/56~4!/4025~6!/$10.00
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ticle is either locked or running depending on its initial v
locity. For a single particle, the bistability disappears at a
nonzero temperature. Besides, since the ‘‘forward’’ critic
forceF f 0 is independent of the friction, and the ‘‘backward
forceFb0 grows linearly with friction, the width of hysteresi
vanishes ath.h* [(Cp2/4a)A«/m.

The problem ofinteractingparticles in a periodic poten
tial is much more difficult. For the overdamped ca
(h@v0) the nonlinear mobility of the FK model has bee
studied in a number of papers@1–4,9#. By contrast, investi-
gations of the underdamped case are very limited. In t
context, Persson@6# observed ahystereticdynamical phase
transition, similar to theT50 one-particle case, in the MD
simulation of a two-dimensional~2D! system of interacting
atoms subjected to a periodic potential. Besides, our re
work @10# on the underdamped generalized FK model
vealed strong collective effects in the dynamics of the
force-driven layer of atoms. When the external force
creases, the FK system exhibits a complex hierarchy of fi
order dynamical phase transitions from the complet
immobile state to the totally running state, passing throu
several ‘‘slip-stick’’ intermediate stages characterized by
running state of collectivequasiparticleexcitations of the
FK model known as kinks@10#. The scenario of these inter
mediate transitions depends on whether the concentratio
atoms corresponds to trivial or complex atomic structure.
the observed transitions are hysteretic and, it is remarka
that, by contrast with the case of noninteracting atoms,
hysteresis survives atnonzerotemperature of the system.

However, the results@10# have been obtained for on
value of the friction constanth only. That is why in the
present work we are interested in the question of how
observed dynamical transitions evolve when the fricti
changed. We calculate dynamical ‘‘phase diagrams’’ of
FK system in the (F,h) plane for two generic atomic con
centrations~Sec. III!. We show that several critical forces
separating intermediate stages during the transition from
locked state to the running state of the atoms are frict
dependent, and we propose a simple phenomenologica
proach ~Sec. IV! that allows one to explain these depe
dences.
4025 © 1997 The American Physical Society
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II. MODEL

The detailed description of the generalized FK model
der study, of the numerical procedure, and also the subs
tiation of the choice of model parameters can be found
Ref. @10#; here we only outline the main aspects of t
model. The atomic motion is governed by the Lange
equation

mẍi1mh ẋi1
d

dxi
FVsub~xi ,yi ,zi !1 (

j ~ j Þ i !
Vint~ urW i2rW j u!G

5F ~x!1dFi
~x!~ t ! ~1!

for thex coordinate of thei th atom, and similar equations fo
y andz. Herem is the atomic mass,Vsub(x,y,z) the external
substrate potential,Vint(r ) the potential of pairwise interac
tion between atoms,h the viscous friction constant, whic
corresponds to the rate of energy exchange with the s
strate,FW 5$F,0,0% the dc driving force, anddFW the Gaussian
random force with correlation function

^dFi
~a!~ t !dF j

~b!~ t8!&52hmkBTdabd i j d~ t2t8!. ~2!

For a better representation of the natural microsco
scale of the problem, we use a dimensional system of u
measuring distance in angstrom, energy and temperatu
electronvolts. The mass of atoms is chosen as unity:m51.
In the remainder of the paper, the units of other dimensio
physical quantities are omitted, but they are expresse
terms of the above units.

We use exponential interactions between atoms co
sponding to the repulsion between atomic cores,

Vint~r !5V0exp~2b0r !, ~3!

whereV0510 eV is the amplitude and inverse ofb050.85
Å 21 determines the range of interaction.

To model the substrate, we used in the simulation the
3D external potential, periodic in the (x,y) plane~with the
rectangular symmetry! and parabolic in thez direction,

Vsub~x,y,z!5Vpr~x;asx ,«sx ,sx!1Vpr~y;asy ,«sy ,sy!

