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Biological cells with all of their surface structure and complex interior stripped away are essentially
vesicles—membranes composed of lipid bilayers which form closed sacs. Vesicles are thought to be relevant as
models of primitive protocells, and they could have provided the ideal environment for prebiotic reactions to
occur. In this paper, we investigate the stochastic dynamics of a set of autocatalytic reactions, within a spatially
bounded domain, so as to mimic a primordial cell. The discreteness of the constituents of the autocatalytic
reactions gives rise to large sustained oscillations even when the number of constituents is quite large. These
oscillations are spatiotemporal in nature, unlike those found in previous studies, which consisted only of
temporal oscillations. We speculate that these oscillations may have a role in seeding membrane instabilities
which lead to vesicle division. In this way synchronization could be achieved between protocell growth and the
reproduction rate of the constituents �the protogenetic material� in simple protocells.
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I. INTRODUCTION

The cell is a structural and functional unit, the building
block of any living system. Cells consist of a membrane,
made of a lipid bilayer, which encloses and protects the con-
tents of the cell, including genetic material. The membrane is
semipermeable: nutrients can diffuse in and serve as energy
to support the functioning of the machinery �1�. Cells un-
dergo replication �cell division�: this is a process by which a
cell, hereafter called the parent cell, divides into two or more
cells, called the daughters. The daughter cell contains in
principle an exact replica of the parent’s inner constituents,
this property being ultimately a prerequisite for stable living
organisms to exist. Such a process clearly relies on the syn-
chronization between the duplication rate of the constituents
and the growth of the container. In modern cells this condi-
tion is of paramount importance and is efficiently realized
via dedicated control mechanisms, expressed as pathways of
nested molecular checkpoints �1�. This complex and delicate
machinery has evolved; presumably the first minimalistic
cells �so-called protocells �2–10�� had a far more straightfor-
ward and less elaborate way of dividing. So focusing on the
primordial cell units postulated to be present at the origin of
life on Earth, can we conceive of a simple, though efficient,
mechanism which could govern the division process? A pos-
sible answer to this question will emerge as a result of the
calculations carried out in this paper.

One of the most persuasive scenarios concerning the ori-
gin of life on Earth identifies vesicles as protocells �11�.

These are tiny closed sacs in which the outer membrane
takes the form of a lipid bilayer and so are good candidates
for a minimal cell. Despite the dramatic reduction in com-
plexity as compared to modern cells, vesicles still display
many fascinating properties, as revealed in laboratory experi-
ments �11,12�. They are semipermeable and allow for differ-
ent types of chemicals to enter the enclosed volume, and so
sustain any reaction cycles that may be taking place. In ad-
dition, vesicles can grow due to inclusion of lipid constitu-
ents into their surface, progressively adjust their shape, and
eventually divide to produce daughter vesicles. Vesicles
which are initially spherical can pass through a number of
intermediate shapes before they divide, for instance a vesicle
may first change into an ellipsoid, then into a dumbbell shape
and finally into two attached spheres, at which point it will
divide in two �12�.

However it must be said there is in reality very little the-
oretical evidence that the shape of the vesicle always follows
this particular sequence and even less experimental evidence.
It may be more appropriate to talk about an ensemble of
vesicles and typical pathways to the state where division
takes place. Similarly there may only be a mean time to
division, although it should be noted that there would then be
a selection process which would favor the types of vesicles
�if they could be distinguished� which would undergo the
division proceeding at the fastest rate.

When modeling protocells, one needs to relate the mecha-
nism of growth and division to the actual microscopic dy-
namics of the internal constituents. While vesicles can pos-
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sibly define the scaffold of prototypical cell models, what
can one say about the internal constituents? It is customarily
believed that autocatalytic reactions �13� might have had a
role in producing complex molecules required for the origin
of life �14–17�. A chemical reaction is called autocatalytic if
one of the reaction products is itself a catalyst for the chemi-
cal reaction. Clearly the reaction will speed up as more cata-
lyst is produced. If there are several catalytic reactions,
rather than just one—an autocatalytic set �18�—then more
complex behavior is possible, with some reactions producing
catalysts for other reactions. This suggests that the interior of
the protocell might have been occupied by interacting fami-
lies of replicators, organized in autocatalytic cycles.

Autocatalytic reactions have also been invoked in the con-
text of studies on the origin of life as a possible solution of
the famous Eigen paradox �19�. This is a puzzle, since it
limits the size of self-replicating molecules to perhaps a few
hundred base pairs. At odds with this conclusion, almost all
life on Earth requires much longer molecules to encode their
genetic information. This problem is dealt with in living cells
by the presence of enzymes which repair mutations, allowing
the encoding molecules to reach sizes on the order of mil-
lions of base pairs �20�. In primordial organisms, autocata-
lytic cycles might have provided the required degree of mi-
croscopic cooperation to prevent Eigen’s evolutionary drive
to self-destruction to occur.

In this paper we will investigate the properties of auto-
catalytic reactions within a bounded region of space, which
we will identify with the vesicle, the whole structure being a
reference model for a protocell. The autocatalytic reactions
will be taken to have the form proposed by Togashi and
Kaneko �21,22�. In their work, Togashi and Kaneko empha-
sized the role played by the noise intrinsic to the system of
elementary constituents. This model was recently revisited
by Dauxois et al. �23�, who used an approach based on ex-
panding the master equation in a system-size expansion �24�,
to make analytic progress in the description of the process.
This approach has recently been applied to a number of pro-
cesses in biological systems to show how large oscillations
can emerge, sustained by the stochastic component of the
dynamics �25–27�. The analysis has also been extended to a
spatial model �28�, and our calculations will mirror those in
this paper.

