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Modulational estimate for the maximal Lyapunov exponent in Fermi-Pasta-Ulam chains

Thierry Dauxois® Stefano Ruffd, and Alessandro Torcihi
Dipartimento di Energetica “Sergio Stecco,” Universith Firenze, via Santa Marta, 3, 1-50139 Firenze, Italy
(Received 31 July 1997

In the framework of the Fermi-Pasta-UlaffPU) model, we show a simple method to give an accurate
analytical estimation of the maximal Lyapunov exponent at high energy density. The method is based on the
computation of the mean value of the modulational instability growth rates associated to unstable modes.
Moreover, we show that the strong stochasticity threshold found iBtR®U system is closely related to a
transition in tangent space, the Lyapunov eigenvector being more localized in space at high energy.
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A large number of theoretical apd numerlcal stud'les have Un=Up 14Uy 1— 22U+ B[ (Uy 1 — Uy 2P+ L
been devoted to the characterization of chaotic high-
dimensional systems, but in spite of these efforts several fun- —(Up=Uy-1)?P*1], 1)
damental items are not yet fully understood. In particular, the

relation between Lyapunov analysis and other phase spaceh . int ter th |0 1. We ch
properties like diffusion of orbits, relaxation to equilibrium WRETep 1S an Integer greater than or equal to L. We choose

states, and spatial development of instability remain to bgenodm boundary conditions. Even if the positive parameter

clarified[1]. This Rapid Communication, besides presentingB can be forgotten by appropriate scaling transformations of

an estimate of the largest Lyapunov exponggtis a con- U, we vyill keep it in order to make reliable comparispns
tribution to clarify this relationship in the context of the Wlth previous papers, whey@=0.1. For the sake of S|m_pI|c-
) . ity, we consider first the cage=1 and then we generalize to

Fermi-Pasta-Ulam{FPU) model [2]. This system was not any p value.
only .th_e. starting point of th(a'e)dls.covery of the _solltorﬁ3], . Looking for plane wave solutions
but initiated also several studies of the mixed chaotic-
ordered phase space structure based on resonance overlap
criteria [4], KAM theorem and Nekhoroshev stability esti- Un(t) = po(e'nV+ e~ 10n(V), 2
mated 5]. Statistical mechanics was also tested on this equa-
tion [6,7] and the results showed that ergodicity is not an
obvious consequence of the nonexistence of analytical firsdhere q(t)=qn—wt_and g=2wk/N, we obtain the
integrals of motion. dispersion relation w?(q) =4(1+ a)siy(g/2), where «

There are very few examples of analytical calculations of= 128¢6Sin(/2) takes into account the nonlinearifg1].
A, in the chaotic component corresponding to energy equi:rhe modulatlonal |nstab_|I|ty qf such a p_Iane wave is inves-
partition in high-dimensional systeni8,d]. In this Rapid tigated by studying the linearized equation ass_omated to the
Communication, we derive an approximate analytical ex__en_vglop_e of the carrier wave. There_fore, one introduces an
pression fom, that agrees very well with numerical simula- |nf!n|te§|mal perturbation in the amplitude and looks for so-
tions. We focus our attention on the asymptotic state of théutlons.
system, when it has reached energy equipartition, i.e., the
state where energy is evenly distributed among all Fourier Un(t)=[ o+ bp(t) 1€ PO+ o+ bl (t)]e . (3)
modes(relaxation timeg10] will not be our concern heje
One of the main points of this paper is to emphasize the
relevant role played by some unstable periodic orbits correintroducing this ansatz in Eq1), after linearization with
sponding to Fourier modes. Therefore, we will first deriverespect td,, but keeping the second derivatitia contrast to
the criterion for modulational instability of a plane wave on what has been done for Klein-Gordon type equafid]),
the lattice. we obtain

Denoting by u,(t) the position of thenth atom

e[1,N]), the equations of motion of the FPU chain read . o . .
b,—2iwb,=(1+2a)(b,.1€'9+b,_167'9—=2 cogq)b,)

