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Exam for “Systèmes Dynamiques et Chaos”
Thursday 19 December 2019

Duration: 2h30

Calculators and Documents are not permitted during the “Question de cours”.
Permitted are printed material, hand written notes or photocopies of any kind, but not books.

Answers can be written in French or English.

1 Question de cours

Give back the copy with your answers to Part 1 no later than 20’ from the start.

1(a) Donner la définition d’un système non autonome.

1(b) À partir de quel ordre, un système dynamique peut présenter des oscillations ?

1(c) Donner la forme normale d’une bifurcation nœud-col et le diagramme de bifurcation associé.

1(d) Représenter la classification des systèmes dynamiques linéaires à deux dimensions dans le plan
défini par le déterminant ∆ et la trace τ de la matrice A du système dynamique.

1(e) Donner 2 méthodes pour éliminer la possibilité d’orbites fermées.

1(f) Expliquer en 2 mots ou bien à l’aide d’un schéma à quoi correspond une bifurcation de Hopf à
deux dimensions.

2 Analysis of a one-dimensional dynamical system

For r ∈ R, consider the differential equation

ẋ = rx− 2x2 + x3 (1)

2(a) Show that x∗ = 0 is a fixed point for any value of the parameter r, and determine its stability.
Hence identify a bifurcation point r1.

2(b) Show that for certain values of the parameter r there are additional fixed points.

2(c) For which values of r do these fixed points exist? Determine their stability and identify a
further bifurcation point r2.

2(d) Using a Taylor expansion of (1), determine the normal form of the bifurcation at r1. What
type of bifurcation takes place?

2(e) Similarly, determine the normal form of the bifurcation at r2. What type of bifurcation takes
place?

2(f) Sketch the bifurcation diagram for all values of r and x∗. (Use a full line to denote a curve of
stable fixed points, and a dashed line for a curve of unstable fixed points!)



3 Bouncing of a particle on a springy surface

The Hamiltonian for a particle of mass m that bounces on a springy surface is approximated by

H(x, p) =
1

2m
p2 + V (x) (2)

where

V (x) =

{
1
2
Cx2 if x ≤ 0
mgx if x ≥ 0

,

x is the position of the particle, p the momentum of the particle, V (x) the potential energy, C and
g are positive constants.

3(a) Write down the equations of motion for x and p in the cases where x ≥ 0 and x ≤ 0.

3(b) Given that m = 1, g = 10, C = 2 and E = 10, sketch the contour of H(x, p) = E.

3(c) Solve the equations of motion for x(t) and p(t) for this trajectory, giving expressions for both
x ≤ 0 and x ≥ 0 separately. Hint: for x ≥ 0, assume x(0) = 0 and derive p(0).

3(d) Prove that the solution spends a time T1 = 2/
√

5 in the region x ≥ 0.

3(d) Similarly, compute T2 the time spent by the solution in the region x ≤ 0.

4 Spread of an epidemic in a city

A simple model for the spread of an epidemic in a city is given by

Ṡ = −τSI, (3)

İ = τSI − rI, (4)

where S(t) and I(t) represent the numbers of susceptible and infected individuals scaled by 1000,
respectively. Assume that those who recover become immune. The time t is measured in days.

4(a) Give the physical meanings of τ and r.

4(b) Determine a value for S at which the infected population is maximum.

4(c) Given that τ = 0.003 and r = 0.5, sketch a phase portrait showing three trajectories whose
initial points are at (1000,1), (700,1) and (500,1). Give a physical interpretation in each case.

4(d) Propose a more complex model for the spread of an epidemic.
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5 Water vs Alcohol in a glass

Please give your answers to this exercise on a separate page

The sloshing is the global oscillation of a liquid in a tank. We consider here the damping of the
oscillations of water (viscosity ηwater = 1 mPa.s) or ethanol (viscosity ηethanol = 1.4 mPa.s) in a glass.
The radius r of the glass is slightly larger than the capillary length

√
γ/(ρg) where γ is the surface

tension, ρ the density of the liquid and g the gravity. At t = 0, a kick put the liquid into oscillations
and the free decay of liquid oscillations in the glass is studied. We observe that the water has stopped
its oscillations much earlier than ethanol.