1 1
2 mvz

2z2, ~4!

where vz is the frequency of normal vibration of a sing
atom, and

Vpr~x;a,«,s!5
1

2
«

~11s!2@12cos~2px/a!#

11s222scos~2px/a!
~5!

is the deformable Peyrard-Remoissenet potential@15#, and
the parameters, usu,1, describes its shape. The choice
the lattice constants,asx52.74 Å, andasy54.47 Å, and of
the energy barriers,«sx50.46 eV and«sy50.76 eV, provide
a high anisotropy of this potential, which can be viewed
the set of ‘‘channels’’ with corrugated bottoms, orient
along thex direction. This potential is typical for the fur
rowed crystal surfaces, namely, our parameters were ch
for the Na-W~112! adsystem@10#. The frequencyvx of a
single-atom vibration along thex direction is connected to
the shape parametersx by the relationship
-
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vx5v0(11sx)/(12sx), where v0[(«sx/2m)1/2(2p/asx).
We have chosen typical valuessx50.2 andsy50.4, which
lead to the frequencies of atomic vibrationsvx51.65 and

vy52.02, respectively. Finally, we tookvz5
1
2 (vx1vy)

51.84. Note that our choice of parameters does not claim
be a quantitative interpretation of the concrete adsystem,
cause the model is oversimplified. However, we do belie
in a qualitative description of the effect under investigati
and claim that typical adsystems should exhibit similar b
haviors.

In the present work we study the behavior of the syst
in a wide range of frictions in the underdamped limith!vx ,
corresponding to typical adsystems@16#. In the simulation,
we first look for the minimum-energy configuration of th
system. Then, we adiabatically increase temperature
force and measure the mobilityB for given valuesT andF
~this procedure was described in detail in@10#!. In order to
emphasize the phase transitions, the system is studied
very low substrate temperature,T50.0005 eV.

An important parameter of the generalized FK model
the atomic concentration. For the repulsive interatomic int
action used in the present work, we have to impose the
riodic boundary conditions in thex andy directions in order
to fix the concentration. Namely, we placeN atoms into the
fixed areaLx3Ly , where Lx5Mxasx and Ly5M yasy , so
that the dimensionless atomic concentration~the so-called
coverage in surface physics! is equal to u5N/M
(M5MxM y). The atomic concentration in the FK syste
plays a crucial role since it defines the number of quasip
ticle excitations, i.e., the number of geometrical~residual!
kinks. These excitations can be defined for any backgro
commensurateatomic structureu05p/q, wherep andq are
relative prime integers@13,17#. If the concentrationu slightly
deviates from the background valueu0, the ground state of
the system corresponds to large domains with backgro
commensurate coverageu0, separated by localized incom
mensurate zones of compression~expansion! called kinks
~antikinks!. When the background commensurate coverag
trivial , u051/q, the kinks defined on this structure are call
trivial kinks @13#. Besides, a nontrivial background covera
u05p/q (pÞ1, with complex elementary cells consisting
p atoms! can be represented as a lattice of trivial kink
defined on the background of the closest trivial structu
Therefore, in the latter case a deviation from theu05p/q
structure can be represented as a discommensuration in
lattice of trivial kinks, i.e., a ‘‘kink in the kink lattice,’’
calledsuperkink@13#.

As in the simulation we study finite systems, we have
choose an appropriate system size to insertNk kinks into the
u05p/q commensurate background structure; the integerN
andM must satisfy the equation@17#

qN5pM1Nks, ~6!

where the topological charges is s511 for the kink and
s521 for the antikink. As background structures, we d
cuss here two interesting cases, the trivial coverageu051/2,
and the complex coverageu052/3.
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III. SIMULATION RESULTS

To simplify the problem, in the present work we on
consider the quasi-one-dimensional case, puttingM y51, so
that all chains move in the same way~however, the interac-
tion between the atoms, as well as the atomic motion,
has 3D character!. Let us note here that this simplified choic
leads only to a minor difference in system behavior in co
parison with true 2D FK system withM y.1 @10#. Namely,
the exact critical force depends slightly on the external c
ditions, which means that the transitions do not occur sim
taneously in all the chains. A careful examination of t
behavior in different chains shows an enhanced transitio
sliding state due to cooperative effects in the second dim
sion with an exponential law@10#. On the contrary, the tran
sition of a chain to the locked state is almost independen
neighboring chains.