Therefore here we will ask what happens once space �i.e.,
microscopic particle diffusion� is incorporated into the
model. Are the oscillations robust or, conversely, do they get
washed out through coarse-grained averaging? We shall
demonstrate that spatiotemporal patterns do emerge and in-
fluence the mass transport inside the cell. We will also specu-
late that the division of the protocell requires an inherent
degree of synchronization which may be triggered by collec-
tive, spatially ordered fluctuations in the concentration.
Building on this scenario, one can imagine that localized
peaks in the concentration might develop at a given stage of
the vesicle evolution. Denser patches could then drive an
instability which could potentially lead to the distortion of
the membrane and so to division.

II. MODEL

The model we will use is a spatial version of the autocata-
lytic model discussed in �23�. The idea is to introduce a

spatial coarse-graining and divide the vesicle into small mi-
crocells, within which autocatalytic reactions occur. The
cells adjoining the membrane which forms the limit of the
vesicle have a special status, since the membrane allows
chemicals to diffuse in from the environment and out into the
environment. In this paper we will focus only on these
microcells—those that are adjacent to the boundary—and
lump all the interior microcells together into an inner region.
We do not give the environment or this inner region any
spatial structure; they simply act as a particle reservoir for
the chemicals in the microcells adjacent to the membrane.

In each microcell autocatalytic reactions as specified in
�23� occur, see Fig. 1. More specifically we consider k
chemical species, here labeled Xs

j, with the index s
=1, . . . ,k labeling the species and j=1, . . . ,�, the � micro-
cells where the reactions occur. The autocatalytic reactions
take the form �23�

Xs
j + Xs+1

j →
�s+1

2Xs+1
j . �1�

The reactions are taken to be cyclic so that Xk+1
j =X1

j .
The spatial element of the model is introduced through

migration of chemical species between neighboring cells.
The boundary cells will form a periodic structure in two
dimensions so that a Fourier-based approach can be used in
the analysis described below. The geometry is schematically
depicted in Fig. 2, in a two-dimensional setting, so that the
microcells form a one-dimensional periodic structure. It
should be emphasized that although the scheme is illustrated
in Fig. 2 with reference to a two-dimensional vesicle for
simplicity, the setting and analysis apply in any spatial di-
mension including the relevant three-dimensional case. If the
vesicle is d+1 dimensional, clearly the microcells will form
a d-dimensional periodic structure.
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FIG. 1. �Color online� The volume of the cells adjacent to the
boundary is imagined to be partitioned into � microcells �see also
Fig. 2�. Within microcell j the molecular species interact according
to the autocatalytic reactions specified by Eqs. �1�. In addition, the
molecules can migrate from microcell j to its nearest neighbors,
e.g., microcell j�, as depicted in the cartoon. A molecule of type Xs

j

�full circle� takes over a vacancy �dashed empty circle� of microcell

Ej�, and so transforms into Xs
j�, leaving behind a vacancy Ej. Fi-

nally, the chemical can also diffuse in from the environment, a
reaction that in turn implies changing Ej into Xs

j. The opposite holds
for molecules that diffuse out into the environment.
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The migration between adjacent cells is encapsulated in
the following relations:

Xs
j + Ej�→

�s

Xs
j� + Ej , �2�

Ej + Xs
j�→

�s

Ej� + Xs
j , �3�

where j and j� label the adjacent cells and Ei represents
vacancies in cell i. We will assume that the capacity of each
cell is N, so that sum of the number of molecules of each
species plus the number of vacancies equals N for every cell.

Finally, cell j may lose a molecule Xs
j to the environment

or inner region leaving a vacancy Ej or a gain of a molecule
Xs

j from the environment or inner region, i.e.,

Xs
j→

�s

Ej; Ej→
�s

Xs
j . �4�

There is no need to distinguish between the environment and
inner region; the rates �s and �s can simply be regarded as
the combined rates for both processes. In the rest of the paper
we will simply refer to both these regions as “the environ-
ment.”

In the following we will formulate the model in terms of
a chemical master equation and find the mean-field solution
as well as determining stochastic corrections to this which
occurs when N is finite. We will also simulate the stochastic
dynamics and compare the results with the analytic formulas
we obtain.

To describe the model as a chemical master equation, we
denote the number of molecules of chemical species s in cell
j by ns

j, and so the state of the system can be characterized by
the vector n= �n1 ,n2 , . . . ,n�� where n j = �n1

j ,n2
j , . . . ,nk

j�. The
transition rate from one state n�, to another n, is denoted by
T�n �n��—with the initial state being on the right. For ex-
ample, the transitions stemming from the autocatalytic cycles
are

T�ns
j − 1,ns+1

j + 1�ns
j,ns+1

j � =
�s+1

�

ns
j

N

ns+1
j

N
, �5�

where within the brackets we have chosen to indicate only
the dependence on those species which are involved in the
reaction. The transition rates associated with the migration
between adjacent microcells take the form

T�ns
j − 1,ns

j� + 1�ns
j,ns

j�� =
�s

z�

ns
j

N
�1 − �

m=1

k
nm

j�

N
� ,

T�ns
j + 1,ns

j� − 1�ns
j,ns

j�� =
�s

z�

ns
j�

N
�1 − �

m=1

k
nm

j

N
� , �6�

where z is the number of nearest neighbors that each micro-
cell has. Finally, for the interaction with the environment, the
transition rates are

T�ns
j − 1�ns

j� =
�s

�

ns
j

N
,

T�ns
j + 1�ns

j� =
�s

�
�1 − �

m=1

k
nm

j

N
� . �7�

In Eqs. �6� and �7�, explicit use has been made of the condi-
tion

�
s=1

k
ns

j

N
+

nE
j

N
= 1, �8�

to eliminate nE
j , the number of vacancies in cell j.

