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Documents et calculatrices interdits lors de la question de cours.
Notes de cours autorisées pour le reste de l’examen.

Les différentes parties du problème sont indépendantes.

1 Question from the lectures

Give back the copy with your answers to Part 1 no later than 20’ from the start.

1(a) What is the name of the theorem that allows one to show that a limit cycle exists in 2D?

1(b) Draw schematically the phase portrait of the pendulum in absence of damping.

1(c) Let’s consider the dynamical system ẋ = r − x − e−x. Determine graphically the number of
fixed points. Show that a bifurcation exists when one modifies the parameter r. At which
value? What is the name of this bifurcation?

1(d) Draw the successive iterated values through the application xn+1 = cosxn.

1(e) Define what is a Lyapunov exponent with a simple sentence.

2 Bead on a horizontal wire

A bead of mass m is constrained to slide along a straight horizontal wire. A spring of relaxed
length L0 and spring constant k is attached to the mass and to a support at a distance h from the
wire (Figure 1). Finally, suppose that the motion of the bead is opposed by a viscous damping
force bẋ.
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Problem Set 5

Problem 1 For the following systems, sketch all the qualitatively di↵erent vector fields
that occur as r is varied. Show that a bifurcation occurs at a critical value and name the
bifurcation. Finally, sketch the bifurcation diagram of fixed points x⇤ versus r.

a. ẋ = r � cosh x

b. ẋ = rx + x2

c. ẋ = rx � sinh x

d. ẋ = r � 3x2

e. ẋ = rx � x
1+x

Problem 2 - Strogatz 3.5.4 A bead of mass m is constrained to slide along a straight
horizontal wire. A spring of relaxed length L0 and spring constant k is attached to the mass
and to a suppport a distance h from the wire (Figure 1). Finally, suppose that the motion
of the bead is opposed by a viscous damping force bẋ.

Figure 1: System for Problem 5

a. Write Newton’s law for the motion of the bead.

b. Find all possible equilibria, i.e., fixed points, as functions of k, h, m, b, and L0.

c. Suppose m = 0. Classify the stability of all the fixed points, and draw a bifurcation
diagram.

d. If m 6= 0, how small does m have to be to be considered negligible? In what sense is it
negligible?

1

Figure 1: Schematic représentation of the mechanical system.

2(a) Write Newton’s law for the motion of the bead.

2(b) Find all possible equilibria, i.e. fixed points, as functions of k, h, m, b, and L0.



2(c) Justify that the overdamped regime corresponds to suppose m = 0. In this case, draw the
vector field, classify the stability of all the fixed points, and draw a bifurcation diagram.

2(d) If m 6= 0, how small does m have to be to be considered negligible? In what sense is it
negligible?

2(e) Solve the problem in the general case.

2(f) Draw the phase portrait.

3 Faint young Sun paradox

The faint young Sun paradox describes the apparent contradiction between observations of liquid
water early in Earth’s history and the astrophysical expectation that the Sun’s output would be only
70 percent as intense during that epoch as it is during the modern epoch. The issue was raised by
astronomers Carl Sagan and George Mullen.

The energetic flux RS received by the Earth from the Sun is schematically distributed as follows

• 30% reflected (albédo) by the atmosphere. It is characterized by the parameter α that is a
decreasing function of the temperature T as schematically presented Fig. 2,

• 20% absorbed by the atmosphere,

• 50% reach the ground.

T

a

0.8

0.2

Figure 2: Schematic evolution of the albédo parameter α.

3(a) To describe the evolution of the temperature on Earth, justify why one uses the following
thermodynamic equation

C
dT

dt
= RS(1− α)− σT 4 (1)

3(b) What are the conditions at equilibrium?

3(c) How many states are possible? Discuss schematically their stability?

3(d) Justify that one switches from the two possible generic conditions through a bifurcation de-
scribed during the lecture.

3(e) Could you explain why this simple analysis leads to a paradox, called the faint young Sun
paradox?
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4 Simple model for a child playing on a swing

A simple model for a child playing on a swing is

ẍ+ (1 + εγ + ε cos(2t)) sinx = 0 (2)

where ε and γ are parameters and 0 < ε� 1. The variable x measures the angle between the swing
and the downward vertical.

