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Dynamical Transitions in Correlated Driven Diffusion in a Periodic Potential
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The diffusion of a two-dimensional array of particles driven by a constant force in the presenc
a periodic external potential exhibits a hierarchy of dynamical phase transitions when the driving
is varied. This behavior can be explained by a simple phenomenological approach which reduc
system of strongly interacting particles to weakly interacting quasiparticles (kinks). The richness o
strongly coupled system is, however, not lost because, contrary to a single Brownian particle, the
shows an hysteretic behavior even at nonzero temperature. The present investigation can be vie
a first step toward understanding nanotribology. [S0031-9007(97)02426-5]
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The diffusion of a Brownian particle, driven by an exter
nal force and subjected to a periodic potential, is a situati
which arises in several fields of science [1] such as soli
state physics, surface physics [2], chemical physics, a
even communication theory. It is now well understood an
provides a simple example of an out-of-equilibrium phas
transition, between a locked and a running state. The c
of many interacting particles is even more interesting b
cause collective effects modify qualitatively the pictur
giving rise, in some parameter range, to a dynamical sta
which is very reminiscent ofa traffic jam at the atomic
scale. We discuss here this behavior in the context o
solid-state friction because it provides a typical examp
which may be amenable to experimental tests, but the ba
ingredients required to observe the phenomenon are sim
and can be found in many physical systems.

Understanding the diffusion and mobility of strongly in
teracting atoms subjected to a periodic potential and driv
by an external force is a first step toward understandi
solid friction at the atomic level [3]. For noninteracting
atoms the problem would be simple since it essentially r
duces to the diffusion of a Brownian particle in a peri
odic potential. Under the influence of a dc forceF it will
preferably diffuse in the direction of the force and in ave
age there will be a drift velocitykyl which depends onF.
The mobilityB is then defined asB ­ kylyF. If, for small
forces,B is independent onF (the linear response regime)
for arbitrary ones a nonlinear response takes place, and
task is to calculate this nonlinear mobility.

The total potential experienced by the Brownian pa
ticle is the sum of the periodic potential and the potenti
2Fx due to the driving force, i.e., it corresponds to
corrugated plane, with an average slope determined byF.
At small forces the potential has local minima, therefor
the particle is static and its mobility vanishes. On th
contrary, for large forces there are no stable positions, a
the particle slides over the corrugated potential, reachi
its maximum mobility Bf ­ smhd21, where m is the
mass of the particle andh is the friction coefficient. A
simple calculation shows that, denoting by´ the height
of the periodic potential,a the lattice constant, andc a
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constant depending on the shape of potential, the criti
force for which the stable positions disappear isF0

r ­
c ´ya.

However, for the underdamped case, the system m
also have a running solution, even if the minima of the p
tential do exist. Indeed, because of their momentum
particles may overcome the next hill, which is lower tha
the one from which they are falling due to the2Fx con-
tribution to the potential, if the gain in potential energ
is greater than the energy dissipated during this motio
One finds that this second critical force isF0

h ­ c0h
p

m´,
where c0 is a constant which depends on the potent
shape. As the particle is either locked or running, depen
ing on its initial velocity, the system exhibits bistability
and the transition between these two states shows hyst
sis. However,for a single particle the bistability disap-
pears in the presence of an external noise such as ther
fluctuations, no matter how small the noise is,because the
fluctuations can kick the particle out of the locked state
usual thermal activation. Thus the Brownian motion of
single particle driven by an external force shows hystere
only for zero temperature.

The case of interacting particles in a periodic potent
is a much more difficult problem; interesting numeric
results were obtained for high damping, when the tim
independent Schmoluchowsky equations may be redu
to a one-particle equation with an effective on-site pote
tial and then solved numerically by the transfer-integr
method [4]. The results show that there is a region
highly nonlinear mobility, but without a bistability phe-
nomenon. Besides, recently Persson [5] has used mole
lar dynamics to study a 2D system of interacting atom
subjected to a periodic potential. In the underdamped ca
he observed a dynamical phase transition similar to
one-particle case. Recalling the well-known Aubry trans
tion from the pinned state to the freely moving state in t
Frenkel-Kontorova model with an incommensurate atom
concentration [6], Persson supposed that his results co
be explained in a similar way.

