VOLUME 78, NUMBER 7 PHYSICAL REVIEW LETTERS 17 EBRUARY 1997

Dynamical Transitions in Correlated Driven Diffusion in a Periodic Potential
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The diffusion of a two-dimensional array of particles driven by a constant force in the presence of
a periodic external potential exhibits a hierarchy of dynamical phase transitions when the driving force
is varied. This behavior can be explained by a simple phenomenological approach which reduces the
system of strongly interacting particles to weakly interacting quasiparticles (kinks). The richness of the
strongly coupled system is, however, not lost because, contrary to a single Brownian patrticle, the array
shows an hysteretic behavior even at nonzero temperature. The present investigation can be viewed as
a first step toward understanding nanotribology.  [S0031-9007(97)02426-5]

PACS numbers: 66.30.—h, 05.70.Ln, 46.10.+z, 63.20.Ry

The diffusion of a Brownian particle, driven by an exter- constant depending on the shape of potential, the critical
nal force and subjected to a periodic potential, is a situatiofiorce for which the stable positions disappearFi$ =
which arises in several fields of science [1] such as solide /a.
state physics, surface physics [2], chemical physics, and However, for the underdamped case, the system may
even communication theory. Itis now well understood andalso have a running solution, even if the minima of the po-
provides a simple example of an out-of-equilibrium phaseential do exist. Indeed, because of their momentum the
transition, between a locked and a running state. The cagarticles may overcome the next hill, which is lower than
of many interacting particles is even more interesting bethe one from which they are falling due to theFx con-
cause collective effects modify qualitatively the picturetribution to the potential, if the gain in potential energy
giving rise, in some parameter range, to a dynamical statis greater than the energy dissipated during this motion.
which is very reminiscent o& traffic jam at the atomic One finds that this second critical forceA§ = ¢/n./me,
scale We discuss here this behavior in the context ofwhere ¢’ is a constant which depends on the potential
solid-state friction because it provides a typical exampleshape. As the particle is either locked or running, depend-
which may be amenable to experimental tests, but the basing on its initial velocity, the system exhibits bistability,
ingredients required to observe the phenomenon are simpénd the transition between these two states shows hystere-
and can be found in many physical systems. sis. Howeverfor a single particle the bistability disap-

Understanding the diffusion and mobility of strongly in- pears in the presence of an external noise such as thermal
teracting atoms subjected to a periodic potential and drivefiuctuations, no matter how small the noisehiscause the
by an external force is a first step toward understandindluctuations can kick the particle out of the locked state by
solid friction at the atomic level [3]. For noninteracting usual thermal activation. Thus the Brownian motion of a
atoms the problem would be simple since it essentially resingle particle driven by an external force shows hysteresis
duces to the diffusion of a Brownian particle in a peri- only for zero temperature.
odic potential. Under the influence of a dc for€et will The case of interacting particles in a periodic potential
preferably diffuse in the direction of the force and in aver-is a much more difficult problem; interesting numerical
age there will be a drift velocityv) which depends o#r.  results were obtained for high damping, when the time-
The mobility B is then defined aB = (v)/F. If,forsmall independent Schmoluchowsky equations may be reduced
forces,B is independent oft (the linear response regime), to a one-particle equation with an effective on-site poten-
for arbitrary ones a nonlinear response takes place, and thial and then solved numerically by the transfer-integral
task is to calculate this nonlinear mobility. method [4]. The results show that there is a region of

The total potential experienced by the Brownian par-highly nonlinear mobility, but without a bistability phe-
ticle is the sum of the periodic potential and the potentiahomenon. Besides, recently Persson [5] has used molecu-
—Fx due to the driving force, i.e., it corresponds to alar dynamics to study a 2D system of interacting atoms
corrugated plane, with an average slope determineH.by subjected to a periodic potential. In the underdamped case,
At small forces the potential has local minima, thereforehe observed a dynamical phase transition similar to the
the particle is static and its mobility vanishes. On theone-particle case. Recalling the well-known Aubry transi-
contrary, for large forces there are no stable positions, antion from the pinned state to the freely moving state in the
the particle slides over the corrugated potential, reachingrenkel-Kontorova model with an incommensurate atomic
its maximum mobility By = (mn)~!, where m is the concentration [6], Persson supposed that his results could
mass of the particle ang is the friction coefficient. A be explained in a similar way.
simple calculation shows that, denoting bythe height In the present Letter, we study the driven motion of in-
of the periodic potentialg the lattice constant, and a  teracting atoms in a 2D potential for arbitrary damping.
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First, we show that the final state observed by Persson Although it is still oversimplified, the generalized
corresponds in fact to the sliding motion of atoms in an in-Frenkel-Kontorova model that we consider provides a
clined potential. Then we demonstrate that the transitiomather complete description of a layer of atoms adsorbed
from the locked to the sliding state passes through a hien a 2D crystalline surface when the motions in the verti-
erarchy of hysteretic depinning transitions. An importantcal dimension are also taken into account. The parameters
point is thathysteresis persists in the presence of thermahre chosen for the adsystem Na-W(112), and this model
fluctuations Finally, we analytically compute the criti- was proposed [8] to explain the intriguing experimental
cal forces and the corresponding mobilities using a pheresults obtained for the dependence of the diffusion coef-
nomenological approach [7] which treats a system oficient of strongly interacting adatoms when the concen-
strongly interacting atoms as a system of weakly interacttration varies.