The problem is about the following very important question: Starting near the fixed point x = 0
and ẋ = 0, can the child get the swing going by pumping her/his legs this way, or does she/he need
a push?

4(a) Comment the different terms in the equation (2).

4(b) For small values of x, the equation may be replaced by

ẍ+ (1 + εγ + ε cos(2t))x = 0. (3)

Using the following asymptotic form,

x = x0(t, T ) + εx1(t, T ) + ... (4)

involving the two time scales t and T = εt, solve (3) at the lowest order in ε, and show that

x0(t, T ) = r(T ) cos(t+ φ(T )). (5)

4(c) To find the differential equations governing r and φ, insert (5) in the O(ε) equation. Use prime
to denote differentiation with respect to slow time T = εt, i.e. r′ = dr/dT .

4(d) Justify why the terms proportional to cos(t + φ) and sin(t + φ) on the right hand side of the
O(ε) equation have to disappear.

Show that the averaged equations become

r′ =
1

4
r sin(2φ) and φ′ =

1

2

(
γ +

1

2
cos(2φ)

)
. (6)

4(e) Show that the fixed point r? = 0 is unstable to exponentially growing oscillations, i.e. r(T ) =
r0 e

kT with k > 0, if |γ| < γc where γc is to be determined.

4(f) For |γ| < γc, write a formula for the growth rate k in terms of γ.

4(g) In this regime, what is (are) the physical reason(s) why r is not diverging in practice?

4(h) What could your prove when |γ| > γc?

4(i) Interpret the results physically.

4(j) Can the child get the swing going by pumping her/his legs this way, or does she/he need a
push?
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Correction de l’Examen de Janvier 2018

1. Question from the lectures

1(a) Théorème de Poincaré-Bendixson.

1(b) Portrait de phase du pendule sans dissipation. La périodicité selon θ se retrouve dans le plan de
phase, que l’on peut représenter sous forme cylindrique (périodicité selon θ mais pas selon θ̇).

1(c) On trace les deux courbes ”r−x” et e−x pour trouver le nombre de points fixes. Pour r grand,
on a deux points fixes, pour r petit, il n’y a plus de points fixes.

r > rcr = rcr < rc

y

x

y

x

y

x
e−xe−xe−x

r − x
r − xr − x

Figure 3: Résolution graphique de l’équation ẋ = r − x− e−x.

Pour déterminer le point de bifurcation, c’est-à-dire la valeur critique rc, on impose que les deux
courbes se croisent tangentiellement. On doit donc avoir les fonctions et leurs dérivées égales
en ce point. rc − x = e−x et -1=−e−x qui impliquent x = 0 et rc =1. C’est une bifurcation
nœud-col
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1(d) Itérés de xn+1 = cosxn.

Figure 4: Représentation de la courbe xn+1 = cosxn en traitillés. La courbe en continue correspond
à la toile d’araignée qui converge vers le point fixe x? = 0739...

1(e) Un exposant de Lyapunov mesure la divergence exponentielle entre deux orbites infiniment
proches.

2. Bead on a horizontal wire

2(a) There are two forces opposing the motion of the bead. The first is Fspring the force due to
the spring and the second is the viscous damping. It is important to note that we are only
concerned with forces in the horizontal direction so the force from the spring is

Fspring = k(`− L0) cos θ (7)

where ` is the distance from the connection ` =
√
x2 + h2 and cos θ = x/`. Using these

substitutions

Fspring = k(
√
x2 + h2 − L0)

x√
x2 + h2

= kx

(
1− L0√

x2 + h2

)
. (8)

Now putting together the acceleration and the damping force, we get

mẍ = −Fspring − Fdamping (9)

that leads to

mẍ+ bẋ+ kx

(
1− L0√

x2 + h2

)
= 0. (10)

2(b) To find the fixed points, one set the derivatives equal to 0 and solve the equation for x. One
gets three solutions

x? = ±
√
L2
0 − h2 and 0. (11)

2(c) In the overdamped regime, the dissipative term is dominating the inertia term. It is strictly
identical to set m = 0.
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In this part, we will make the change of variable z = x/h and the substitution α = L0/h. After
setting the mass to 0, the equation becomes

ż +
k

b
z

(
1− α√

z2 + 1

)
= 0. (12)

The fixed points for this system occur at z? = ±
√
α2 − 1 and 0.