In the present Letter, we study the driven motion of in
teracting atoms in a 2D potential for arbitrary dampin
© 1997 The American Physical Society 1295
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First, we show that the final state observed by Pers
corresponds in fact to the sliding motion of atoms in an
clined potential. Then we demonstrate that the transit
from the locked to the sliding state passes through a
erarchy of hysteretic depinning transitions. An importa
point is thathysteresis persists in the presence of therm
fluctuations. Finally, we analytically compute the criti
cal forces and the corresponding mobilities using a p
nomenological approach [7] which treats a system
strongly interacting atoms as a system of weakly intera
ing quasiparticles (kinks).
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Although it is still oversimplified, the generalized
Frenkel-Kontorova model that we consider provides
rather complete description of a layer of atoms adsorb
on a 2D crystalline surface when the motions in the ver
cal dimension are also taken into account. The parame
are chosen for the adsystem Na-W(112), and this mo
was proposed [8] to explain the intriguing experiment
results obtained for the dependence of the diffusion co
ficient of strongly interacting adatoms when the conce
tration varies.

The model considers the following Langevin equatio
for thex coordinate ofith atom,
mẍi 1 mh Ùxi 1
d

dxi

∑
Vxsxid 1 Vys yid 1

1
2

mv2
z z2

i 1
X
jfii

V0 exps2b0j$ri 2 $rjjd
∏

­ Fsxd 1 dF
sxd
i std , (1)
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and similar equations for the coordinatesyi and zi . The
particles are therefore in a periodic rectangular potenti

Vasad ­
´a

2
s1 1 sad2f1 2 coss2payaadg
1 1 s2

a 2 2sa coss2payaad
, (2)

where a is x or y, and parameterssx ­ 0.2, sy ­ 0.4,
´x ­ 0.46 eV,´y ­ 0.76 eV,ax ­ 2.74 Å, ay ­ 4.47 Å
are chosen in relation to the highly anisotropicchanneled
surface W(112) [8]. Atomic mass ism ­ 1, and we put
vz ­ 1.84, h ­ 0.165 in the corresponding units. Th
exponential interaction law withV0 ­ 10 eV, b0 ­
0.85 Å21 corresponds to the repulsion of the adatoms
rather high concentration,Fsxd is the external force applied
along the channels,and dF is a Gaussian random forc
simulating the interaction with a thermal bath. We st
with a ground state of the system, then the tempera
and later the force are increased adiabatically. We t
compute the mobility for different values ofF andT .

An important parameter is the atomic concentrationu,
corresponding to the ratio between the number of partic
N and the number of available sitesM. In this Letter we
present data at several generic concentrations in orde
show various aspects, although the general statement
common for the wide range of atomic concentrations.

Let us first consider the case ofu ­ 21y41 modeled by
30 channels, each withN ­ 105 andM ­ 205. As this
concentration, close tou ­

1
2 , is not a simple1yq value

with q integer, the ground state corresponds to large
gions where the effective concentration is1

2 , equidistantly
separated by zones of compression [8]. Since these z
in the standard Frenkel-Kontorova (FK) model are cal
kinks (or antikinks in the case of localized expansions),
use this terminology here, too. The number of kinks is p
portional to the difference betweenu and the closest value
1yq [7]. All the parameters, such as the mass of kin
Peierls-Nabarro potential, and energy of creation of ki
antikink pair can be easily evaluated [8]. In spite of t
obvious difference with the mathematical description
soliton behavior in nonlinear partial differential equ
tions, we will show that there are surprising similariti
and, moreover, that they allow us to explainqualitatively
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andquantitativelythe intriguing behavior of the system in
a simple way.

A generic evolution of the mobility as a function of
the external force is shown on Fig. 1. One first notice
a hysteresis and distinguishes four different regions wh
the external force is increased. In the very low force rang
the mobility is zero. Above a critical forceFk , the mobility
jumps to a first plateau atBk . Then there is a second
plateau aroundBm for F . Fpair , and finally for a force
higher thanFr , the system reaches the maximum mobilit
Bf . When the force is decreased, the systems jump direc
to the static state for forces lower thanFh. Let us explain
these different states.