ing quasiparticles (kinks). The model considers the following Langevin equation

| for thex coordinate ofth atom,

. d 1 - - X
mx; + mnx; + d—[VX(xi) + Vy(yi) + 3mw2zl2 + ZVO exp(—BolFi — ril):| = 4 6Fi( )(t), Q)
X; ’ e— ‘
! JFi
and similar equations for the coordinatgsandz;. The |
particles are therefore in a periodic rectangular potential, andquantitativelythe intriguing behavior of the system in
ey a simple way.
ga (1 + S;I) [1 005(277“/“&)], ) A generic evolution of the mobility as a function of
2 1+ 53 — 2sqCcof2ma/a,) the external force is shown on Fig. 1. One first notices
wherea is x or y, and parameters, = 0.2, 5, = 0.4, a hysteresis and Qigtinguishes four different regions when
e = 046 eV, e, = 0.76 eV, a, = 2.74 A ay = 447 A the external force is increased. Inthe very low force range,

are chosen in relation to the highly anisotropianneled ~the mobility is zero.  Above a critical forcg, the mobility
surface W(112) [8]. Atomic mass is = 1, and we put 1UMPS to a first plateau aB;. Then t_here is a second
w, = 1.84, 7 = 0.165 in the corresponding units. The Platéau around,, for F' > Fy,;;, and finally for a force
exponential interaction law withV, = 10 eV, By = higher thanF,, the system reaches the maximum mopmty
0.85 A~! corresponds to the repulsion of the adatoms abr- When.theforce is decreased, the systems jump d!rectly
rather high concentratiod®) is the external force applied O the static state for forces lower than. Let us explain
along the channelsand §F is a Gaussian random force these different states. _ _
simulating the interaction with a thermal bath. We start " the first region, the force is too low, and neither the
with a ground state of the system, then the temperatur&nks nor the individual atoms move. Both are trapped in
and later the force are increased adiabatically. We thefeir wells and the system is in thiecked state When
compute the mobility for different values éf andT.
An important parameter is the atomic concentratign
corresponding to the ratio between the number of particles 1.0
N and the number of available sitds. In this Letter we [
present data at several generic concentrations in order to X
show various aspects, although the general statements are 0.8
common for the wide range of atomic concentrations. [
Let us first consider the case &f= 21/41 modeled by
30 channels, each with' = 105 andM = 205. As this . 0.6 !
concentration, close t = % is not a simplel /g value a=) I
with ¢ integer, the ground state corresponds to large re- E l
gions where the effective concentratior%i,sequidistantly 0.4} l
separated by zones of compression [8]. Since these zones : T#0
I
|
l

Vala) =

in the standard Frenkel-Kontorova (FK) model are called
kinks (or antikinks in the case of localized expansions), we 0.2r
use this terminology here, too. The number of kinks is pro- i
portional to the difference betwe#nand the closest value ]
1/ [7). All the parameters, such as the mass of kink, 0.0
Peierls-Nabarro potential, and energy of creation of kink- 0.00 0.10 0.20 0.30 0.40
antikink pair can be easily evaluated [8]. In spite of the

obvious difference with the mathematical description of F/Fo

soliton behavior in nonlinear partial differential equa- g5 1 Mobility versus force for a concentratish= 21/41
tions, we will show that there are surprising similarities (v = 105, ¥ = 205). The solid curve corresponds to increas-
and, moreover, that they allow us to explgualitatively  ing force and the dashed curve to decreasing force.
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the force reaches a critical valug, the mobility jumps SN, o

