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Modulational estimate for the maximal Lyapunov exponent in Fermi-Pasta-Ulam chains

Thierry Dauxois,* Stefano Ruffo,† and Alessandro Torcini‡
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In the framework of the Fermi-Pasta-Ulam~FPU! model, we show a simple method to give an accurate
analytical estimation of the maximal Lyapunov exponent at high energy density. The method is based on the
computation of the mean value of the modulational instability growth rates associated to unstable modes.
Moreover, we show that the strong stochasticity threshold found in theb-FPU system is closely related to a
transition in tangent space, the Lyapunov eigenvector being more localized in space at high energy.
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A large number of theoretical and numerical studies h
been devoted to the characterization of chaotic hi
dimensional systems, but in spite of these efforts several
damental items are not yet fully understood. In particular,
relation between Lyapunov analysis and other phase s
properties like diffusion of orbits, relaxation to equilibrium
states, and spatial development of instability remain to
clarified @1#. This Rapid Communication, besides present
an estimate of the largest Lyapunov exponentl1, is a con-
tribution to clarify this relationship in the context of th
Fermi-Pasta-Ulam~FPU! model @2#. This system was no
only the starting point of the~re!discovery of the soliton@3#,
but initiated also several studies of the mixed chao
ordered phase space structure based on resonance ov
criteria @4#, KAM theorem and Nekhoroshev stability est
mates@5#. Statistical mechanics was also tested on this eq
tion @6,7# and the results showed that ergodicity is not
obvious consequence of the nonexistence of analytical
integrals of motion.

There are very few examples of analytical calculations
l1 in the chaotic component corresponding to energy eq
partition in high-dimensional systems@8,9#. In this Rapid
Communication, we derive an approximate analytical
pression forl1 that agrees very well with numerical simula
tions. We focus our attention on the asymptotic state of
system, when it has reached energy equipartition, i.e.,
state where energy is evenly distributed among all Fou
modes~relaxation times@10# will not be our concern here!.
One of the main points of this paper is to emphasize
relevant role played by some unstable periodic orbits co
sponding to Fourier modes. Therefore, we will first deri
the criterion for modulational instability of a plane wave o
the lattice.

Denoting by un(t) the position of thenth atom (n
P@1,N#), the equations of motion of the FPU chain read
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2~un2un21!2p11#, ~1!

wherep is an integer greater than or equal to 1. We choo
periodic boundary conditions. Even if the positive parame
b can be forgotten by appropriate scaling transformations
un , we will keep it in order to make reliable comparison
with previous papers, whereb50.1. For the sake of simplic
ity, we consider first the casep51 and then we generalize t
any p value.

Looking for plane wave solutions

un~ t !5f0~eiun~ t !1e2 iun~ t !!, ~2!

where un(t)5qn2vt and q52pk/N, we obtain the
dispersion relation v2(q)54(11a)sin2(q/2), where a
512bf0

2sin2(q/2) takes into account the nonlinearity@11#.
The modulational instability of such a plane wave is inve
tigated by studying the linearized equation associated to
envelope of the carrier wave. Therefore, one introduces
infinitesimal perturbation in the amplitude and looks for s
lutions:

un~ t !5@f01bn~ t !#eiun~ t !1@f01bn
!~ t !#e2 iun~ t !. ~3!

Introducing this ansatz in Eq.~1!, after linearization with
respect tobn but keeping the second derivative~in contrast to
what has been done for Klein-Gordon type equation@12#!,
we obtain

b̈n22ivḃn5~112a!„bn11eiq1bn21e2 iq22 cos~q!bn…

1a„bn11* 1bn21* 22 cos~q!bn…. ~4!

Assuming furtherbn5Aei (Qn2Vt)1Be2 i (Qn2Vt), we finally
obtain the following dispersion relation
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F ~V1v!224~112a!sin2S q1Q

2 D GF ~V2v!2

24~112a!sin2S q2Q

2 D G54a2~cosQ2cosq!2.

~5!