To get the stability, one just has to proceed as shown during the lectures. The vector fields are
shown in Fig. 5 and the bifurcation plot is presented in Fig. 6.
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Figure 11: Vector fields for Problem 2.
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Figure 12: Bifurcation diagram for Problem 2.
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Figure 5: Vector fields for two different values of α. One smaller than 1 on the left, and one greater
on the right.
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Figure 11: Vector fields for Problem 2.
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Figure 12: Bifurcation diagram for Problem 2.
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Figure 6: Bifurcation diagram showing z? as a function of α.

2(d) For the final portion of the question, we will use the substitution T = kt/b. This changes the
equation (10) to the following

mk2

b2
d2x

dT 2
+ b

k

b

dx

dT
+ kx

(
1− L0√

x2 + h2

)
= 0 (13)

ε
d2x

dT 2
+
dx

dT
+ x

(
1− L0√

x2 + h2

)
= 0 (14)

where ε = mk/b2. For the mass to be negligible, the first term must be much smaller than the
other two meaning ε� 1⇒ m� b2/k.
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2(e) In the general case, it is necessary to compute the Jacobian of the dynamical system. Let’s
rewrite Eq. (10) as a 2D dynamical system as follows

ẋ = y ,

ẏ = ẍ = − b

m
ẋ− k

m
x

(
1− L0√

x2 + h2

)
(15)

that leads to the Jacobian matrix associated to the fixed point (x?, y?),

J =

(
0 1

− k
m

(
1− L0√

x?2+h2

)
+ kx?

m
L0(−1/2)2x?
(x?2+h2)3/2

− b
m

)
. (16)

• Fixed Point (0, 0) :

J =

(
0 1

− k
m

(
1− L0

h

)
− b
m

)
. (17)

With a discriminant ∆ = (k/m) (1− L0/h) and a trace τ = −b/m that is negative. So,
if L0 > h, ∆ < 0, i.e. a saddle point. While, if L0 < h, ∆ > 0, one has either a stable
spirale (when τ 2 − 4∆ > 0) or a stable node.

• Fixed Point (±
√
L2
0 − h2, 0) :

J =

 0 1

− k
m

[
1−

(
h
L0

)2]
− b
m

 . (18)

The discriminant ∆ = (k/m)
[
1− (h/L0)

2] is positive since L0 > h for these fixed points
to exist. The trace τ = −b/m is always negative, so the fixed points are always stable,
either node or spirale depending on the sign of τ 2 − 4∆.

2(f) If L0 > h, the origin is a saddle, while the tow other fixed points are stable. On the contrary,
if L0 < h, the origin is a stable fixed point (spirale or node).

3. Faint young Sun paradox

3(a) If C is the heat capacity of the Earth and T its temperature, one gets

C
dT

dt
= RS(1− α)−RE (19)

in which RS(1− α) is the energy of the Sun that reaches the ground.

For what concerns RE the energy radiated by the Earth, it is a rather usual approximation
to consider that the power radiated from a black body in terms of its temperature is given
by the Stefan–Boltzmann law. Specifically, the Stefan–Boltzmann law states that the total
energy radiated per unit surface area of a black body across all wavelengths per unit time is
directly proportional to the fourth power of the black body’s thermodynamic temperature T .
The constant of proportionality σ is called the Stefan–Boltzmann constant and derives from
other known constants of nature. One has therefore RE = σT 4.
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3(b) At equilibrium, on has dT/dt = 0, that corresponds to RE = RS(1− α).

3(c) As shown by Fig. 7, there are two generic possibilities: either 3 intersections corresponding to
3 fixed points (2 stable and 1 instable), or only one possible fixed point for smaller (or very
large), although not too small values of α.

T

Figure 7: Schematic evolution of the radiated fluxes: the flux received from the Sun is plotted in
black, while the flux emitted from the Earth for a large (in red) or an intermediate value of the
Stefan–Boltzmann constant α.

3(d) One gets from the first case to the second through a saddle-node bifurcation, in which two
fixed points merge (one stable and one unstable) before disappearing.

3(e) As explained in the introduction of the exercice, early in Earth’s history, the Sun’s output
would have been only 70 percent as intense as it is during the modern epoch. A lower Sun’s
output is analog to a larger Stefan-Boltzmann constant, and, as shown in Fig. 7, leads to a
single fixed point at low temperature.