The system is intrinsically stochastic and may be de-
scribed by the probability density function, P�n , t�, which
gives the probability of finding the system in state n at time
t. The equation which governs the dynamical evolution of
P�n , t� is the master equation �24�, which for the system
under consideration here takes the form

dP�n,t�
dt

= �
j=1

�

Tloc
j P�n,t� + �

j=1

�

�
j��j

Tmig
j j� P�n,t�

+ �
j=1

�

Tenv
j P�n,t� , �9�

where the three terms on the right-hand side refer to the local
terms for the chemical reactions, the migration of chemical
species between the microcells, and the interaction with the
environment, respectively. The notation j�� j means that the
cell j� is a nearest-neighbor of the cell j. The three terms in
the master equation can be expressed in a concise, but trans-
parent, form by introducing the step operator �24� Es,j

�1 de-
fined by

Es,j
�1f�	nm

i 
� = f�. . . ,ns
j � 1, . . .� , �10�

where f is an arbitrary function. The explicit forms for these
three terms are

FIG. 2. In the spatial autocatalytic model considered here the
vesicle is imagined to be divided into small microcells. We are
specifically interested in the microcells adjoining the membrane,
shown in darker outline in the figure. These latter link up together
and constitute a sort of inner shell, immediately adjacent to the
vesicle wall. Within each microcell the chemicals interact as shown
in Fig. 1.
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Tloc
j = �

s=1

k

�Es,jEs+1,j
−1 − 1�T�ns

j − 1,ns+1
j + 1�ns

j,ns+1
j � , �11�

Tmig
j j� = �

s=1

k

�Es,jEs,j�
−1 − 1�T�ns

j − 1,ns
j� + 1�ns

j,ns
j��

+ �
s=1

k

�Es,j�Es,j
−1 − 1�T�ns

j� − 1,ns
j + 1�ns

j�,ns
j� , �12�

Tenv
j = �

s=1

k

��Es,j − 1�T�ns
j − 1�ns

j� + �Es,j
−1 − 1�T�ns

j + 1�ns
j�� ,

�13�

where it is understood that the operator Es,j
�1 also acts on

P�n , t� when these expressions are substituted into Eq. �9�. In
Eq. �11� the cyclic nature of the reactions means that nk+1

j

should be identified as n1
j and Ek+1,j

�1 should be identified as
E1,j

�1. The explicit expressions for the transition rates are
given by Eqs. �5�–�7�. These, together with Eqs. �9�–�13�,
define the model.

The above description is exact; no approximations have
yet been made. At this stage we could also resort to direct
numerical simulations of the chemical reaction system by
use of the Gillespie algorithm �29,30�. This method produces
realizations of the stochastic dynamics which are formally
equivalent to those found from the master Eq. �9�. Averaging
over many realizations enables us to calculate quantities of
interest. We will discuss the results of performing such simu-
lations in Sec. IV, but a very accurate approximation scheme
exists which can be used to investigate models of this type
analytically. This is the van Kampen system-size expansion
�24�. It is effectively an expansion in powers of N−1/2, which
to leading order �N→�� gives the deterministic equations
describing the system and which at next-to-leading order
gives finite N corrections to these. These latter corrections
take the form of linear stochastic differential equations
which can then be analyzed straightforwardly, especially in
the case when the deterministic system has approached a
stable fixed point. The method is based on substituting the
ansatz

ns
j

N
= 	s

j +
1

�N

s

j , �14�

into the master Eq. �9�. Here 	s
j�t� is the solution to the

deterministic equation, and 
s
j�t� is a stochastic term which is

the difference between the actual value ns
j /N and 	s

j at time t.
We develop this approximation in the next two sections.

In Sec. III we carry out the analysis to leading order, finding
the deterministic equations and the relevant fixed point. In
Sec. IV we carry through the calculation to next-to-leading
order, investigating the linear stochastic differential equa-
tions by taking their Fourier transforms. The derivations of
these equations is lengthy, though straightforward, and the
details of the expansion are provided in Appendixes A and B.