This equation has four different solutions onceq ~wave
vector of the unperturbed wave! andQ ~wave vector of the
perturbation! are given. If one of the solutions is complex w
have an instability of one of the modes (q6Q) with a
growth rate equal to the imaginary part of the solutio
Therefore, one can compute the instability threshold for a
initial linear wave, i.e., any wave vector and any amplitud
For example, forq50 we find that the solution is obviousl
stable since the zero mode, corresponding to translation
variance, is completely decoupled from the others. Forq5p,
the expression for the growth rate is

t~p,Q!52@A~11a!~418a!cos2~Q/2!1a2cos4~Q/2!

212a2~112a!cos2~Q/2!] 1/2. ~6!

A simple analysis of this function shows that the first u
stable mode is the nearest mode corresponding toQ52p/N.
Computing the critical value of the parametera above which
t(p,2p/N) is positive, we obtain the critical energyEc for
the p mode. It reads

Ec5
2N

9b
sin2S p

ND 7cos2S p

ND21

F3cos2S p

ND21G2 . ~7!

This analytical expression is in agreement with the previ
@13–15# approximate expressionEc.p2/3Nb valid only in
the largeN limit. Above this energy threshold, thep mode is
therefore unstable and gives rise to a chaotic locali
breatherlike excitation, able to move very fast in the syste
collecting energy from high-wave-vector phonons until
disappearance leads to the final energy equipartition@16#.

When the energy increases, the region of instability
tends to a larger region of wave vectors, and, in particu
the most unstable modeQmax increases until the asymptoti

value Qmax52 arccos(A8/A324).0.42p is reached. It is
important to notice that, for sufficiently high energy, the r
scaled growth ratet/t(p,Qmax) does not depend on the en
ergy density. The growth rate is plotted in Fig. 1 at hi
energy.

We performed some simulations of the system usin
sixth-order symplectic integration scheme adopting as in
condition thep mode and computing, after the transition
equipartition, the Lyapunov exponents with the stand
method by Benettinet al. @17#. The results are plotted in Fig
2.

Let us present now the analytical estimation ofl1. As the
system is symplectic, the usual pairing rule is valid a
moreover, Pesin’s theorem allows us to identify t
Kolmogorov-Sinai entropy of the system with the sum of
positive Lyapunov exponents. As the spectrum was sho
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@18# to be approximately linear at high energy~see the inset
of Fig. 2!, one can relate the Kolmogorov-Sinai entropySKS
with l1. Namely,

SKS5(
i 51

N

l i>l1N/2. ~8!

Let us define the instability entropy

FIG. 1. Shape of the growth ratet(p,Q)/t(p,Qmax) for suffi-
ciently high energy. The diamonds correspond to the caseN5256
and the solid curve to the asymptotic shape whenN goes to infinity.

FIG. 2. Comparison of the analytical estimate with numeri
data for the maximal Lyapunov exponentl1. The solid curve cor-
responds to our estimation@Eq. ~10!#, the dashed curve to the est
mate of Ref.@9# and the triangles to our numerical results~for the
b-FPU, i.e.,p51). The dotted curve~diamonds! corresponds to the
analytical estimate~numerical results! in the case of a powerp52.
In the inset, we plot theN positive Lyapunov in the case
E/N54200 andp51.
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SIE~q!5(
i 51

N/2

t~q,2p i /N!, ~9!

where the sum is over all positive growth rates@19#. The
crucial physical hypothesis of this paper is thatSKS.SIE(p),
we then obtain the following analytical expression for t
maximal Lyapunov exponent:

l15
2

N (
i 51

N/2

t~p,2p i /N!, ~10!

where thet expression is given in Eq.~6!. Figure 2 attests
that the analytical estimate~10! is very accurate. In the sam
figure the data obtained with a Riemannian differential g
metrical approach, developed in@9#, are also shown. The two
methods give almost identical results, apart at very low
ergy, where the findings of Ref.@9# are in better agreemen
with our numerical data.

It is remarkable to note that Chirikov@20# found similarly
the maximal Lyapunov exponent of the standard map at h
energy by averaging over the phase space the maxima
genvalue associated to the main hyperbolic point. It co
sponds in our case to averaging the growth rate~6! for the
unstable periodic orbitq5p over the equilibrium equiparti-
tion state~where all modes have the same weight!. A similar
approach is known as Toda criterion@21# and although it
cannot be used as a signature of chaos, it can give an
proximate estimation ofl1. On the other hand, it is known
that crude stochastic approximations can give good estim
of l1 also for high-dimensional strongly chaotic symplec
systems@22#.