5(a) Why is this result surprising? What is the physical phenomenon explaining such behavior?

To interpret this result, the equation of motion of the oscillation h of the free surface is given
by

d2h

dt2
+ α

dh

dt
+ µ sign

(
dh

dt

)
+ ω2

0h = 0 . (5)

5(b) What is the physical meaning of the different term of the previous equation?

In the following, we will resolve Eq. (5) in the limit of small damping using a multi-scale
analysis. We set α = εα̃ and µ = εµ̃ with ε� 1.

5(c) Could you justify such analysis using an order of magnitude of the different time scales in the
problem?

5(d) Using the following asymptotic form,

h(τ, T ) = h0(τ, T ) + εh1(τ, T ) + ... (6)

involving the two time scales τ = t and T = εt, solve Eq. (5) at the lowest order in ε and show
that

h0(τ, T ) = A(T ) cos(ω0τ + Φ(T )). (7)

5(e) Write Eq. (5) at the first order in ε. Justify why the terms proportional to cos(ω0τ + Φ(T ))
and sin(ω0τ + Φ(T )) on the obtained equation have to disappear.

5(f) Derive a differential equation for A and another one for Φ.
Hint for any periodic function f(τ) of period τ0

f(t) =
+∞∑
n=0

an cos(2πnt/τ0) + bn sin(2πnt/τ0) (8)

with an = (2/τ0)

∫ +τ0/2

−τ0/2
f(t) cos(2πnt/τ0)dt and bn = (2/τ0)

∫ +τ0/2

−τ0/2
f(t) sin(2πnt/τ0)dt .

5(g) Determine a solution for the two equations and write the solution for h0(τ, T ) as a function of
µ and α. What is the arrest time of the oscillations of the system?

5(h) Describe the shape of the enveloppe for the two limit cases for the damping. Attribute water
or ethanol to each case.
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Correction de l’Examen de Décembre 2019

1. Question de cours

Give back the copy with your answers to Part 1 no later than 20’ from the start.

1(a) Système dynamique avec une dépendance explicite du temps.

1(b) Deuxième ordre.

1(c) La forme normale de la bifurcation nœud-col est ẋ = r − x2 et son diagramme est représenté
ci-dessous.

x⋆

r

1(d)

Col

Noeud stable

Noeud instable

Spirale stable

Spirale instable

τ

∆

ou étoile

dégénéré

Noeud

τ2 − 4∆ = 0

Centre

P
o
in
ts

fi
x
es

n
o
n
is
o
lé
s

1(e) Nous avons vu trois méthodes: Système gradient, Fonction de Lyapunov et Critère de Dulac.

1(f) À deux dimensions, la réponse se trouve dans les deux valeurs propres du Jacobien. Si le
point fixe est stable, cela veut dire que la partie réelle des deux valeurs propres est négative.
Les deux valeurs propres sont donc dans le demi-plan gauche. Par ailleurs, comme les valeurs
propres sont solutions d’une équation du second degré à coefficients réels, il n’y a que deux
possibilités. Deux valeurs propres réelles négatives ou bien deux valeurs propres complexes
conjuguées. Pour que le point fixe se déstabilise, il faut donc que l’une (ou les deux !) entrent

dans la partie droite, i.e. dans la zone où la partie réelle des valeurs propres est positive. Le
premier cas corresponds aux bifurcations fourches et transcritique, les bifurcations de Hopf à
la seconde situation.
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2. Analysis of a one-dimensional dynamical system

2(a) We have ẋ = f(x) with f(x) = rx− 2x2 +x3. For fixed points f(x∗) = 0, and clearly f(0) = 0,
so x∗ = 0 is a fixed point for all real r.

We compute f ′(x) = r − 4x + 3x2. Hence f ′(0) = r and 0 is stable for r < 0 and unstable for
r > 0.

