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Self-gravitating particles

1 Klimontovich and Vlasov equations

Let us consider N self-gravitating particles of mass m interacting through the gravitational interac-
tion.

1(a) Give the equations of motion of the point particle i of mass m located in the position ri in the
three-dimensional configuration space and denoting its velocity by vi. It is useful to introduce
the gravitational potential φ(r, t).

1(b) Define the associate discrete time-dependent density function fd.

1(c) Give the relation between the microscopic density n(r, t) and the discrete density function fd.

1(d) By differentiating with respect to time the density function, derive the Klimontovich equation
(Hint: it involves derivatives of the gravitational field).

1(e) What are the advantages and the difficulties of the Klimontovich equation?

1(f) Explain the strategy to go further.

1(g) Derive the Vlasov equation for the gravitational interaction.

2 The infinite mass problem

2.1 The singular isothermal sphere profile

2.1(a) Using the Boltzmann entropy

S = −
∫

drdv f(r,v, t) ln f(r,v, t) (1)

and the constraints on the number of particles N and on the total energy E, derive the expres-
sion for the one-particle distribution function f(r,v, t).

2.1(b) Recall briefly the method used during the lecture on gravitation to obtain the equation

∆φ = 4πGmB exp(−βmφ), (2)

for self-gravitating particles.



2.1(c) Show that φ(r) = [1/(mβ)] ln(Cr2) is solution. Give the constant C.

2.1(d) Give the expression of the number density n(r). Explain why it is called the singular isother-
mal sphere profile.

2.1(e) Derive from the density number the total mass M . What is your conclusion?

2.2 The non singular isothermal sphere profile

A first tentative to solve this issue is to consider non singular solutions by considering the mean-field
equation as

∆φ = 4πGmn0 exp[−βm(φ− φ0)], (3)

in which n0 and φ0 are the central number density and potential.

2.2(a) Rewrite the equation using the new variables ψ = mβ(φ− φ0) and ρ = r
√
4πGm2n0β.

2.2(b) To derive the asymptotic behavior of ψ at long distance (r or ρ → ∞), it is convenient to
introduce θ = ln ρ and u = −ψ + 2θ. Show that one gets

d2u

dθ2
+

du

dθ
+ α exp(u)− γ = 0. (4)

Give the value of α and γ.

2.2(c) Using a simple mechanical analogy derive the limθ→∞ u.

2.2(d) From the previous result, derive the asymptotic expression for the number density at long
distance.

2.2(e) What is your conclusion?

3 The virial theorem and its consequence

3(a) Using the Newton’s law, give two different expressions for Fi, the force on the particle i.

3(b) Multiplying above expressions by ri and summing on all particles, show that one leads directly
to the potential energy Ep, while the other leads to Ṡ − 2Ec with Ec the kinetic energy and
S =

∑
i ripi.

3(c) What is the relationship between kinetic and potential energy for a stationary system?

3(d) If one introduces the time average, 〈K〉τ = 1
τ

∫ τ

0
K, show that 〈Ep〉τ + 2 〈Ec〉τ � 0.

3(e) Recalling that the total energy E is constant, propose a simple argument which justifies the
presence of a negative specific heat for this gravitational system.

3(f) How does one generalize the virial theorem if the force between any two particles of the system
results from a potential energy V (r) = Arα?
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4 The statistical mechanics of the HMF model using large

deviations

The Hamiltonian Mean Field model is defined by the following Hamiltonian

HN =
N∑
i=1

p2i
2

+
J

2N

N∑
i,j=1

[1− cos(θi − θj)] , (5)

where θi ∈ [0, 2π[ is the position (angle) of the i-th unit mass particle on a circle and pi the corre-
sponding conjugated momentum.

4(a) Using trigonometric identities, simplify the potential energy as a function of the magnetization
per site m.

4(b) Identify the global variables necessary to apply the large deviation method.

4(c) Give the expression of the energy per particle as a function of these global variables.

4(d) Compute the associated generating function ψ.