III. LEADING ORDER: THE DETERMINISTIC
EQUATIONS

In the limit where the number of molecules �including
vacancies� in each microcell, N, goes to infinity, the system
becomes deterministic and is governed by a set of ordinary
differential equations. These are found by substituting the
ansatz �Eq. �14�� into the master Eq. �9� and letting N→�,
after the introduction of a rescaled time �= t / �N��. The cal-
culation is described in Appendix A, but the same equation
can also be found by multiplying Eq. �9� by ns

j and summing
over all states n. Either way one obtains the following equa-
tion for species s in cell j:

d	s
j

d�
= �s	s−1

j 	s
j − �s+1	s

j	s+1
j

+ �s��	s
j�1 − �

m=1

k

	m
j � + 	s

j �
m=1

k

�	m
j 


+ �s�1 − �
m=1

k

	m
j � − �s	s

j , �15�

where � is the discrete Laplacian operator �fs
j

= �2 /z�� j��j�fs
j�− fs

j�. In the limit where the size of the micro-
cells tends to zero, these equations become partial differen-
tial equations, with � becoming the familiar Laplacian op-
erator. In this respect, Eq. �15� generalizes the results of �23�
to the case of a spatially extended system. When turning off
the migration mechanism between neighboring microcells,
i.e., imposing �s=0 for any species s, the spatial aspects drop
out and one formally recovers the ordinary differential equa-
tions given in �23�.

To proceed with the analysis and to make contact with the
investigation carried out in �21,23�, we shall now assign the
same chemical parameters to all the species. The migration
rate is the only exception to this, and may have a different
value for each species. We will see later that this will be
necessary in order to find spatiotemporal oscillations but
also, as we will see shortly, a straightforward analysis is still
possible if we maintain in �s, and none of the other param-
eters, an explicit reference to the index s. We will be con-
cerned with finding the homogeneous solution of Eq. �15�,
that is, the solution with no spatial variation. The homoge-
neous solution is found to be an attractor of the deterministic
dynamics, even when the system is initially prepared in a
nonhomogeneous configuration. This observation follows
from numerical simulations but can in principle be made
quantitative by investigating the stability of the homoge-
neous fixed point. This means that no gradient in concentra-
tion is allowed between neighboring microcells, once the
asymptotic regime is attained. So, when searching for fixed
points of the dynamics, one can set the terms involving the
Laplacian in Eq. �15� to zero. Since the only dependence on
s, appearing in �s, multiplies these terms, there is also no
dependence remaining on the species type, s, and so the fixed
points are both independent of j and of s. Under these con-
ditions a unique fixed point for the concentration, 	�, is eas-
ily found to be
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	� =
�

k� + �
, �16�

for any s=1, . . . ,k and j=1, . . . ,�. The result �Eq. �16�� is
identical to that obtained in �23� when dealing with the non-
spatial homologous model.

In �23�, fluctuations for finite N were shown to induce
regular temporal oscillations in the species populations, so
significantly altering the predicted deterministic dynamics.
What is going to happen in the present spatial context? In
Sec. IV we shall investigate this, the central point of the
paper, by focusing on the next-to-leading order corrections in
the van Kampen expansion.

IV. NEXT-TO-LEADING ORDER:
THE STOCHASTIC CORRECTIONS

Equating the terms of next-to-leading order in the master
equation, after rescaling the time, leads to the Fokker-Planck
Eq. �B1� which governs the probability density function of
the fluctuations. This Fokker-Planck equation is formally
equivalent to the following Langevin equation �31,32�:

d
s
j

d�
= �

j�,r

Msr
jj�
r

j� + 
s
j��� , �17�

where

�
s
j���
r

j������ = Bsr
jj���� − ��� . �18�

The noise term, 
s
j���, in Eq. �17� is Gaussian with zero mean

and with a correlator given by Eq. �18�, from which it can be
seen to be white. The form of the two matrices M and B are
discussed in Appendix B. They depend on the solution of the
deterministic equation 	s

j���, and so in principle are time-
dependent, since 	s

j is. However, in practice we are inter-
ested in fluctuations about the stationary state, 	�, and so
they lose their time dependence. They also only have a non-
trivial spatial dependence through the presence of the dis-
crete Laplacian because the stationary state is homogeneous.
Therefore the calculation can be considerably simplified by
taking the spatial Fourier transform of Eqs. �17� and �18�. As
discussed in Appendix B this gives �see also �28��

d
s
k

d�
= �

r

Msr
k 
r

k + 
s
k��� , �19�

where

�
s
k���
r

k������ = Bsr
k �ad�k+k�,0��� − ��� , �20�

and where k is the wave vector. Here we have assumed that
the microcells form a hypercubic lattice in d—dimensions
with a lattice spacing a. The matrices Mk and Bk are given
by Eqs. �B9�–�B13� and �B15�–�B19�, respectively. However
the important point is that now k is simply a label and the
matrix structure originating from the spatial nature of the
problem has been lost. Thus both Mk and Bk are simply
k�k matrices �recall that k is the number of chemical spe-
cies� and the analysis from now on is as in the nonspatial
case �23�.

As we have already stressed in this paper, fluctuations
about the stationary state need to be taken into account since
they can be significant even if N is quite large. The fact we
can investigate these systematically is crucially dependent on
the linearity of Eq. �19� and that the Mk and Bk matrices are
time independent. It means that we can straightforwardly
take the temporal Fourier transform of Eq. �19� to obtain

�
r=1

k

�− i��sr − Msr
k �
̃r

k��� = 
̃s
k��� , �21�

where f̃ denotes the temporal Fourier transform of the func-
tion f . Defining the matrix �−i��sr−Msr

k � to be �sr
k ���, the

solution to Eq. �21� is


̃r
k��� = �

s=1

k

��k����rs
−1
̃s

k��� . �22�

From previous investigations, and the nature of the sys-
tem, we expect that the fluctuations about the stationary state
�Eq. �16�� will oscillate and will also be sustained and en-
hanced by a resonant effect �23,25�. This is indeed what is
seen. To investigate this effect systematically we focus our
attention on the power spectrum Ps�k ,�� of the fluctuations
of species s,