A. Trivial u051/2 background coverage

First, let us consider the ground state, which correspo
to domains of the trivialu051/2 coverage separated b
trivial kinks: u521/40. Namely, we tookN5105 and
Mx5200, having thus ten kinks over the length under inv
tigation with an average spacing of 20asx between kinks.

The genericB(F) dependence for the friction consta
h50.12vx is presented in Fig. 1~a!. In this figure, as well as
in all figures below, it will be convenient to express forceF
in units of the constant ‘‘forward’’ critical force for a singl
particle F f 05Cp«sx /asx'0.607 (C'1.15 for the shape o
the external potential used in the present simulation!. During
the force-increasing process, one can distinguish sev
steps in theB(F) dependence, which correspond to a hier
chy of depinnings of kinks@10#. Namely, at F,Ftk
'0.23F f 0 the system is in the completely immobile sta
while at F.Ftk the system has nonzero mobilityBtk due to
the running stateof trivial kinks @Fig. 2~a!#. It was shown in
@10# that the forceFtk is related to the degradation of th
periodic Peierls-Nabarro potential«PN for the trivial kinks:
the kinks start to slide atF.Ftk'p«PN/aax . The second
abrupt increase of the mobility to the valueBm takes place
when the force exceeds a certain thresholdFpair'0.35F f 0,
connected with the vanishing of the energy barrier for c
ation of additional kink-antikink pairs in the system, so t
number of mass carriers in the system increases, leadin
the increase of the mobility. The remarkable tendency for
running kinks is to come closer to each other, thus bunch
into compact groups. This tendency is especially enhan
after the second thresholdFpair, where the concentration o
kinks is large. The bunched kinks build up dense groups
immobile atoms withu51, while the rest of the system con
sists of running atoms~corresponding to the running state
force-excited antikinks!. This state, which is very reminis
cent of atraffic jam @Fig. 2~b!#, survives until the last thresh
old forceF f'0.53F f 0, after which all the atoms are slidin
over the periodic potential, and the system reaches the h
est possible value of the mobilityBf51/mh.

During the force-decreasing process, the system jum
back to the immobile state at the critical forceFb , and one
can see a large hysteresis, which, contrary to the one-par
case, survives at nonzero temperature@10#.
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As mentioned in the Introduction, for a single Brownia
particle the ‘‘forward’’ forceF f 0 is independent of the fric-
tion, while the ‘‘backward’’ forceFb0 is linearly propor-
tional to the friction. By contrast, the situation is more com
plex in the case of interacting atoms. Figure 3 represents
dynamical phase diagram in the (F,h) plane, where we plot
the critical forcesFtk , Fpair, F f , andFb versus the friction
coefficienth.

Let us consider first the forward transition from th
locked to the running state. One can distinguish two regi
of friction corresponding to different scenarios of the tran
tion.

FIG. 1. The mobilityB vs external forceF for the quasi-one-
dimensional FK model:~a! for u521/40 coverage~trivial kinks on
the background of trivialu051/2 structure!; ~b! for u521/31 cov-
erage~superkinks on the background of the complexu052/3 struc-
ture!. The plus signs and the solid curve correspond to increas
force, the cross signs and the dashed curve to decreasing force
arrows indicate the hysteresis. The forceF is expressed in terms o
the ‘‘forward’’ force for a single atomF f 05Cp«sx /asx defined in
the Introduction.

FIG. 2. Illustration of the atomic motion in the regime of run
ning kinks~a! and in the ‘‘traffic jam’’ regime~b!. Immobile atoms
are denoted by gray circles, running atoms and atoms in the
regions are denoted by black circles; arrows indicate the direc
of atomic motion.
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~i! At very low frictions, h,0.05vx , there are no inter-
mediate stages. When the force increases, the system ju
from the locked to the running state directly at the forceF f ,
this force being exactly equal to the critical forceFtk for the
kink transition to the running state.