+a(by,+by;—2cogq)by). (4)
*On leave from Laboratoire de Physique, URA-CNRS 1325, ENS
Lyon, 46 Allee d'ltalie, 69364 Lyon Ceex 07, France.
"Also with INFN and INFM, Firenze, Italy. Assuming furtheb,=Ae Q"0+ Be~1(QM=9 e finally
*Also with INFM, Firenze, Italy. obtain the following dispersion relation
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1.0
(Q+w)2—4(1+2a)sin2(#)H(Q—w)z |
—4(1+ Za)smz(T) } =4a?(coR—cogy)?.
5 T3
£
This equation has four different solutions onggwave ?: 0.5
vector of the unperturbed wavandQ (wave vector of the v
perturbation are given. If one of the solutions is complex we }
have an instability of one of the modeg£Q) with a
growth rate equal to the imaginary part of the solution.
Therefore, one can compute the instability threshold for any
initial linear wave, i.e., any wave vector and any amplitude.
For example, fog=0 we find that the solution is obviously
stable since the zero mode, corresponding to translation in- 0.0 !
variance, is completely decoupled from the others.d=orr, 0 /2 T
the expression for the growth rate is 7—Q
7(m,Q)=2[ J(1+a)(4+8a)cos(Q/2) + a’cos(Q/2) FIG. 1. Shape of the growth rat m,Q)/7(7,Qumas for suffi-
ciently high energy. The diamonds correspond to the d&s@56
—1-a—(1+2a)co(Q/2)]*2 (6)  and the solid curve to the asymptotic shape whegoes to infinity.

A simple analysis of this function shows that the first un-
stable mode is the nearest mode correspondir@=t@ 7/N.
Computing the critical value of the parameteabove which
7(,27w/N) is positive, we obtain the critical enerdg; for
the = mode. It reads

[18] to be approximately linear at high enertgee the inset
of Fig. 2), one can relate the Kolmogorov-Sinai entrdfyg
with A ;. Namely,

N
7co§(z) -1 SKs=i§1 Ni=NN/2. (8)

2N (7
ECZ@SII"IZ( N)

T
3co N -1

o 2 ()
( ) Let us define the instability entropy

This analytical expression is in agreement with the previous :
[13—-15 approximate expressioB,=w2/3Ng valid only in 2F
the largeN limit. Above this energy threshold, the mode is
therefore unstable and gives rise to a chaotic localized 1E
breatherlike excitation, able to move very fast in the system, :
collecting energy from high-wave-vector phonons until its
disappearance leads to the final energy equipartjtl@h :—
When the energy increases, the region of instability ex- e
tends to a larger region of wave vectors, and, in particular, 2
the most unstable mod®,,,, increases until the asymptotic -

value Q=2 arccos(\/8/\/§—4):o.421-r is reached. It is —2F
important to notice that, for sufficiently high energy, the re-
scaled growth rate/ 7(7,Qn4) does not depend on the en- -3F
ergy density. The growth rate is plotted in Fig. 1 at high
energy. -4t .. 8

We performed some simulations of the system using a -5
sixth-order symplectic integration scheme adopting as initial log,,(E/N)
condition ther mode and computing, after the transition to

equipartition, the_ Lyapunov exponents with the s_tan_dard FIG. 2. Comparison of the analytical estimate with numerical
method by Benettiret al.[17]. The results are plotted in Fig. yata for the maximal Lyapunov exponen. The solid curve cor-
2. ) . ) responds to our estimatidikq. (10)], the dashed curve to the esti-

Let us present now the analytical estimation\ef As the  mate of Ref[9] and the triangles to our numerical resultsr the
system is symplectic, the usual pairing rule is valid and,s-Fpu, i.e.p=1). The dotted curvédiamonds corresponds to the
moreover, Pesin’s theorem allows us to identify theanalytical estimaténumerical resultsin the case of a powegr=2.
Kolmogorov-Sinai entropy of the system with the sum of allin the inset, we plot theN positive Lyapunov in the case
positive Lyapunov exponents. As the spectrum was showlE/N=4200 andp=1.
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L L the value for other modes. A correct approach would be to
apply the Z-function formalism[23] to this system, if fea-
sible.

At high energy, expressiori6) can be simplified as
(7,Q)=af(Q), where f(Q) is energy independent.
Therefore, the growth rate scales with the amplit¢ge and
] asE=N(8¢3+64B¢3), it means that the growth rate and,
] therefore \; scales with E/N)Y* at high energy. This result
] is in contradiction with Ref[24] but in agreement with Ref.
[9].

In fact, a similar approach gives also very good results for
other powers 2[§+ 1) in the coupling potential. The expres-
sion of the growth rate is then the same if we use
a=pB((2p+1)!/p!(p+1)N(2¢, sin@?2))?*. Figure 2
shows that the results are once more in very good agree-
ment with numerical estimates. One derives easily that
—< 0 & 4 6 8 the maximal Lyapunov scales at high energy likg

log,(E/N) ~(E/N)V2-[120+ D] |t is important to stress that in the
limit of hard potential p—«) we find the exponent 1/2,
analogously to billiard$25]. In the low energy limit, how-
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FIG. 3. Participation rati& vs the density of energ#/N, for
different lattice sizes; diamonds fod= 64, triangles forN= 256,

and squares fokl=1024. ever, all models have the same scaling behaviors as ex-
pected.
N/2 Plotting A1(E/N) in a log-log scale we observsee Fig.
Se(q)= z 7(q,2miIN), (9) 2) that the two as_ymptotic Ii_near behaviors are separ{;\ted by a
i=1 “knee” (change in slopeat intermediate energy density. An