Ps�k,�� � ��
s
k����2�

= �ad�
r=1

k

�
u=1

k

��k����sr
−1Bru

k ��k†����us
−1. �23�

The theoretical power spectrum can be found and plotted
out, for any given choice of the chemical parameters, from
Eq. �23�. To make contact with earlier investigations �23� and
aiming at elucidating the spatial effects, we here solely focus
on the choice k=4 and select �=10, �=5 /32, and �=5 /32.
When the �s are set equal to zero, the communication be-
tween neighboring microcells is silenced, each spatial block
behaving as an independent unit. Based on Eq. �23�, a tem-
poral peak in the power spectrum is predicted to occur. The
peak is approximately located at ��4, in agreement with
the analysis developed in �23�. Another simple limit is when
the �s are made equal for all of the k chemical species. For
this choice of parameters, once again there is only a temporal
peak �i.e., a global peak at �k�=k1=0�. The local peak gets
progressively damped as �k� gets larger, the effect being more
pronounced the larger the values for the migration param-
eters. A similar phenomenon was also reported to occur in
�28�.

More interestingly, in Fig. 3, we show the theoretical
power spectrum Eq. �23� for �s that take different values for
each of the species in the case of a two-dimensional vesicle
�a one-dimensional periodic lattice of microcells, i.e., d=1�.
The range of variation in the �s covers several orders of
magnitude, which in turn corresponds to assigning a signifi-
cantly different degree of mobility to the species. Molecules
characterized by large values of �s will quickly diffuse,
while those with smaller �s are associated with relatively
static and, presumably, more massive, species. A localized
peak is clearly displayed suggesting that organized spa-
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tiotemporal patterns can spontaneously emerge due to the
inherent stochasticity of the system. From an inspection of
Figs. 3, it is also evident that the power spectrum shows a
clear peak for all four species. We found that making the �s
significantly different among species was a simple way to
produce localized spatiotemporal patterns. We also found
that they could be produced if �at least� one of the �s was
sufficiently large, when compared with the others. By con-

trast, if the �s were not too different, the global peak re-
mained at �k�=k1=0, indicating that only temporal cycles
exist in this case.

The conclusion of the above analysis, as well as the ac-
curacy of the approximations that have been employed, can
be tested via direct numerical simulations. By averaging over
many realizations, we can calculate the power spectra after
Fourier transformation. Results of the simulation are dis-
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FIG. 3. �Color online� Power
spectra calculated from Eq.
�23� for k=4 species and for
a two-dimensional vesicle �one-
dimensional periodic array of
microcells�. Here �=256,
�=10, �=5 /32, �=5 /32, and
�= �100,0.001,1 ,500�. Each pair
of panels �the three-dimensional
plot and its two-dimensional
projection� refers to a different
chemical species. A localized peak
is displayed predicting the exis-
tence of regular spatiotemporal
patterns.
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played in Fig. 4 for the same choice of parameters as in
Fig. 3. The correspondence between the profiles is excellent
and so confirms the correctness of our theoretical scheme.

In summary, we have unambiguously demonstrated that
organized spatiotemporal cycles can emerge in a simple
model of protocells where the constituents inside the vesicle
interact via an autocatalytic scheme. As we shall argue in the
following, this finding provides a possible mechanism to

drive a dynamical synchronization between the duplication
of genetic material inside a protocell and the division of the
vesicle membrane.

V. DISCUSSION

In this paper we have investigated how the discreteness of
the constituents in a set of autocatalytic reactions can lead to
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FIG. 4. �Color online� Numeri-
cally calculated power spectra ob-
tained from averaging 800 realiza-
tions. Stochastic simulations are
performed via the Gillespie algo-
rithm. Parameters are set as in Fig.
3 and N=5000.
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spatiotemporal oscillations. The occurrence of temporal os-
cillations in such a setting, but without a spatial element, has
previously been studied �21,23�. Similarly, such oscillations
have been studied for a predator-prey system in a spatial
framework �28�, but the oscillations in this case did not occur
at a nonzero value of k. In this paper, we have combined and
generalized these treatments, and also put them into the con-
text of vesicles, which suggests an interesting consequence
of the oscillatory behavior.

We can speculate that the natural tendency of the chemi-
cal constituents to organize in regular spatiotemporal cycles
can be instrumental in achieving a degree of synchronization
between the outer membrane of the vesicle and the mixture
of chemicals inside. In the context of protocells, these chemi-
cals undergoing autocatalytic reactions are to be interpreted
as a primitive form of genetic material. One would expect, as
a minimal self-consistency requirement, that within a stable
population, a vesicle would split into two when the chemical
material contained within it had approximately doubled in
size. It is tempting to postulate that such a property is a
dynamical phenomenon, the density fluctuations acting as a
positive feedback on the vesicle growth, so signaling when
the constituents inside the vesicle are ready for the splitting
to take place.