4(e) Derive the following expression for the free energy

φ̄(λu, λx, λy) = C +
1

2
lnλu − ln I0

(√
λ2x + λ2y

)
, (6)

in which one has to determine the constant C.

4(f) Compute the entropy function s̄(u,mx, my). Call Binv the inverse function of I1/I0, where I0(z)
and I1(z) are the modified Bessel function of order 0 and 1, respectively.

4(g) Derive finally the entropy s(u).

4(h) Aiming at comparing the canonical and microcanonical ensembles, we turn to calculate the
rescaled canonical free energy. Give the expression relating φ(β) to s̄(µ1, . . . , µn).

4(i) Identify an additional global variable, which does not appear in the Hamiltonian, but which is
a conserved quantity. By taking into account this additional variable, derive the entropy using
a similar procedure.

Let us recall that for integer indices the modified Bessel functions of order n is defined by

In(z) =
1

2π

∫ 2π

0

dθ ez cos θ cos(nθ). (7)
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Correction of the exam

1. Klimontovich and Vlasov equations for self-gravitating

particles

1(a) Assume that the point particle i of mass m occupies position ri in the three-dimensional
configuration space. Its velocity will be denoted by vi. The position ri satisfies

vi = ṙi (8)

and likewise the velocity of particles i obeys the following equation

mv̇i = −m∇ri φ(ri(t), t), (9)

where φ is defined by the Poisson equation

∆φ(r, t) = 4πGmn(r, t), (10)

in which n(r, t) is the microscopic density of particles.

1(b) The kinetic equation of motion can be derived by resorting to the Klimontovich equation. The
discrete density fd(r,v, t) of N such particles in the six-dimensional phase space (r,v) reads

fd(r,v, t) =
1

N

N∑
i=1

δ(r− ri(t))δ(v − vi(t)). (11)

1(c) The microscopic density relation can be written as

n(r, t) =

∫
dv fd(r,v, t). (12)

1(d) An exact equation for the evolution of the system of charged particles is obtained by taking
the time derivative of the density fd(·). This immediately yields

∂fd(r,v, t)

∂t
= − 1

N

N∑
i=1

ṙi · ∇rδ(r− ri(t))δ(v − vi(t))

− 1

N

N∑
i=1

v̇i · ∇vδ(r− ri(t))δ(v− vi(t)), (13)

where ∇r = (∂x, ∂y, ∂z) and ∇v = (∂vx , ∂vy , ∂vz).

By inserting Eq. (8) and Eq. (9) into Eq. (13), one eventually obtains

∂fd(r,v, t)

∂t
= − 1

N

N∑
i=1

vi · ∇rδ(r− ri(t))δ(v− vi(t)) (14)

− 1

N

N∑
i=1

(−∇ri φ(ri(t), t)) · ∇vδ(r− ri(t))δ(v − vi(t)).
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Using the properties of the Dirac function a δ(a− b) = b δ(a− b) yields

∂fd(r,v, t)

∂t
= − 1

N
(v · ∇r

N∑
i=1

δ(r− ri(t))δ(v − vi(t)) (15)

− (−∇r φ(r, t)) · ∇v

N∑
i=1

δ(r− ri(t))δ(v − vi(t))),

and recalling the definition fd(·), the previous equation can be cast in the form

∂fd(r,v, t)

∂t
+ v · ∇rfd(r,v, t)−∇r φ(r, t) · ∇vfd(r,v, t) = 0, (16)

the Klimontovich equation which, together with the Poisson-Newton equation

∆φ(r, t) = 4πGm
∫

dv fd(r,v, t), (17)

provides an exact and general description of any self-gravitating system.

1(e) By assigning initial particles position and velocity, one can clearly reconstruct the associated
densities fd(r,v, t = 0). The system is hence completely deterministic and both density and
gravitational field can be in principle traced as a function of time and in any position of the
generalized phase space. This is an exact equation.

However the amount of information embedded in the Klimontovich description is enormous.
Equation (16) explicitly contains in fact the orbits of each individual microscopic entity be-
longing to the system.