In the environmental conditions existing at that time, this solar output would have been insuf-
ficient to maintain a liquid ocean, in apparent contradiction with observations of liquid water
early in Earth’s history. Astronomers Carl Sagan and George Mullen pointed out in 1972 that
this is contrary to the geological and paleontological evidence.

Indeed, according to the Standard Solar Model, stars similar to the Sun should gradually
brighten over their main sequence lifetime due to contraction of the stellar core caused by
fusion. However, with the predicted solar luminosity 4 billion years ago and with greenhouse
gas concentrations the same as are current for the modern Earth, any liquid water exposed to
the surface would freeze. However, the geological record shows a continually relatively warm
surface in the full early temperature record of Earth, with the exception of a cold phase, the
Huronian glaciation, about 2.4 to 2.1 billion years ago. Water-related sediments have been
found dating to as early as 3.8 billion years ago. Hints of early life forms have been dated from
as early as 3.5 billion years, and the basic carbon isotopy is very much in line with what is
found today (cf. Wikipedia).

The presence of water-related sediments and hints of early life despite a weak Sun radiations is
the Faint young Sun paradox. Explanations of this paradox have taken into account greenhouse
effects, astrophysical influences, or a combination of the two.
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4. Simple model for a child playing on a swing

4(a) The term 1+εγ+ε cos(2t) models the effects of gravity. The ”1” corresponds to the frequency of
the empty swing, while εγ models the modification of the frequency introduced by the presence
of the child that changes the center of gravity. Finally, ε cos(2t) corresponds to the periodic
pumping of the child’s legs at approximately twice the natural frequency of the swing.

4(b) The usual two-timing substitutions give

O(1) : ∂ττx0 + x0 = 0 (20)

O(ε) : ∂ττx1 + x1 = −2∂τTx0 − (γ + cos(2t))x0. (21)

The solution of the O(1) equation is x0(t, T ) = r(T ) cos(t+φ(T )) where r(T ) and φ(T ) are the
slowly-varying amplitude and phase of x0.

4(c) This yields

∂ττx1 + x1 = 2 [r′ sin(t+ φ) + rφ′ cos(t+ φ)]− (γ + cos(2t))r(T ) cos(t+ φ(T )) (22)

4(d) As usual one needs that there be no terms proportional to cos(t+ φ(T )) and sin(t+ φ(T )) on
the right-hand-side of the O(ε) equation,

With the substitution θ = t+ φ and using the averaged equation <(22)× sin θ >, one gets

r′ = < r cos θ(γ + cos(2t)) sin θ > (23)

= < rγ cos θ sin θ > + < r cos θ sin θ cos(2t) > (24)

= r (γ < cos θ sin θ > + < cos θ sin θ cos(2t) >) (25)

= r(γ × (0) +
1

4
sin(2φ)) (26)

r′ =
1

4
r sin(2φ) (27)

where we used that

< cos(2t) cos θ sin θ > =
1

2
< cos(2θ − 2φ) sin(2θ) > (28)

=
1

2
< (cos(2θ) cos(2φ) + sin(2θ) sin(2φ)) sin(2θ) > (29)

=
1

4
< sin(2φ) > . (30)

For φ′, using the averaged equation <(22)× cos θ >, one gets

rφ′ = < r cos2 θ(γ + cos(2t)) > (31)

= r < γ cos2 θ + cos2 θ cos(2t) > (32)
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qui se simplifie en

φ′ = < γ cos2 θ > + < cos2 θ cos(2t) > (33)

=
1

2
γ+ < cos2 θ cos(2θ − 2φ) > (34)

=
1

2
γ+ < cos2 θ(cos(2θ) cos(2φ) + sin(2θ) sin(2φ)) > (35)

=
1

2
γ+ < cos2 θ(cos2 θ − sin2 θ) cos(2φ) + 2 cos θ sin θ sin(2φ) > (36)

=
1

2
γ+ < cos4 θ cos 2φ− cos2 θ sin2 θ cos 2φ+ 2 cos3 θ sin θ sin(2φ) > (37)

=
1

2
γ +

3

8
cos(2φ)− 1

8
cos(2φ) + 0 (38)