Now let us imagine that the vesicle containing the chemi-
cal species grows because of the inclusion of successive
membrane constituents from the environment in which it
moves. Laboratory experiments indicate �11� that a vesicle
filled with water or solutes is kept in a turgid spherical shape
while growing by additional material of a similar kind flow-
ing in from the outside environment. It is believed that the
vesicle remains spherical until a thermodynamic instability
sets in which distorts the structure �33�, eventually leading to
fissioning. Now suppose that the vesicle is filled by a discrete
population of chemical constituents, which undergo an inde-
pendent dynamics of the autocatalytic type. As illustrated in
this paper, the chemicals experience a first rapid evolution
toward the stationary state, where enhanced oscillations ap-
pear due to the intrinsic finiteness of the interacting constitu-
ents. Such oscillations might seed an instability which could
resonate with the innate ability of the container to divide, so
initiating the splitting process. A different method of seeding
such an instability has been proposed by Macia and Solé
�34,35�. These ideas could be extended to protocells, where
enhanced oscillations could originate in the primitive genetic
material. These oscillations could signal to the membrane
that the genetic evolution had been virtually taken to comple-
tion and that the fission could now occur, so ensuring that the
genetic material is passed on to the daughter protocells. This
is a highly speculative suggestion, which calls for further
investigation in the context of self-consistent formulations,
where both the membrane and the genetic material are dy-
namically evolved.

It is clear that the work presented here can be extended in
various ways. The nature of the lattice structure that is as-
sumed can be generalized. For instance it is straightforward
to include next-nearest neighbors, next-next nearest neigh-
bors, and so on. The analytical treatment is analogous, and
the results the same; only the form of the operator �k
changes. Numerical simulations could also be performed in

higher dimensions. In particular, a toroidal �donutlike� cell
embedded in a three-dimensional space can be straightfor-
wardly simulated and analyzed. The inner volume of the cell
is again partitioned into microcells, but now the constituents
of all the microcells and not just those closest to the bound-
ary, take part in the reactions. Distinct diffusion rates are
assigned to the radial and longitudinal directions. Prelimi-
nary simulations indicate that collective modes can develop,
giving rise to organized spatiotemporal dynamics �36� of a
similar kind to those found in this paper. It would be inter-
esting to extend this analysis to other geometries and make
contact with work which assumes the oscillations to be
present throughout the cell �see, for instance �37��.
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APPENDIX A: THE VAN-KAMPEN EXPANSION

In this appendix we will give more details of the applica-
tion of the van Kampen system-size expansion to the master
Eq. �9�. A general discussion of the method is given in van
Kampen’s book �24� and a description of the application to a
simple model showing sustained and enhanced stochastic
fluctuations is given in �25�. The calculations given below
build upon those carried out for the nonspatial version of the
model considered in this paper �23� and a spatial predator-
prey model �28�. We will occasionally refer back to these
two papers below.

The starting point for the expansion in powers of N−1/2 is
the ansatz �Eq. �14��. From this the following two results can
be derived �24�. First, the left-hand side of the master Eq. �9�
is given by

dP�n,t�
dt

=
���
m

i ,t�
�t

− N1/2�
j=1

�

�
s=1

k
���
m

i ,t�
�
s

j

d	s
j

dt
, �A1�

where ��
m
i , t�� P�nm

i , t�. Second, the step operator Es,j
�1 may

be expanded:

Es,j
�1 = 1 � N−1/2 �

�
s
j + �2N�−1 �2

��
s
j�2 + ¯

� 1 � N−1/2�
s
j + �2N�−1�


s
j

2 + ¯ . �A2�

The right-hand side of the master equation may be also
expanded. We begin by defining new operators which are the
coefficients of N−1/2 and N−1 in the expansion of the particu-
lar combinations of the step operators which appear in the
model. These are

�Es,jEs+1,j
−1 − 1� � N−1/2��
s

j − �
s+1
j � +

1

2
�N−1/2��
s

j − �
s+1
j ��2

� N−1/2L̂1s +
1

2
N−1L̂2s,
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�Es,jEs,j�
−1 − 1� � N−1/2��
s

j − �
s
j�� +

1

2
�N−1/2��
s

j − �
s
j���2

� N−1/2L̂1j +
1

2
N−1L̂2j ,

where the operators L̂1s and L̂2s read as

L̂1s = ��
s
j − �
s+1

j �, L̂2s = ��
s
j − �
s+1

j �2

and where L̂1j and L̂2j read as

L̂1j = ��
s
j − �
s

j��, L̂2j = ��
s
j − �
s

j��2.

In addition

�Es,j
−1 − 1� � − N−1/2�
s

j +
1

2
N−1�


s
j

2 ,

�Es,j − 1� � N−1/2�
s
j +

1

2
N−1�


s
j

2 .

For each of the three terms appearing in Eq. �9�, namely, the
local, migration, and environmental terms, we can now iden-
tify the various contributions in the van Kampen expansion:
those of order N−1/2, those of order N−1 involving a single
derivative, and those of order N−1 but involving two deriva-
tives. We will examine these in turn.

1. Right-hand side of the master equation: The N−1Õ2 terms

The contribution from Tloc
j , defined by Eq. �11�, is

�
s

�s+1

�
L̂1s�	s

j	s+1
j � .

Using the definition of L̂1s, shifting the sum on s and remem-
bering that quantities with subscripts k+1 are to be identified
with those with subscripts 1, we obtain

Tloc
j�1� =

1

�
�

s

��s+1	s
j	s+1

j − �s	s−1
j 	s

j��
s
j , �A3�

where the superscript �1� indicates that this is only the con-
tribution to Tloc

j from terms of order N−1/2. It should be noted
that Eq. �A3� operates on ��
m

i , t�.
The contribution from Tmig

j j� , defined by Eq. �12� and using

the definition of L̂1j, is

2

z�
�

s

�s�
s
j�	s

j�1 − �
m

	m
j�� − 	s

j��1 − �
m

	m
j �� .