In the first region, the force is too low, and neither th
kinks nor the individual atoms move. Both are trapped i
their wells and the system is in thelocked state. When

FIG. 1. Mobility versus force for a concentrationu ­ 21y41
(N ­ 105, M ­ 205). The solid curve corresponds to increas
ing force and the dashed curve to decreasing force.
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the force reaches a critical valueFk, the mobility jumps
to a nonzero valueBk. This state corresponds to thekink-
running state. Indeed, a careful study of the time depe
dence of positions of all atoms indicates clearly that
compressed zones are moving but not the individual ato
except when a kink passes through their site. A sim
analogy with a single particle in the periodic potent
allows one to compute this critical force. Owing to th
lattice discreteness, a kink in the FK model moves in
periodic Peierls-Nabarro potential, whose barrierEk could
be easily determined [8]; in addition, the potential is tilt
due to the external force. This quasiparticle (kink) w
be trapped until the last stable state disappears, i.e., w
Fk ­ cEkya. Besides, as we know the number of kin
uk in the system, the mobility of the kink-running state
Bk ­ ukBf . This approach is very successful as shown
Fig. 1, where the valuesBk andFk are shown.

In the kink-running domain, the atoms are static contr
to the kinks since the energy barrier´ is always greater than
the Peierls-Nabarro barrierEk . Physically this phenome
non signifies that it is easier to move a dislocation coh
ently than to move all the atoms. In addition, a detai
study shows a decrease of the relative distance betwee
kinks. One finds a tendency for the kinks to bunch li
the cyclists in a “peloton.” The probable reason is that,
the kinks are not exact solutions of the system and th
fore radiate waves, the oscillatory tail of a kink could he
the following kink to overcome the Peierls barrier and
catch up with the previous one. A second point to not
is that this motion of kinks shows also a hysteresis even
nonzero temperature. If one decreases the force when
first plateau is reached, the system goes back to the loc
state for a critical force lower thanFk . This indicates that
kinks have a behavior more complex than a single Brow
ian particle, although the plateau atBk is well predicted by
the one-particle picture.

In the range of force corresponding to the seco
plateau, atF . Fpair , additional kinks and antikinks
could be created since the energy barrier for the nuclea
of new pairs vanishes. Therefore, we have to take i
account not only the geometrical (ground state) kin
but also the “force-excited” kinks [7]. Figure 2 presen
the time dependence of the positions of all atoms. T
different regions can be seen, mobile and immobile on
The finite time interval between the snapshots results
stroboscopic effect giving a wrong impression for atom
trajectories; in order to show one actual trajectory
marked one of atoms by black diamonds while oth
are indicated by unfilled diamonds. The picture is ve
reminiscent of a traffic jam: The particle is trapped in
an immobile zone, until being first in this region; the
the particle ballistically moves to the next high-dens
zone, where it is stopped again. The velocity probabi
presents a two-bells shape, corresponding to static
moving atoms: this is acoexistence regime.

A careful examination of theBsFd dependence in this
range ofF shows that the mobility is even slightly decrea
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FIG. 2. Atomic trajectories in a given channel for the 2D
system with u ­ 34y47 at F ­ 0.24. The black diamonds
correspond to the trajectory of one atom.

ing with increasing force. Indeed, after the kink-antikin
nucleation thresholdFpair , the kinks start to bunch into
compact groups, as in the context of Josephson junct
[9]. A simple phenomenological theory givesBmsud ~

Bf s1 2 udyu, which agrees very accurately with the nu
merical results [10]. Moreover, the study shows that th
mobile subsystem corresponds to a bunch of the antikin
whereas the immobile one corresponds to a bunch of
kinks.

Finally, after the coexistence regime, for high enoug
force, all atoms are sliding over the periodic potential an
the mobility reaches its maximum valueBf . When the
force is reduced, the description of the dynamics in term
of kinks has lost its meaning since no special organizati
subsists. This is why the system goes back directly to t
locked state at the critical valueFh .