In fact, one can understand average~10! in a better way
by recalling that the modes$p/2%,$2p/3%,$p% correspond to
the simplest unstable periodic orbits and are also the o
three one-mode solutions of theb-FPU problem. The calcu
lation of the instability entropies of these three modes sho
that they are extremely close to one another, in contras

FIG. 3. Participation ratioj vs the density of energyE/N, for
different lattice sizes; diamonds forN564, triangles forN5256,
and squares forN51024.
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the value for other modes. A correct approach would be
apply thez-function formalism@23# to this system, if fea-
sible.

At high energy, expression~6! can be simplified as
t(p,Q).Aa f (Q), where f (Q) is energy independent
Therefore, the growth rate scales with the amplitudef0, and
as E5N(8f0

2164bf0
4), it means that the growth rate an

therefore,l1 scales with (E/N)1/4 at high energy. This resul
is in contradiction with Ref.@24# but in agreement with Ref
@9#.

In fact, a similar approach gives also very good results
other powers 2(p11) in the coupling potential. The expres
sion of the growth rate is then the same if we u
a5b„(2p11)!/p!( p11)!…„2f0 sin(q/2)…2p. Figure 2
shows that the results are once more in very good ag
ment with numerical estimates. One derives easily t
the maximal Lyapunov scales at high energy likel1

;(E/N)1/22@1/2(p11)#. It is important to stress that in th
limit of hard potential (p→`) we find the exponent 1/2
analogously to billiards@25#. In the low energy limit, how-
ever, all models have the same scaling behaviors as
pected.

Plotting l1(E/N) in a log-log scale we observe~see Fig.
2! that the two asymptotic linear behaviors are separated
‘‘knee’’ ~change in slope! at intermediate energy density. A
estimation of this transition region can be derived assum
that the linear and nonlinear contributions tov(q) should be
of the same order. We obtaina;1, i.e., an energy density o
the order of 1/b ~this is equivalent to the estimation given b
mode overlap criterion@4#!.

This knee corresponds to a stochasticity threshold@7# that
defines the crossing from weak to strong chaos. But we h
also found that it corresponds to an interesting transition
tangent space. Considering the normalized Lyapunov ve
V1 associated to the maximal Lyapunovl1, we can intro-
duce the participation ratio@26#

FIG. 4. Localization in tangent space of the Lyapunov vector
N5256. The dashed curve corresponds to a generic local
Lyapunov vector at high energy densityE/N.2.53106, whereas
the solid curve~shifted by20.2! corresponds to a generic deloca
ized one at low energy densityE/N.2.
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N

@V1~ i !21V1~ i 1N!2#2D 21

, ~11!

where the first~last! N components ofV1 are associated to
the evolution of linear perturbation ofun (u̇n) in tangent
space. The quantity~11! has been used in different contex
and, for example, in dynamical systems@27# as an indicator
of localization: it is of orderN if the vector is extended an
of order one if localized. We have found that the stochas
ity threshold corresponds to a crossover from an exten
state in tangent space to a more localized state, as attest
Fig. 3. The two examples of Lyapunov vectors reported
Fig. 4 show the clear difference between low and high
ergy density. The localization of the Lyapunov vectors
chains of nonlinear oscillators in the high energy limit w
also previously observed in Refs.@8,28#. Moreover, signa-
tures of a similar transition were found in@22# for a model of
coupled symplectic maps. Finally, we notice that t
metallic-insulating transition in finite samples@29# is very
reminiscent of the one reported in this Communication.
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We conclude by stressing again that we have compu
the maximal Lyapunov for a high dimensional Hamiltonia
system by using a simple analytical approach, based u
modulation instability analysis of linear waves. The resu
obtained here are in excellent agreement with our comp
simulation results. The success of this calculation sugg
that this Lyapunov estimation could be extended to ot
high-dimensional Hamiltonian systems. Moreover, we ha
shown that the strong stochasticity threshold@7# is not a
threshold to energy equipartition, since equipartition can
always obtained, although on longer time scales@30#. It
rather corresponds to a crossover from extended to more
calized states in tangent space.
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