To write this contribution in a way which naturally involves
the Laplacian operator we add to this sum two terms which
add to zero, namely,

0 = 	s
j�

m

	m
j − 	s

j�
m

	m
j .

Summing the contribution over j�� j and introducing the

discrete Laplacian �fs
j = �2 /z�� j��j�fs

j�− fs
j�, we obtain

�
j�

Tmig
j j��1� = − �

s

�s

� ��	s
j�1 − �

m

	m
j � + 	s

j�
m

�	m
j � .

�A4�

The contribution from Tenv
j , defined by Eq. �13�, is imme-

diately found to be

Tenv
j�1� = �

s
� �

�
s
j��s

�
	s

j −
�s

� �1 − �
m

	m
j ��� . �A5�

Adding the three terms �Eq. �A3�–�A5�� together, and let-
ting them act on ��
m

i , t� and summing over j, we may
equate the resulting expression to the order N1/2 term in Eq.
�A1�, after the rescaling of time �= t / �N��. The resulting
equation describes the deterministic time evolution of the
species s in microcell j in the limit N→�, and is given by
Eq. �15� in the main text.

2. Right-hand side of the master equation:
The N−1 terms with a single derivative

These contributions are expressed in terms of the opera-

tors L̂1s and L̂1j and so are a function of the first derivatives
in the fluctuation variables. We proceed as we did for the
terms of order N−1/2.

The contribution from Tloc
j , defined by Eq. �11�, is

Tloc
j�2� = �

s=1

k
�s+1

�
�L̂1s�	s

j
s+1
j + 	s+1

j 
s
j��

=
1

�
�
s=1

k � �

�
s
j �	s

j��s+1
s+1
j − �s
s−1

j �

+ 
s
j��s+1	s+1

j − �s	s−1
j ��� , �A6�

where once again use has been made of the definition L̂1s, the
cyclic nature of the species, and the sum on s has been
shifted. Here the superscript �2� indicates that this is only the
contribution to Tloc

j from terms of order N−1 with a single
derivative.

The contribution from Tmig
j j� , defined by Eq. �12�, is

2

z�
�

s

�s�L̂1j�	s
j�− �

m


m
j�� + 
s

j�1 − �
m

	m
j���� .

Performing the same manipulations as before but also insert-
ing the identities

0 = 
s
j�

m

	m
j − 
s

j�
m

	m
j , 0 = 	s

j�
m


m
j − 	s

j�
m


m
j ,

gives, after summing over j�� j,

�
j�

Tmig
j j��2� = −

1

�
�

s

�s� �

�
s
j ��
s

j + 
s
j�

m

�	m
j − �	s

j�
m


m
j

+ 	s
j�

m

�
m
j − �
s

j�
m

	m
j �� . �A7�
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Finally, the contribution from Tenv
j , defined by Eq. �13�, is

immediately found to be

Tenv
j�2� = �

s
� �

�
s
j��s

�

s

j +
�s

�
�
m


m
j �� . �A8�

3. Right-hand side of the master equation:
The N−1 terms with two derivatives

These terms are expressed in terms of the operator L̂2s and

L̂2j and so are a function of the second-order derivatives in
the fluctuation variables. We proceed as we did in the two
previous cases.

The contribution from Tloc
j is

Tloc
j�3� =

1

�
�

s

�s+1
1

2
L̂2s�	s

j	s+1
j �

=
1

2�
�

s

�s+1�	s
j	s+1

j �� �2

��
s
j�2 +

�2

��
s+1
j �2 − 2

�2

�
s
j � 
s+1

j � .

�A9�

The contribution from Tmig
j j� is

Tmig
j j��3� =

1

z�
�

s

�s
1

2�L̂2j�	s
j�1 − �

m

	m
j����

= �s
1

z�
�

s
�	s

j�1 − �
m

	m
j���� �

�
s
j −

�

�
s
j��2

.

�A10�

Finally, the contribution from Tenv
j is found to be

Tenv
j�3� =

1

2�
s
��s

� �1 − �
m

	m
j � +

�s

�
	s

j� �2

��
s
j�2 . �A11�

Adding the six terms �Eqs. �A6�–�A11�� together and let-
ting them act on ��
m

i , t� and summing over j, we may
equate the resulting expression to the order one term in Eq.
�A1�, after the rescaling of time �= t / �N��. The resulting
equation gives the stochastic time evolution of the species s
in microcell j. It takes the form of a Fokker-Planck equation
which we now examine.

APPENDIX B: THE FORM OF THE MATRICES M AND B

To write down the differential equation for ��
s
j ,��, it is

convenient to combine the indices s and j, labeling the spe-
cies and microcells, respectively, by a single index p. To do
this we imagine the k�-dimensional vector with components

s

j as an ordered sequence of � vectors, each of k compo-
nents. This can be achieved by defining p= �j−1�k+s so that
the component 
p represents the fluctuations associated with
the sth species in the jth microcell.