1(f) When looking at average quantities, one is primarily interested in knowing how many particles
found in a small volume (∆r,∆v) of phase space, positioned in (r,v). In other terms, it is
tempting to invoke an appropriate ensemble average 〈·〉. This is an average over realizations of
the system prepared according to assigned prescriptions. Therefore, we focus on the smooth
function

f0(r,v, t) = 〈fd(r,v, t))〉. (18)

An equation for the time evolution of the distribution function f0(r,v, t) can be recovered from
the Klimontovich Eq. (16) by this ensemble averaging. To this end we define the quantities
δfand δB as obeying the following relations

fd(r,v, t) = f0(r,v, t)) +
1√
N
δf(r,v, t), (19)

φ(r,v, t) = φ0(r,v, t)) +
1√
N
δφ(r,v, t). (20)

The index 0 labels the averaged quantities, namely φ0 = 〈φ〉, and the factor 1/
√
N takes into

account the typical size of relative fluctuations.

1(g) Inserting these definitions in Eq. (16) and performing the ensemble averaging, we get

∂f0(r,v, t)

∂t
+ v · ∇rf0(r,v, t) − ∇r φ0(r, t) · ∇vf0(r,v, t)

= − 1

N
〈∇r δφ(r, t) · ∇vδf(r,v, t)〉. (21)
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The right-hand side of Eq. (21) is sensitive to the discrete nature of the fluid, while the left-hand
side deals with collective variables. In the limit of large systems (N → ∞), one can neglect
the right-hand side and consequently obtain the Vlasov equation

∂f s
0 (r,v, t)

∂t
+ v · ∇rf

s
0 (r,v, t)−∇r φ0(r, t) · ∇vf

s
0 (r,v, t) = 0, (22)

in which the ensemble averaged field φ0 satisfies the ensemble averaged Poisson equation

∆φ0(r, t) = 4πGmn0(r, t), with n0(r, t) =

∫
dv f0(r,v, t). (23)

2. The infinite mass problem

2.1 The singular isothermal sphere profile

2.1(a) The problem is to maximize the entropy S keeping the energy E and the number N constant.
Consequently, introducing the associated Lagrange multipliers that we denote respectively by
β and α, one obtains the most probable density by canceling the first variation, which leads to

δS − βδE − αδN = 0. (24)

After some algebra, one can write the energy variation δE as

δE =

∫
drdv δf

(
p2

2m
+mφ(r, t)

)
(25)

where the mean gravitational field φ(r, t) follows from the Poisson equation

∆φ(r, t) = 4πGmn(r), (26)

and reads

φ(r, t) = −G
∫

dr′
mn(r′)
|r− r′| . (27)

Taking advantage from the above expression for δE and substituting into (24), one eventually
gets

−
∫

drdv δf
[
log f + 1 + β

(
mv2/2 +mφ

)
+ α

]
= 0, (28)

which returns
log f + 1 + β

(
mv2/2 +mφ

)
+ α = 0, (29)

and finally
f = A exp(−β(mv2/2 +mφ)), (30)

where A = exp(−α− 1). The two constants A and β are determined by the constraints.

2.1(b) Using the definition n(r, t) =
∫
d3v f(r,v, t) and expression (30), the use of the Poisson

equation leads directly to the equation (2) with B = A(2π/(mβ))3/2.
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2.1(c) Using the expression of the Laplacian in spherical coordinates, on has

∆φ =
1

r2
d

dr

(
r2
d(1/(mβ)) ln(Cr2)

dr

)
=

1

mβ

1

r2
d

dr

(
r2
2

r

)
=

2

mβr2
(31)

while

4πGmB exp(−βmφ) =
4πGmB
Cr2

(32)

and therefore the constant is C = 2πGm2Bβ.