~ii ! By contrast, at larger frictions,h.0.05vx , all the
above-mentioned intermediate stages with running kinks
exist. The second difference from the very low friction r
gion is that the ‘‘forward’’ forceF f and the kink-antikink
nucleation forceFpair are friction-dependent, namely, they
grow with friction increasing, while the critical ‘‘kink’’ force
Ftk remains constant. At not too high frictions, the critic
force F f first increases approximately linearly with the fri
tion h, while at higher frictions the increase ofF f slows
down, and finally tends to a constant valueF f* , close to the
valueF f 0 for noninteracting atoms~Fig. 3!.

Unfortunately, we failed to plot the critical forceFpair in
Fig. 3 ath.0.14vx , because the ‘‘traffic jam’’ regime is no
well defined anymore at these higher frictions, probably
cause of the small number of atoms in the immobile gro
@Fig. 2~b!# at u521/40 for the finite-size system. Howeve
at a higher concentrationu521/31 ~see next subsectio
III B !, where the immobile groups are larger, the ‘‘traffi
jam’’ regime is well defined at all studied frictions.

The backward transition from the running to the lock
state has one interesting feature. Namely, the ‘‘backwa
critical forceFb grows withh increasing@notice that at not
too high frictions, Fb(h) exactly matches the law
Fb0.4hAm«s/p for noninteractingatoms, shown by the
dashed line in Fig. 3#. If the friction is high enough,Fb is
larger than the critical force for kinksFtk5const. Therefore,
at h,0.1vx the system jumps back to the completelylocked
state of atoms, while ath.0.1vx the backward transition
has also a multistep character: when the force decreases
a drop of the mobilityB from Bf to kink-mobility valueBtk

FIG. 3. Dynamical phase diagram in the (F,h) plane for the
quasi-one-dimensional FK model at theu521/40, i.e., for the
trivial kinks on the background of simpleu051/2 structure. The
force F is scaled in the same way as in Fig. 1.
ps

o

-
p

’’

rst

occurs, and only at someF,Ftk the mobility vanishes fi-
nally.

B. Complex u052/3 background coverage

Now let us describe the behavior of the system at
concentrationu521/31 ~we usedN5105 andMx5155).
The ground state in this case corresponds to domains of c
plex u052/3 commensurate structure, separated bysu-
perkinkswith an average spacing 30asx between them. On
the other hand, theu52/3 structure can be viewed as a den
lattice of trivial kinks defined on the background of th
u051/2 structure.

This specificity clearly manifests itself in theB(F) depen-
dence plotted in Fig. 1~b! for the same friction constan
h50.12vx as in Fig. 1~a!. During the force-increasing pro
cess, one can distinguish two sharp steps of increasing o
mobility B. The first one, atF'Fsk50.08F f 0, corresponds
to the situation where thesuperkinksstart to slide@10#,
whereas the second step, occurring atF'0.18F f 0 for
h50.12vx , corresponds to the transition of thetrivial kinks
to the running state, as can be seen from the phase diag
in Fig. 4. At higher forces the increase of the mobility
smoother, and the system again reaches an intermediatetraf-
fic jam regime withB5Bm , where the mobility depends o
the coverage asBm(u)}Bf(12u)/u, Bf51/mh being the
maximum mobility@10#.

The dynamical phase diagram (F,h) for the complex
coverageu521/31 is shown in Fig. 4, where we plotFtk ,
F f , Fb ~as in Fig. 3! and, additionally,Fsk . However,Fpair
is not plotted because the system goes to the ‘‘traffic ja
regime quite smoothly, and therefore it is difficult to resol
Fpair.

One can see first that the critical force for superkinksFsk
is independent of friction, while the forceFtk increases with
the frictionh and reaches the constant valueFtk'0.24F f 0 at
high friction, which almost exactly matches the valu
Ftk'0.23F f 0 for the case ofu521/40 coverage.