Now the terms in Eqs. �A6�–�A8� take the form of
a single derivative of 
p acting on a linear combination of

l, l=1, . . . ,k� and the terms in Eqs. �A9�–�A11� are a lin-
ear combination of second-order derivatives. Therefore

using this more compact notation the Fokker-Planck takes
the form

��

��
= − �

p

�

�
p
�Ap����� +

1

2�
l,p

Blp
�2�

�
l � 
p
, �B1�

where the matrix A can be rewritten as

Ap��� = �
l

Mpl
l. �B2�

So to specify the Fokker-Planck equation we need to give
the form of the two �k��� �k�� matrices M and B. We first
note that although they do not depend on the fluctuations

p���, they do depend on the solution of the deterministic
differential Eq. �15�, as well as on the reaction rates �s ,�s ,�s
and �s. However since we are only interested in the fluctua-
tions about the stationary state 	� given by Eq, �16� and
since we obtained this solution under the assumption that
�s ,�s and �s were independent of s, we take the two matrices
to only depend on 	� ,� ,� ,� and �s. An inspection of Eqs.
�A6�–�A11� reveals that the only spatial dependence in M
and B originates from the discrete Laplacian. This suggests
that if we introduce spatial Fourier transforms, we should be
able to diagonalize M and B, and so be left with matrices
only in the species space. This is most easily carried out by
not continuing to work with the Fokker-Planck Eq. �B1� but
instead with the equivalent Langevin equation �31,32�;

d
p

d�
= Ap��� + 
p��� , �B3�

where

�
p���
q���� = Bpq��� − ���� �B4�

and where the noise term, 
p���, in Eq. �B3� is Gaussian with
zero mean. This is Eq. �17� in the main text, but using the
single index notation.

We follow the conventions and methods of �28� for the
spatial Fourier transforms. For simplicity, we shall assume
that the lattice is a d-dimensional hypercubic lattice, with
lattice spacing a. Then the Fourier transform, fs

k, of a func-
tion fs

j, is defined by

fs
k = ad�

j
e−ik.ajfs

j , �B5�

where we have now written the lattice site label j as a vector
to emphasize the d-dimensional nature of the transform. We
may now take the spatial Fourier transform of the matrix M.
Since the only spatial dependence is through the discrete
Laplacian, we may decompose Eq. �B2� as follows:

As
j = �

j�
�

r

Msr
jj�
r

j� = �
r

�Msr
�NS�
r

j + Msr
�SP��
r

j� , �B6�

where the two k�k matrices M�NS� and M�SP� will be speci-
fied below. It is now straightforward to take the spatial Fou-
rier transform of Eq. �B6� to obtain �28�
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As
k = �

r

�Msr
�NS� + Msr

�SP��k�
r
k, �B7�

where �k is the Fourier transform of the discrete Laplacian
and is given by

�k =
2

d
�
�=1

d

�cos�k�a� − 1� . �B8�

Care should be taken not to confuse the components of the
wave vector k and k, the number of chemical species. We
have denoted the �th component of the wave vector k by k�

to help avoid this confusion.
The quantity within the square brackets in Eq. �B7� is the

spatial Fourier transform of the matrix M. It is diagonal in k
space and so depends on the single label k. We may therefore
write it as

Msr
k = Msr

�NS� + Msr
�SP��k, �B9�

where the two matrices M�NS� and M�SP� may be read off
from Eqs. �A6�–�A8� and are given by

Mss
�NS� = − � − � , �B10�

Msr
�NS� = �− �	� − � , if r = s + 1

�	� − � , if r = s − 1

− � , if �s − r� � 1,
� �B11�

and

Mss
�SP� = �s�1 + �1 − k�	�� , �B12�

Msr
�SP� = �s	

� if s � r . �B13�

The matrix M�NP� is exactly the one found in the nonspatial
version of the model �23�, which is why we have attached
the label NS to it to signify the nonspatial contribution to M.
The spatial or SP contribution is simply M�SP��k.

To take the Fourier transform of the matrix B, we note
that out of the three terms—given by Eqs. �A9�–�A11�—
from which this matrix is constructed, the only nontrivial

spatial dependence comes from Eq. �A10�. We display the
contribution containing this dependence by noting the fol-
lowing relation:

�
j

�
j��j

� �

�
s
j −

�

�
s
j��2

= 2�
j

�
j�
�z

�2

��
s
j�2�jj� −

�2

�
s
j � 
s

j�
J�jj��� , �B14�

where J�jj�� is equal to 1 if j� and j are nearest neighbors and
zero otherwise. The part of the B matrix corresponding to
expression �B14� is �2z�jj�−2J�jj��� which has Fourier trans-
form

ad�2z − 4�
�=1

d

cos�k�a�� = − zad�k,

using Eq. �B8� and z=2d. Therefore we may express the
matrix B in Fourier space in a similar way to Eq. �B9�:

Bsr
k = Bsr

�NS� + Bsr
�SP��k, �B15�

where the two k�k matrices B�NS� and B�SP� may be read off
from Eqs. �A9�–�A11� and are given by

Bss
�NS� = ad���1 − k	�� + �	� + 2��	��2� , �B16�

Bsr
�NS� = �− ad��	��2, if r = s + 1

− ad��	��2, if r = s − 1

0 if �s − r� � 1,
� �B17�

and

Bss
�SP� = − 2ad�s	

��1 − k	�� , �B18�

Bsr
�SP� = 0 if s � r . �B19�

Once again, the matrix B�NS� is exactly the one found in the
nonspatial version of the model �23�, up to a factor of ad,
which is why we have attached the label NS to it. The spatial
contribution is B�SP��k.
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