to a nonzero valu@,. This state corresponds to tkimk- o %: 2 j}.
running state Indeed, a careful study of the time depen- o, 0 8o s “%: N
dence of positions of all atoms indicates clearly that the X B, S
compressed zones are moving but not the individual atoms, S -, %:”%W
except when a kink passes through their site. A simple R % % i‘:\;%m
analogy with a single particle in the periodic potential > - 2 %\‘,}m
allows one to compute this critical force. Owing to the < -5::: ¥ °%%Q
lattice discreteness, a kink in the FK model moves in the \ ::Z"&“‘%
periodic Peierls-Nabarro potential, whose barfgrcould s N

g
lo
&

be easily determined [8]; in addition, the potential is tilted

&

i
v
%4

o ¢,
due to the external force. This quasiparticle (kink) wil : : %
. . , AN R 8,
be trapped until the last stable state disappears, i.e., when ooy Sty Ty
F, = cEy/a. Besides, as we know the number of kinks \ AN wwﬁ% Y
0, in the system, the mobility of the kink-running state is NN
B = 0By. This approach is very successful as shown in g, S,

Fig. 1, where the valueB; and F; are shown.

In the kink-running domain, the atoms are static contrary 0 20 40 60 80 100
to the kinks since the energy barrieis always greater than TIME
the P(_eler_l_s-Nabarro_barrleé_?k. Physically t.h'S ph_enome- FIG. 2. Atomic trajectories in a given channel for the 2D
non signifies that it is easier to move a dislocation cohersystem withg = 34/47 at F = 0.24. The black diamonds
ently than to move all the atoms. In addition, a detailedcorrespond to the trajectory of one atom.
study shows a decrease of the relative distance between the
kinks. One finds a tendency for the kinks to bunch like
the cyclists in a “peloton.” The probable reason is that, asng with increasing force. Indeed, after the kink-antikink
the kinks are not exact solutions of the system and thererucleation threshold ,;;, the kinks start to bunch into
fore radiate waves, the oscillatory tail of a kink could helpcompact groups, as in the context of Josephson junction
the following kink to overcome the Peierls barrier and to[9]. A simple phenomenological theory gives,(0) «
catch up with the previous one. A second point to noticeB; (1 — 6)/6, which agrees very accurately with the nu-
is that this motion of kinks shows also a hysteresis even fomerical results [10]. Moreover, the study shows that the
nonzero temperature. If one decreases the force when thisobile subsystem corresponds to a bunch of the antikinks,
first plateau is reached, the system goes back to the lockethereas the immobile one corresponds to a bunch of the
state for a critical force lower thaF,. This indicates that kinks.
kinks have a behavior more complex than a single Brown- Finally, after the coexistence regime, for high enough
ian particle, although the plateauRt is well predicted by  force, all atoms are sliding over the periodic potential and
the one-particle picture. the mobility reaches its maximum valug:. When the

In the range of force corresponding to the secondorce is reduced, the description of the dynamics in terms
plateau, atF > Fp,;;, additional kinks and antikinks of kinks has lost its meaning since no special organization
could be created since the energy barrier for the nucleatiosubsists. This is why the system goes back directly to the
of new pairs vanishes. Therefore, we have to take intdocked state at the critical value, .
account not only the geometrical (ground state) kinks Thus the system of strongly interacting particles in an
but also the “force-excited” kinks [7]. Figure 2 presentsanisotropic external potential does present a dynamical
the time dependence of the positions of all atoms. Twghase transition when the dc external force is varied. We
different regions can be seen, mobile and immobile onesare able to explain the multiple steps by thierarchy
The finite time interval between the snapshots results in af depinning first, the geometrical kinks, then the “force
stroboscopic effect giving a wrong impression for atomicexcited” kinks, and finally the atoms. But it is more
trajectories; in order to show one actual trajectory weremarkable that this behavior does not disappear with
marked one of atoms by black diamonds while otherghermal fluctuations as the hysteresis of a single driven
are indicated by unfilled diamonds. The picture is veryparticle in a periodic potential. Figure 3 attests that the
reminiscent of a traffic jam: The particle is trapped intohysteresis survives for finite temperatures.
an immobile zone, until being first in this region; then Let us derive an approximate expression for the criti-
the particle ballistically moves to the next high-densitycal forceF,, versus temperature. At zero temperature the
zone, where it is stopped again. The velocity probabilityback transition approximately corresponds for low con-
presents a two-bells shape, corresponding to static armbntration to the external single-particle threshaif].
moving atoms: this is aoexistence regime For nonzero temperatures, the system gets locked when

A careful examination of th&(F) dependence in this the probability for the velocities to be lower thari/mn
range ofF shows that the mobility is even slightly decreas-is greater than a threshol.. As a result, the critical
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o40F — T T T T T T state, it enhances the probability for the neighboring
C channels to jump due to interatomic interactions. This
?\ first channel corresponds therefore to a nucleation event.