FIG. 4. Dynamical phase diagram in the (F,h) plane for the
u521/31 coverage. The forceF is scaled in the same way as in Fig
1.
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The noticeable difference with the case ofu521/40 cov-
erage is in the dependence of the forward critical fo
F f(h). First, as the value ofFsk is very low, the low-friction
region withF f5const is very narrow (h,0.01vx), and was
not resolved in the simulation.Second, the initial linear in-
crease ofF f with h has a larger slope than for theu521/40
case; at high frictions the critical forceF f also tends to a
constant valueF f* 'F f 0. Third, there are some irregularitie
in the F f(h) dependence at intermediate frictions. Name
from the plotsB(F) at higher frictions@similar to the case
plotted in Fig. 1~b!# we found that in the ‘‘traffic jam’’ re-
gime the mobility does not have a constant valueBm as for
lower frictions @the last plateau in Fig. 1~b!#, but at certain
intervals of frictionsB(F) exhibits an additional plateau wit
a larger value of the mobility,B5Bm8 (Bm,Bm

8 ,Bf). This
should result in a lower value of the critical forceF f due to
the larger kinetic energy of the system in this intermedi
state~see discussion in the next section!.

Finally, we observed that the ‘‘backward’’ critical forc
Fb is almost independent of coverage, and its dependenc
friction is again well described by the corresponding expr
sion for noninteracting atoms.

IV. DISCUSSION

The most interesting feature of both phase diagrams
Figs. 3 and 4 is that the critical forces, separating vari
intermediate stages during the forward transition, arefriction
dependent, except the first critical force, which correspon
to the completely lockedprecedingstage. From this, we ma
conclude that the kinetic energy of the system in thepreced-
ing stage defines the transition to thefollowing stage. Below
we present a discussion that allows one to rationalize
contribution of the kinetic energy of the running kinks to t
dynamical phase transition towards the running state of
oms.

First let us consider the lowest interval of friction
h,0.1vx in the phase diagrams of Figs. 3 and 4. The exp
nation of the dependence ofF f on friction h in this region
can be done solely with the help of kinetic arguments in
following way. Assume that there is a ‘‘critical’’ velocity o
kink vc , above which therunning kink cannot exist as a
stable quasiparticle~as was found by Peyrard and Krusk
@18#, such a critical velocity does exist for the running kin
in the frictionless case!. Then, if at given values of the forc
F and the frictionh the kink drift velocity^vk&5F/mkhk is
higher thanvc , the kink should destroy itself as soon as
starts to move, this immediately will cause an avalanc
driving the whole system to the totally running state of
oms.

If one makes the simplifying assumption thathk;h, the
drift velocity of kinks is^vk&}F/h and, therefore, the regio
in the phase diagram (F,h), where the running kinks are
stable, is bounded by the straight lineF}vch. This simple
linear dependence describes quite well the depende
F f(h) for h,0.1vx ~see dotted lines in Figs. 3 and 4!. Thus,
for instance, in theu521/40 case~Fig. 3! for h,0.05vx ,
when the applied force exceeds the thresholdFtk , the sta-
tionary drift velocity for the kink is higher thanvc , and the
system goes directly to the running state of atoms. T
mechanism provides thatF f5Ftk5 const in this region.
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However, at higher frictions,h.0.05vx , the kink can move
as a stable quasiparticle, and the transition to the runn
state takes place at a higher forceF f}h ~Fig. 3!. Such a
linear dependence holds also~and even better! for the cov-
erageu521/31 at not too high friction~see Fig. 4!. Unfor-
tunately, we failed to find the value of the critical veloci
explicitly, because we do not know the values for the ki
massmk and the friction coefficienthk . However, we ob-
served that this critical velocityvc is proportional to the
sound velocity c @defined as c2'aA

2Vint9 (aA), where
aA5asx /u0 is the average interatomic distance along t
chain#. Indeed, from the slopes of dotted lines in Figs. 3 a
4 the ratio of the critical velocities for both studied coverag
is vc

(21/40)/vc
(21/31)'0.7260.07, and the corresponding rat

of the sound velocities for the background coverages
c(1/2)/c(2/3) 5 0.74.