Thus the system of strongly interacting particles in a
anisotropic external potential does present a dynami
phase transition when the dc external force is varied. W
are able to explain the multiple steps by thehierarchy
of depinning: first, the geometrical kinks, then the “force
excited” kinks, and finally the atoms. But it is more
remarkable that this behavior does not disappear w
thermal fluctuations as the hysteresis of a single driv
particle in a periodic potential. Figure 3 attests that th
hysteresis survives for finite temperatures.

Let us derive an approximate expression for the cri
cal forceFh versus temperature. At zero temperature t
back transition approximately corresponds for low co
centration to the external single-particle thresholdF0

h .
For nonzero temperatures, the system gets locked w
the probability for the velocities to be lower thanF0

hymh

is greater than a thresholdPc. As a result, the critical
1297
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FIG. 3. The diamonds (triangles) correspond to the positio
of the transition to the running (locked) state for different tem
peratures in the caseu ­ 21y31, while the squares correspond
to the transition to the locked state foru ­ 21y41. The thresh-
old was chosen to beB ­ 0.9Bf . The solid and dashed curves
correspond to the phenomenological approach discussed in
text. The inset shows the width of the “river” (the moving
neighboring channels) in the 2D case as a function of the dri
ing force, and the solid line corresponds to the approxima
expression.

force follows the law

Fh ­ F0
h 1

q
2mkBTh2 erf21s1 2 2Pcd ­ F0

h 1 d
p

T ,
(3)

where erf21 is the inverse of the error function. With
F0

h . 0.144, the solid curve in Fig. 3 shows that this ex-
pression scales very accurately with the above express
if d ­ 0.35.

Unfortunately, we do not have a complete understandin
of the evolution of the forward transition versus tempera
ture. Because of temperature fluctuations, the particles fe
a smoother potential and a smaller barrier to overcom
therefore the system jumps to the final running state fo
lower external forces. Numerical results plotted in Fig.
for the caseu ­ 21y31 scale with the expressionFr ­
F0

r 2 j
p

T , if we choseF0
r ­ 0.37 andj ­ 0.44. While

such a law is valid for other concentrations as well, th
parameters significantly depend on the concentration co
trary to the law forFh .

The behavior of the 1D version of the problem is almos
identical to the 2D case. The only difference that w
have to notice is in the transition to the final sliding state
The exact critical force depends slightly on the externa
conditions, which means that the transitions do not occ
simultaneously in all the channels. A careful examinatio
of the behavior in different channels shows two interestin
results. First, when a channel has jumped to the slidin
1298
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state, it enhances the probability for the neighborin
channels to jump due to interatomic interactions. Th
first channel corresponds therefore to a nucleation eve
Indeed, the width of the “river” of neighboring moving
channels grows faster than the number of independe
rivers. The inset of Fig. 3 presents the numerical resul
which scale very well with an exponential law expfsF 2

F0dyDFg with F0 ­ 0.276 andDF ­ 0.002. Of course,
the value ofDF attests that it is a very thin effect, but
this phenomenon reveals an enhanced transition to slidi
state due to cooperative effects in the second dimensio
On the contrary, the transition of a channel to the locke
state is almost independent of neighboring channels.

In conclusion, a driven system of interacting particle
in a 2D anisotropic external potential exhibits several dy
namical transitions successfully explained by a hierarch
of depinnings. This behavior, which is much richer tha
the behavior of a single Brownian particle, illustrates th
interesting properties of complex systems. The analys
of the transitions can be put in the framework of a singl
particle theory by introducing collective excitations which
have particlelike properties, although the strong discret
ness of the system does not allow us to consider the
excitations as solitons. The complex behavior of the mu
tiparticle system is, however, not lost because, after th
transition to the full running state, the collective organiza
tion is completely destroyed so that the backward trans
tion does not look like the upward sequence of transition
This explains why the complex system can maintain a
hysteresis at nonzero temperature contrary to the sing
Brownian particle. This result, which emphasizes the ro
of hysteresis at microscopic scale, should be related to t
main role of hysteresis found in solid friction [11]. Work
along this line is in progress.
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