Hence a bifurcation takes place at r1 = 0.

2(b) Additional fixed points are given by r− 2x+ x2 = 0, which implies that there are fixed points
at 1±

√
1− r, provided r ≤ 1.

2(c) We compute f ′(1±
√

1− r) = 2− 2r ± 2
√

1− r = 2
√

1− r(
√

1− r ± 1). Hence 1 +
√

1− r is
stable for r < 1, and 1−

√
1− r is stable for r < 0 and unstable for 0 < r < 1.

Thus r2 = 1 is another bifurcation point.

2(d) Near r = 0 we expand to leading order ẋ ≈ rx−2x2. The substitution y = 2x gives ẏ = ry−y2.
This is the normal form of a transcritical bifurcation.

2(e) Near r = 1 we let r̃ = r− 1 and expand to leading order in y = x− 1. We find ẏ ≈ r̃+ r̃y+ y2.
Neglecting the term r̃y we find ẏ = r + y2.

This is the normal form of a saddle-node bifurcation.

2(f) A sketch of the bifurcation diagram:

3. Bouncing of a particle on a springy surface

3(a) ṗ = −Cx if x ≤ 0 and ṗ = −mg if x ≥ 0.

3(b) If x ≤ 0, H(x, p) = 1
2m
p2 + 1

2
Cx2 = E ⇒ p2 +2x2 = 20. A half-circle in the negative half plane.

If x ≥ 0, H(x, p) = 1
2m
p2 +mgx = E ⇒ p2 + 20x = 20. A parabola in the positive half plane.

3(c) If x(0) = 0, as E = 10, p(0) = 2
√

5 and therefore ẋ(0) = 2
√

5.

If x ≥ 0, ṗ = mg ⇒ ẍ = g ⇒ x(t) = 1
2
gt2 + ẋ(0)t+ x(0)⇒ x(t) = 5t2 + 2

√
5t = (

√
5t+ 1)2− 1.

If x ≤ 0, ṗ = −Cx⇒ ẍ = −2x⇒ x(t) = x(0) cos(
√

2t) + p(0)√
2

sin(
√

2t)⇒ x(t) =
√

5
2

sin(
√

2t).
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3(d) The expression for x ≥ 0 vanishes for t1 = 0 and t′1 = −2/
√

5. The particle spends therefore a
time T1 = |t1 − t′1| = 2/

√
5 in the region x ≥ 0,

The expression for x ≤ 0 vanishes for t2 = 0 and t′2 = π/
√

2. The particle spends therefore a
time T2 = π/

√
2 in the region x ≤ 0.

4. Spread of an epidemic in a city

4(a) τ is a constant measuring how quickly the disease is transmitted and r measures the rate of
recovery.

4(b) The maximum number of infected individuals occurs when dI
dS

= 0. Now

dI

dS
=
İ

Ṡ
=
τS − r
−τS . (9)

Therefore dI
dS

= 0 when S = r/τ , a number called a threshold value.

The critical points for this system are found by solving the equation Ṡ = İ = 0. Therefore,
there is an infinite number of critical points lying along the horizontal axis.

4(c) A phase portrait showing the three trajectories is plotted in the figure below. Trajectories are
only plotted in the first quadrant since populations cannot be negative.

In each case, the population of susceptibles decreases to a constant value, and the population of
infected individuals increases and then decreases to zero. Note that in each case, the maximum
number of infected individuals occurs at S = r/τ ≈ 167000.

4(d)

5. Water vs Alcohol in a glass

5(a) Although the viscosity of the water is smaller than that of ethanol, the oscillations are much
more quickly damped for water than for ethanol. The qualitative difference comes from wetting
conditions. Some dissipation comes from the imbalance between the advancing and the receding
contact angles. This dissipation can be modeled by a static-friction force.

5(b) The different terms of the equation has the following physical meaning:
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• d2h
dt2

corresponds to the acceleration of the surface;

• αdh
dt

is due to the bulk viscous force;

• µsign
(
dh
dt

)
is due to the contact-line friction force;

• ω2
0h is due to gravity.