At higher frictions,h.0.1vx , F f starts to deviate signifi-
cantly from the simple linear law, and finally tends to a co
stant valueF f* . This behavior may be qualitatively explaine
if we take into account that therunning kinks stimulate the
transition of the system to the totally running state. Inde
owing to their nonzero kinetic energyTkink , the running
kinks effectively reduce the average energy barrier for
transition of all the atoms to the running state; therefore
effective barrier«eff should be lower than«sx . Let us ap-
proximate the effective barrier as«eff5«sx2Tkink , where
Tkink}^vk&

2}F2/h2. Then, the critical force for the transi
tion to the running state,F f5Cp«eff /asx , is determined by
the following equation:

a

h2
F f

21F f5F f* , ~7!

where a.0 is a phenomenological coefficient, an
F f* 'F f 0[Cp«sx /asx . Equation~7! provides a qualitative
agreement with the simulation data: at smallh the forward
force is proportional toh, F f(h)5AF f* /ah, while ath→`
we haveF f→F f* . Unfortunately, the quantitative agreeme
is not satisfactory. Even if Eq.~7! can provide a rather good
fitting of the F f(h) dependence in Fig. 3, the nonmonoton
peculiarities ofF f(h) in Fig. 4 remain unexplained. We re
call, however, that the main simplification made above is t
the friction coefficient for the running kinkshk is equal toh.
But the running kink experiences also theintrinsic friction
h int , so that the correct expression ishk5h1h int , where
h int depends very nonlinearly andresonantlyon the kink
velocity ^vk& @18–20#. The intrinsic part of friction arises
because the propagating kink excites small-amplitude wa
~phonons! in the discrete atomic chain. At certain drift ve
locities the translational motion of kink~i.e., the frequency
with which kinks ‘‘hit’’ the particles! can come in a reso
nance with the allowed phonon frequencies, which result
bigger losses of energy by kink and increases effec
damping. This is very likely why one can observe nonmon
tonic variation ofF f(h) in Fig. 4.

The proposed qualitative picture may be applied not o
to F f , but also to other intermediate critical forces, such
Fpair or Ftk in the case of the complex backgroundu521/31
coverage. For example, the critical force for the trivial kin
Ftk increases with the friction in theu521/31 case, when the
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preceding stage is characterized by the running superk
~Fig. 4!; Ftk tends to the constant value found for trivi
background coverageu521/40 only at high frictions, when
the kinetic energy contribution of superkinks to the initia
ization of the trivial kinks motion becomes unessential.

Finally, let us comment on the fact that the asympto
(h→`) forward critical forceF f* , for both studied cover-
ages, has been found to be equal to the critical force fo
single atomF f 05Cp«sx /asx . This is easy to understand
one takes into account that the studied atomic chain co
sponds to a low-coupling limit@13#, because the dimension
less elastic constantgeff5(asx

2 /2p2«sx)Vint9 (aA) is well be-
low unity for both studied coverages, namely,geff
P@0.06,0.2# for uP@1/2,2/3#. Therefore, the interaction be
tween atoms should not lead to a significant change of
barrier for the transfer of an atom to the running stateunless
the running kinks contribute to this transition.

V. CONCLUSIONS

Thus, we have studied the dynamical phase transi
from the locked to the running state of interacting atoms i
periodic external potential under the action of a dc exter
force in the underdamped limit of a generalized Frenk
Kontorova model. This transition proceeds by a comp
multistep scenario, which can be treated as a hierarch
depinnings of quasiparticle excitations of the FK mod
~kinks!. The interesting feature of the transition is that t
critical forces separating different intermediate stages du
.

. E

s.
ks

c

a

e-

e

n
a
l

l-
x
of
l

g

the ‘‘forward’’ transition are friction dependent, except th
first critical force, which corresponds to the transition fro
the completely locked ground state. This reflects the dyna
cal nature of transitions between intermediate stag
namely, that the kinetic energy of running kinks in thepre-
ceding stage significantly contributes to the transition t
wards thefollowing stage.

On the basis of simulation results, we have propose
phenomenological approach that qualitatively explains
observed friction dependences of the critical forces. Acco
ing to this approach, for low frictions the critical quantit
determining the criterion for the transition to the totally ru
ning state of atoms is the drift velocity of kinks at the pr
ceding stage. This approach leads to the simple phenom
logical equation ~7! for the dependence of the forwar
critical force on friction. However, for a better quantitativ
description of the simulation results one has to take i
account the resonant interaction of the running kinks with
phonons excited in the atomic chain@18–20#. Work along
these lines is in progress.
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