2.1(d) The number density is therefore

n(r) =

∫
dv f(r,v) (33)

=

∫
dvA exp[−β(mv2/2 +mφ)] (34)

=
A

Cr2

∫
dv exp[−βmv2/2] (35)

=
A(2π/(mβ))3/2

Cr2
=

B

2πGm2Bβr2
(36)

=
1

2πGm2βr2
. (37)

The density therefore decreases at long distance but diverges in the center of the distribution:
this is the reason for the name of the singular isothermal sphere profile.

2.1(e) As the system is a priori infinite, one has

M =

∫ +∞

0

n(r)4πr2dr =
2

Gm2β

∫ +∞

0

dr → +∞ (38)

The density does not decrease sufficiently fast at long distance, and therefore the total mass
diverges.

2.2 The non singular isothermal sphere profile

2.2(a) One gets
d2ψ

dρ2
+

2

ρ

dψ

dρ
= exp(−ψ), (39)

2.2(b) It is straightforward to get α = 1 and γ = 2.

2.2(c) Above equation is similar to the equation of motion of a damped particle, of mass unity,
localized at the pseudo-position u and with the pseudo-time θ moving in the pseudo-potential
V (u) = exp(u)− 2u. The particule will oscillate in the potential until reaching, because of the
pseudo dissipation, its ground state. Using V ′(u) = 0 = exp(u)− 2, one finally gets u = ln 2.
One obtains therefore that limθ→∞ u = ln 2.
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2.2(d) Previous result leads to
ψ ∼

ρ→∞
− ln 2 + 2 ln ρ = ln(ρ2/2). (40)

and as ψ = mβ(φ− φ0), one obtains

mβ(φ− φ0) ∼
ρ→∞

ln(ρ2/2), (41)

which leads for the density number defined as n(r) = n0 exp[−βm(φ− φ0)] to the expression

n(r) ∼
ρ→∞

2n0

ρ2
=

1

2πGm2βr2
, (42)

We thus get for the asymptotic expression, the function derived within the singular framework.

2.2(e) Consequently the total mass still diverges within this nonsingular isothermal sphere frame-
work. This means that there is no entropy extremum if the system is not bounded. It is always
possible to increase the entropy of a self-gravitating system with mass and energy given, spread-
ing the density.

Above result, does not mean however that one should abandon any statistical description. The
infinite mass problem and the absence of the equilibrium distribution in the whole space are
believed to be wrong problems since, in practice, the relaxation is achieved in subdomains of
the whole space and therefore the statistical mechanics applies only in these subdomains.

Several models have been proposed to deal with this incomplete relaxation, and the most
well-known is the Michie-King model.

Another possibility is to consider the system bounded in a spherical box of radius R against
which stars bounce elastically. Although less realistic, this model is appropriate to pursue the
theoretical study as it has been performed during the lecture. Moreover, it leads to valid (and
non trivial!) results on the central structure of galaxies, which is only marginally influenced by
what happens in the periphery.

3. The virial theorem and its consequence

3(a) Using the Newton law, the force on the particle i is given by

Fi = −
∑
j �=i

Gmimj
ri − rj
|ri − rj|3 = mi

d2ri
dt2

. (43)

3(b) Multiplying above expression by ri and summing on all particles, one obtains∑
i

riFi = −
∑
i,j �=i

Gmimj
ri(ri − rj)

|ri − rj|3 =
∑
i

rimi
d2ri
dt2

(44)

As the indices i and j appearing in the second term are mute, it is possible to write

−2
∑
i,j �=i

Gmimj
ri(ri − rj)

|ri − rj|3 = −
∑
i,j �=i

Gmimj
ri(ri − rj) + rj(rj − ri)

|ri − rj|3 (45)

= −
∑
i,j �=i

Gmimj
(ri − rj)

2

|ri − rj|3 (46)

= −
∑
i,j �=i

Gmimj

|ri − rj| = 2Ep (47)
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as suggested.