5(c) The period of oscillations of the liquid is of the order of 1 s while the decay characteristic time
is of the order of 10 s. The factor 10 between these two time scales justifies such analysis.

5(d) In the limit of small damping, α = εα̃ and µ = εµ̃. At the lowest order in ε, the equation of
motion is

d2h0
dτ 2

+ ω2
0h0 = 0 . (10)

The solution of the O(1) equation is h0(τ) = A(T ) cos[ω0τ + Φ(T )] where Φ(T ) and A(T ) are
the phase and slowly-varying amplitude of h0.

5(e) At the next order in ε, the usual two-timing substitutions give

∂2h1
∂τ 2

+ ω2
0h1 = −2

∂2h0
∂τ∂T

− α̃∂h0
∂τ
− µ̃ sign

(
∂h0
∂τ

)
(11)

To avoid secular divergences, as usual, one needs that there be no terms proportional to
cos(ω0τ + Φ) and sin(ω0τ + Φ) on the right-hand-side of the O(ε) equation.

5(f) From the expression of h0, we get

∂h0
∂τ

= −A(T )ω0 sin[ω0τ + Φ(T )] (12)

and
∂2h0
∂τ∂T

= −dA

dT
ω0 sin[ω0τ + Φ(T )]− Aω0

dΦ

dT
cos[ω0τ + Φ(T )] . (13)

The term due to the friction force, sign
(
∂h0
∂τ

)
has to be treated carefully. The function

sign[sin(ω0τ + Φ(T )] is not harmonic but is periodic of period 2π/ω0. Indeed, sign[sin(ω0τ +
Φ(T )] = −1 for 0 < τ < π/ω0 and 1 for π/ω0 < τ < 2π/ω0. Therefore, it can be expressed has
a Fourier series

sign

(
∂h0
∂τ

)
=

+∞∑
n=0

(an cos(2πnt/τ0) + bn sin(2πnt/τ0)) , (14)

where

an =
ω0

π

(∫ 0

−π/ω0

cos(nω0τ)dτ −
∫ +π/ω0

0

cos(nω0τ)dτ

)
(15)

= 0 (16)

and

bn =
ω0

π

(∫ 0

−π/ω0

sin(nω0τ)dτ −
∫ +π/ω0

0

sin(nω0τ)dτ

)
(17)

= − 2

πn
[1− (−1)n] . (18)
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The O(ε) equation of motion can be rewritten as

∂2h1
∂τ 2

+ ω2
0h1 = 2

dA

dT
ω0 sin[ω0τ + Φ(T )] + 2Aω0

dΦ

dT
cos[ω0τ + Φ(T )]

+ α̃A(T )ω0 sin[ω0τ + Φ(T )]− µ̃b1 sin[ω0τ + Φ(T )] +N.R.T. (19)

where N.R.T. stands for non resonant Fourier terms. Since the prefactors of cos[ω0τ + Φ(T )]
and sin[ω0τ + Φ(T )] on the right-hand-side have to vanish, we get

2A
dΦ

dT
= 0 (20)

dA

dT
= −1

2
α̃A− 2µ̃

ω0π
(21)

5(g) Equation (20) infers that the phase Φ is constant and can be set to zero. Using the initial
condition A(T ) = A0, the evolution of the amplitude is therefore

A(T ) =

[
A0 +

4µ̃

α̃ω0π

]
e−α̃T/2 − 4µ̃

α̃ω0π
(22)

A(t) =

[
A0 +

4µ

αω0π

]
e−αt/2 − 4µ

αω0π
. (23)

The time of arrest of the oscillations, given by A(ta) = 0, is equal to

ta =
2

α
ln

[
1 +

παA0ω0

4µ

]
. (24)

5(h) If the damping is essentially viscous (αω0A � µ), the oscillations are exponentially damped.
This is the case for ethanol. On the contrary, for αω0A � µ, the oscillations are linearly
damped. This is the case for water.
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