T3 -e Indeed, the width of the “river” of neighboring moving
0.30F W““w\_ . channels grows faster than the number of independent

rivers. The inset of Fig. 3 presents the numerical results
which scale very well with an exponential law ¢&p —
] Fo)/AF] with Fy = 0.276 andAF = 0.002. Of course,
7 the value of AF attests that it is a very thin effect, but
] this phenomenon reveals an enhanced transition to sliding
state due to cooperative effects in the second dimension.
On the contrary, the transition of a channel to the locked
] state is almost independent of neighboring channels.
0.0 1 In conclusion, a driven system of interacting particles
0.26 1(?)/213 in a 2D anisotropic external potential exhibits several dy-
r ¢ 1 namical transitions successfully explained by a hierarchy
e Y U S of depinnings. This behavior, which is much richer than
0.00 00 MPERATORE (o) 0.06 the behavior of a single Brownian particle, illustrates the
interesting properties of complex systems. The analysis
FIG. 3. The diamonds (triangles) correspond to the positionsf the transitions can be put in the framework of a single
of thfu:rea;nﬁ:“t%'; tgagae ruznln/lg? (lv\?r%:‘ee?%es?tﬁ;?ersdg{)er:ggt (t)enr(;"particle theory by introducing collective excitations which
Foe{ﬁe transition to the locked state for— 21(/]41. The thregh- have particlelike properties, although the strong discrete-
old was chosen to bB = 0.9B;. The solid and dashed curves ness of the system does not allow us to consider these
correspond to the phenomenological approach discussed in thexcitations as solitons. The complex behavior of the mul-
text. The inset shows the width of the “river” (the moving tiparticle system is, however, not lost because, after the
neighboring channels) in the 2D case as a function of the drivy 5 gition to the full running state, the collective organiza-
ing force, and the solid line corresponds to the appmx'mat%ion is completely destroyed so that the backward transi-
expression. : . 1
tion does not look like the upward sequence of transitions.
This explains why the complex system can maintain an
force follows the law hysteresis at nonzero temperature contrary to the single
Brownian particle. This result, which emphasizes the role
F, = F) + 2mkgTn?erf ' (1 — 2P.) = F) + SNT,  of hysteresis at microscopic scale, should be related to the
(3) main role of hysteresis found in solid friction [11]. Work
along this line is in progress.

0.5

WIDTH

where erf! is the inverse of the error function. With
F% = (.144, the solid curve in Fig. 3 shows that this ex-
pression scales very accurately with the above expression
if 6§ =0.35.

Unfortunately, we do not have a complete understanding
of the evolution of the forward transition versus tempera-
ture. Because ofte_mperature fluctuations_, the particlesfeetz] 3. Villain and A. Pimpinelli, Physique de la Croissance
a smoother potential fsmd a smaller_barrler tp OVercome; ~ (yistalline (Eyrolles, Paris, 1995).
therefore the system jumps to the final running state for(3} g, Brushan, J.N. Israelachvili, and U. Landman, Nature
lower external forces. Numerical results plotted in Fig. 3 (London) 374, 607 (1995).
for the casef = 21/31 scale with the expressiof, = [4] M. Bittiker and R. Landauer, Phys. Rev. 23 1397
FO — ¢JT, if we choseF? = 0.37 and¢ = 0.44. While (1981).
such a law is valid for other concentrations as well, the [5] B.N.J. Persson, Phys. Rev.48, 18140 (1993).
parameters significantly depend on the concentration con{6] S. Aubry, Physica (Amsterdan?)D, 240 (1983).
trary to the law forF,,. [7] O.M. Braun and Yu.S. Kivshar, Phys. Rev.98, 13388

The behavior of the 1D version of the problem is almost (1994). _ .
identical to the 2D case. The only difference that we L8] ©:M. Braun, T. Dauxois, M.V. Pally, and M. Peyrard,

e L - . - Phys. Rev. B54, 321 (1996).
have to notice is in the transition to the final sliding state. [9] A.V. Ustinov et al., Europhys. Lett19, 63 (1992).

The exact critical force depends slightly on the externaho] O.M. Braun, T. Dauxois, M.V. Paliy, and M. Peyrard
conditions, which means that the transitions do not occur ~ (ynpublished). ' '

simultaneously in all the channels. A careful examination11] c. Caroli and P. Nozieres, iRhysics of Sliding Friction,
of the behavior in different channels shows two interesting  edited by B.N.J. Persson and E. Tossati (Kluwer, Dor-
results. First, when a channel has jumped to the sliding  drecht, 1996).

1298

[1] H. Risken,The Fokker-Planck Equatio(Springer, Berlin,
1984).