For the second expression, one has to use the following identity

d2r2i
dt2

=
d

dt

(
2ri

dri
dt

)
= 2

(
dri
dt

)2

+ 2ri
d2ri
dt2

(48)

which leads to

ri
d2ri
dt2

=
1

2

d2r2i
dt2

−
(
dri
dt

)2

. (49)

Introducing (47) and(49), Eq. (44) can be simplified as

Ep =
∑
i

mi

(
1

2

d2r2i
dt2

−
(
dri
dt

)2
)

(50)

=
1

2

d2

dt2

(∑
i

mir
2
i

)
− 2Ec. (51)

Introducing the momenta pi and the quantity S =
∑

imiripi, one gets therefore

Ep + 2Ec =
dS

dt
. (52)

3(c) For a stationary system, on gets Ṡ = 0, and thus 2Ec + Ep = 0.

3(d) If one introduces the time average, one gets〈
dS

dt

〉
τ

=
1

τ

∫ τ

0

dS

dt
=
S(τ)− S(0)

τ
. (53)

The system being isolated, no mass can escape. Moreover only gravitational interactions being
taken into account, there are no collisions. So, the quantity S, which is nothing but the half of
the derivative of the moment of inertia I =

∑
imir

2
i , has to be bounded. We have therefore

lim
τ→∞

∣∣∣∣
〈
dS

dt

〉
τ

∣∣∣∣ = lim
τ→∞

∣∣∣∣S(τ)− S(0)

τ

∣∣∣∣ ≤ lim
τ→∞

∣∣∣∣Smax − Smin

τ

∣∣∣∣ = 0. (54)

In conclusion, for time averages over sufficiently long times, one has∣∣∣∣
〈
dS

dt

〉
τ

∣∣∣∣ � 0. (55)

Taking the time average of Eq. (52), one ends up with

〈Ep〉τ + 2 〈Ec〉τ =

〈
dS

dt

〉
τ

� 0. (56)

The word virial derives from vis, the Latin word for “force” or “energy”, and was given its
technical definition by Rudolf Clausius in 1870.
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3(e) For self-gravitating systems at constant energy (i.e. in the microcanonical ensemble) a sim-
ple physical argument which justifies the presence of a negative specific heat has been given
by Lynden Bell. It is based on the virial theorem, which, for the gravitational potential, states
that 2〈Ec〉+ 〈Ep〉 = 0. Recalling that the total energy E is constant, we get that

E = 〈Ec〉+ 〈Ep〉 = −〈Ec〉, (57)

Since the kinetic energy defines the temperature, one gets

CV =
∂E

∂T
∝ ∂E

∂Ec
< 0. (58)

Loosing its energy, the system becomes hotter.

3(f) If the force between any two particles of the system results from a potential energy V (r) = Arα

that is proportional to some power α of the inter-particle distance r, one has∑
i

riFi = −
∑
i

∑
j<i

V ′ (|ri − rj |) |ri − rj | (59)

= −
∑
i

∑
j<i

Aα|ri − rj|α−1|ri − rj| (60)

= −α
∑
i

∑
j<i

A|ri − rj|α = −αEp. (61)

Consequently, the virial theorem takes the simple form 2〈Ec〉 = α〈Ep〉.

4. The statistical mechanics of the HMF model using large

deviations

4(a) Using usual trigonometric identities, one can simplify the potential energy as∑
i,j

cos(θi − θj) =
∑
i,j

[cos θi cos θj + sin θi sin θj ] (62)

=
∑
i

cos θi
∑
j

cos θj +
∑
i

sin θi
∑
j

sin θj (63)

= N2(m2
x +m2

y) = N2m2, (64)

with m = (m2
x +m2

y)
1/2, mx = (

∑N
i=1 cos θi)/N and my = (

∑N
i=1 sin θi/N).

The Hamiltonian of the HMF can thus be rewritten as

HN =

N∑
i

p2i
2

+N
J

2
(1−m2), (65)

4(b) Besides mx and my, the third global variable is

u =
1

N

∑
i

p2i . (66)
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4(c) Hamiltonian (65) can be expressed in terms of the three global variables u, mx and my, and
the energy per particle reads

ε̄(u,mx, my) =
1

2

[
u+ J(1−m2

x −m2
y)
]
. (67)

The above relation is exact for any N .