estimation of this transition region can be derived assuming
where the sum is over all positive growth rafd®]. The that the linear and nonlinear contributions«6q) should be
crucial physical hypothesis of this paper is t8at=Sie(7),  of the same order. We obtain~1, i.e., an energy density of
we then obtain the following analytical expression for thethe order of 18 (this is equivalent to the estimation given by
maximal Lyapunov exponent: mode overlap criteriofi4]).
N2 This knee corresponds to a stochasticity threshé]dhat
Nz 2 (7.2 IN (10) defines the crossing from weak to strong chaos. But we have
15N & T(memiiN), also found that it corresponds to an interesting transition in
tangent space. Considering the normalized Lyapunov vector
where ther expression is given in Eq6). Figure 2 attests V3 associated to the maximal Lyapunay, we can intro-
that the analytical estimat@0) is very accurate. In the same duce the participation ratif26]
figure the data obtained with a Riemannian differential geo-

metrical approach, developed[i@l, are also shown. The two 0.40F T T Ty
methods give almost identical results, apart at very low en- ]
ergy, where the findings of Reff9] are in better agreement 0.30EF E

|
with our numerical data. l
It is remarkable to note that Chirikd20] found similarly '

) £ LIl 1
the maximal Lyapunov exponent of the standard map at high = 0.20 : 0 ]
energy by averaging over the phase space the maximal ei- + p
genvalue associated to the main hyperbolic point. It corre- = 0-10F :;: E
sponds in our case to averaging the growth (&)efor the oF g oo
unstable periodic orbij= 7 over the equilibrium equiparti- T 0.00F---mt 3
tion state(where all modes have the same wejght similar =

approach is known as Toda criteri@l] and although it

cannot be used as a signature of chaos, it can give an ap-
proximate estimation ok;. On the other hand, it is known ]
that crude stochastic approximations can give good estimates I

of \; also for high-dimensional strongly chaotic symplectic 0 50 100 150 200 250
systemq 22]. i

In fact, one can understand avergdé) in a better way
by recalling that the mode(sr/2},{2/3},{m} correspond to FIG. 4. Localization in tangent space of the Lyapunov vector for

the simplest unstable periodic orbits and are also the only=256. The dashed curve corresponds to a generic localized
three one-mode solutions of ti&2FPU problem. The calcu- Lyapunov vector at high energy densi/N=2.5x 10°, whereas
lation of the instability entropies of these three modes showshe solid curve(shifted by —0.2) corresponds to a generic delocal-
that they are extremely close to one another, in contrast tixed one at low energy densi/N=2.
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N -1 We conclude by stressing again that we have computed
&= E [Vi()2+V,(i+N)2? | (11 the maximal Lyapunov for a high dimensional Hamiltonian
=1

system by using a simple analytical approach, based upon

where the firstlash N components of/, are associated to modulation instability analysis of linear waves. The results
. : . T obtained here are in excellent agreement with our computer
the evolution of linear perturbation af,, (u,) in tangent

space. The quantityl1) has been used in different contexts simulation results. The success of this calculation suggests

and, for example, in dynamical systefi2¥] as an indicator that this Lyapunov estimation could be extended to other
, for example, y al sy . high-dimensional Hamiltonian systems. Moreover, we have
of localization: it is of ordem if the vector is extended and

. . ._shown that the strong stochasticity threshgid is not a
of order one if localized. We have found that the stochastic- eshold to energy equipartition, since equipartition can be

. thr
g}[/attgrirre]stg?lldeﬁ(t)rsresporsds toa clrossl_ove;r ftrotm an et)t(tert]dsgl;\évays obtained, although on longer time sca86]. It

X 9 pace 1o a more localized state, as attested oy, corresponds to a crossover from extended to more lo-
Fig. 3. The two examples of Lyapunov vectors reported iN.4lized states in tangent space
Fig. 4 show the clear difference between low and high en- '
ergy density. The localization of the Lyapunov vectors for We would like to thank G. Benettin, L. Casetti, R. Livi,
chains of nonlinear oscillators in the high energy limit wasM. Pettini, P. Poggi, and A. Politi for enlightening discus-
also previously observed in Reff8,28]. Moreover, signa- sions. T.D. gratefully acknowledges EC for Grant No.
tures of a similar transition were found[ia2] for a model of ERBFMBI-CT96-1063. S.R. thanks CIC, Cuernavaca,
coupled symplectic maps. Finally, we notice that theMexico and the ESI Institute, Vienna, Austria for financial
metallic-insulating transition in finite sampl¢&9] is very  support. This work is also part of the EC network No.
reminiscent of the one reported in this Communication. ERBCHRX-CT94-0460.
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