=
1

2

(
γ +

1

2
cos(2φ)

)
(39)

4(e) The fixed points satisfy (r′ = 0 ⇒ r? = 0 or φ? = kπ/2) and (φ′ = 0 ⇒ cos(2φ?) = −2γ if
|γ| < 1/2).
When |γ| < 1/2, there are two fixed points, defined by r? = 0 and φ?± = ±Arccos(−2γ)/2.
Equations (6) lead to the following Jacobian matrix

J =

(
sin(2φ?)/4 r? cos(2φ?)/2

0 − sin(2φ?)/2

)
(40)

=

(
sin(2φ?)/4 0

0 − sin(2φ?)/2

)
if r? = 0. (41)

As the Jacobian matrix is already diagonal, we see that one has two different eigenvalues of
opposite signs. The eigenvalue (− sin(2φ?)/2) associated to the stability of the field φ could be
either positive or negative. Let’s define φ?+ the solution corresponding to sin(2φ?+) > 0 and φ?−
to sin(2φ?−) < 0. So φ?− is unstable with respect to the field φ, while stable to the field r. On
the contrary φ?+ is stable with respect to the field φ, while unstable to the field r. So, in the
regime |γ| < 1/2, the phase will be locked to the value φ?+, while the field r will be unstable.
So the threshold is γc = 1/2.
For the evolution of the radius r, when |γ| < 1/2, the phase rapidly reaches the fixed point φ?+,
leading to the exponential growth result for the radius r, since one has r′ = 1

4
r sin(2φ?+). Outside

this region |γ| < 1/2, the phase is continually changing and the fixed point r∗ = 0 is stable.

4(f) For the region |γ| < γc, there is a fixed growth rate of the amplitude since one has r′ = kr with

k =
1

4
sin(2φ?+) =

1

4

√
1− cos2(2φ?+) =

1

4

√
1− (2γ)2 =

1

4

√
1− 4γ2. (42)

4(g) Nonlinearity and damping.

4(h) When |γ| > 1/2, there are no real fixed point. However, r? = 0 corresponds to a fixed point in
the physical space since the phase is continuously evolving but physically unimportant, since
the radius is zero. In that case, there are two ranges:

• For values of γ < −1/2, φ′ will always be negative and therefore φ will decrease to −∞.
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• For values of γ > +1/2, φ′ will always be positive and therefore φ will increase to +∞.

If one uses the Jacobian matrix (41), one sees that the eigenvalue associated to the field r is
sin(2φ?)/4 that is not always negative; nor always positive. One cannot claim that the fixed
point is unstable.

Actually, it is possible to exhibit a conserved quantity. From Eqs. (6), one can indeed derive

1

r

dr

dφ
=

1
4

sin(2φ)

γ + 1
2

cos(2φ)
= −1

4

d

dφ
ln(γ +

1

2
cos(2φ)) (43)

that can be simplified in
d

dφ

(
ln r4 + ln

[
γ +

1

2
cos(2φ) ]) = 0 (44)

and leads to

r4
(
γ +

1

2
cos(2φ)

)
= Cste. (45)

Because of this conserved quantity, this system behaves like a Hamiltonian system, and the
trajectory will be a closed orbit, prohibiting any escape toward infinity.

4(i) In the case where γ is outside the range −1/2 and 1/2, the system has a fixed point at r = 0,
neither stable nor unstable, meaning there are small oscillations around this point but the value
never goes off to infinity. The child can pump as hard as he likes but will not be able to get
swinging unless (maybe !) he is pushed outside the region where the small angle assumption is
valid.

In the case where γ is inside the range −1/2 and 1/2, the amplitude goes off to infinity meaning
that the swing goes back and forth with increasing amplitude for a system slightly perturbed
from the fixed point. This means that for values inside this range, it is possible to start swinging
without any external forcing.

4(j) A child will correspond to a smaller distance between the rotation point and the center of
mass than for an adult. The square of the oscillation frequency of the pendulum is inversely
proportional to this length. It means that the corresponding value γ for the child will be larger
than the one for the adult. One thus realizes that a too light child will have a γ above the
critical value γc. Pushing is therefore crucial if γ is too large. Only if your child is heavy
enough, you can be lazy...!
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