4(d) To this end we start by computing the generating function ψ

ψ(λu, λx, λy) =

∫ (∏
i

dθidpi

)
exp

(
−λu

N∑
i=1

p2i − λx

N∑
i=1

cos θi − λy

N∑
i=1

sin θi

)
, (68)

which results in

ψ(λu, λx, λy) =

[√
π

λu
2π I0

(√
λ2x + λ2y

)]N
. (69)

Note that the existence of the integral in Eq. (68) necessarily implies λu > 0.

4(e) The free energy associated with ψ reads

φ̄(λu, λx, λy) = −1

2
ln π +

1

2
lnλu − ln(2π)− ln I0

(√
λ2x + λ2y

)
. (70)

The expression of the constant is therefore C = −1
2
ln π − ln(2π).

4(f) We can then calculate the function s̄ as

s̄(u,mx, my) = inf
λu,λx,λy

[
λuu+ λxmx + λymy +

1

2
ln π − 1

2
lnλu + ln(2π) + ln I0

(√
λ2x + λ2y

)]
.(71)

The above variational problem can be solved explicitly by formally separating the “kinetic”
(λu) and “configurational” (λx, λy) subspaces as

s̄(u,mx, my) = s̄kin(u) + s̄conf(mx, my). (72)

Call Binv the inverse function of I1/I0, where I0(z) and I1(z) are the modified Bessel function
of order 0 and 1, respectively. Then, one obtains

s̄kin(u) =
1

2
+

1

2
ln π + ln(2π) +

1

2
ln 2u (73)

s̄conf(m) = −mBinv(m) + ln I0(Binv(m)). (74)

4(g) The next step in the procedure concerns the calculation of the entropy function. Maximizing
only with respect to u and m, we obtain

s(ε) = sup
u,m

[
s̄(u,m)

∣∣∣∣∣u2 − J
m2

2
= ε

]
(75)

= sup
u,m

[
s̄kin(u) + s̄conf(m)

∣∣∣∣∣u2 − J
m2

2
= ε

]
(76)

=
1

2
+

1

2
ln 2 +

3

2
ln(2π) +

1

2
ln

(
ε+ J

m2

2

)
−mBinv(m) + ln I0(Binv(m)), (77)
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where m satisfies the self-consistency equation

Binv(m) =
Jm

2ε+ Jm2
. (78)

4(h) The rescaled canonical free energy φ(β) is given by the following extremal problem

φ(β) = βf(β) = inf
µ1,...,µn

[βε̄(µ1, . . . , µn)− s̄(µ1, . . . , µn)] . (79)

In the present problem, one gets

φ(β) =
βJm2

2
− ln(I0[βJm]) +

1

2
ln β − 3

2
ln(2π), (80)

with m satisfying Binv(m) = βJm.

4(i) An additional global variable could be identified: the average momentum v = (
∑

i pi)/N ,
which does not appear in the Hamiltonian, and which is a conserved quantity. Using a similar
procedure, one gets the generating function

ψ(λu, λv, λx, λy) =

[
eλ

2
v/4λu

√
π

λu
2π I0

(√
λ2x + λ2y

)]N
, (81)

the free energy associated with ψ

φ̄(λu, λv, λx, λy) = − λ2v
4λu

− 1

2
ln π +

1

2
lnλu − ln(2π)− ln I0

(√
λ2x + λ2y

)
. (82)

and finally the entropy

s(ε, v) =
1

2
+

1

2
ln 2 +

3

2
ln(2π) +

1

2
ln

(
ε+ J

m2

2
− 1

2
v2
)
−mBinv(m) + ln I0(Binv(m)),(83)

where m satisfies the self-consistency equation

Binv(m) =
Jm

2ε+ Jm2 − v2
. (84)

The entropy s(ε) is obtained by maximizing with respect to v. It is immediate to see that this
is obtained by putting v = 0 in Eqs. (83) and (84).

We thus find, as it could be argued on physical basis, that for a given energy ε the entropy is
maximum when the average momentum v is equal to 0.
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