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A. Hot Plasma

1 Temperature of a plasma

1(a) Give the definition of a plasma

1(b) Give two reasons to explain why plasma are long-range interacting systems?

1(c) Considering a gas in thermal equilibrium, give the distribution of particles velocity v that one
considers usually. Comment.

1(d) Why is it customary in plasma physics to express temperatures in units of energy? What is
the temperature of 1 eV plasma?

1(e) Why does one often characterize a plasma with several temperatures?

1(f) Discuss the relaxation between these temperatures?

1(g) Why in presence of a magnetic field B even a single species, say ions, can have two distinct
temperatures?

2 Debye shielding and quasi-neutrality

2(a) Consider now that a charge is placed in the plasma at r = 0 and assume for simplicity that the
ions of mass mi do not move and constitute a uniform background of positive charges. How
would you justify this assumption?

2(i) Give the Poisson equation in terms of the ions density ni and the electron density ne. Give the
electron velocity distribution fe(r,v) in presence of the electric potential field φ and the link
between fe and ne.

2(c) Solve this equation in the regime |eφ/(kBT )| ≪ 1. Hint: it can be useful to introduce V = rφ.
Discuss the physical interpretation of the final expression for the potential φ(r). We remind

that ∆f = 1

r2
d
dr

(

r2
df
dr

)

for a function f with spherical symmetry.

2(d) Given this result, define in rigorous terms the “quasi-neutrality” concept that is usually advo-
cated in the definition of a plasma.



3 Klimontovich and Vlasov-Maxwell equations

Let us consider a plasma composed of a mixture of s charged species, with s = i, e for ions (i) and
electrons (e). The total number of particles with mass ms for each species is denoted Ns. This
particle is located in the position ri in the 3D configuration space and its velocity is vi.

3(a) Define the associate discrete time-dependent density function f s
d .

3(b) Give the equations of motion of the point particle i.

3(c) By differentiating with respect to time the density function, derive the Klimontovich equation.

3(d) What are the advantages and the difficulties of the Klimontovich equation?

3(e) Explain the strategy to go further.

3(f) Derive the Vlasov equation for the Coulombic interaction.

4 Bernstein-Greene-Kruskal modes

We will here discuss a special class of non linear waves: the BGK modes, named after their inventors
Bernstein, Greene and Kruskal. To this end we shall need to consider a Vlasov equilibrium distribu-
tion in presence of a spatially varying electrostatic potential. We will restrict to the x-direction.

4(a) Imagine that the electrons are subject to an electric field E(x) = −dφ(x)/dx oriented along the
x-direction. Explain why any function of the type f s

0 (v
2
x + 2qsφ(x)/ms) is a stationary Vlasov

solution.

4(b) A BGK mode is characterized by such a distribution with the electric potential self-consistently
produced by the very same distribution, via the Poisson equation. For the sake of simplicity,
we consider the time independent setting. Give the Poisson equation.

4(c) We would like to determine the potential φ solution of this self-consistent integro-differential
equation. To progress with the analytical study, we assume that both ions and electrons are
initially distributed in cold beams. In practice, we require that each particle of species s has
the same speed in a given spatial position. Mathematically, we impose that the particles obey
f s
0 (x, v) = 2n0vs δ[v

2 + 2qsφ(x)/ms − v2s ], where qs is the charge of the species s.

Simplify the Poisson equation using the general property δ[f(y)] = δ(y − y0)/
∣

∣

∣

df
dy

∣

∣

∣

y=y0
, with y0

a solution of f(y0) = 0.

4(d) Show that the Poisson equation can be cast in the compact form ∂2φ/∂x2 = −∂V (φ)/∂φ, and
give the expression of the pseudo-potential V (φ).

4(e) For the specific example mev
2
e = miv

2
i ≡ kBT , plot the pseudo-potential as a function of φ.

What is the dynamics of the pseudo-particle?

4(f) Propose a linear approximation in the limit of very small φ0. What means small?

4(g) Discuss this result.
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B. Ising model combining long- with short-range interactions
We will consider the Hamiltonian

HN = − 1

2N

(

N
∑

i=1

Si

)2

− K

2

N
∑

i=1

(SiSi+1 − 1) , (1)

where Si = ±1, originally introduced by Nagle (1970), and then elaborated later by Khardar (1983).

5 Introduction

5(a) Discuss the different terms of this Hamiltonian: their properties, their difficulties. Why no
prefactor has been kept in front of the first one?

5(b) At T = 0, determine if the model has a phase transition between ferro and antiferro states.

5(c) Determine if the model has a phase transition for K = 0.

5(d) Draw the basic lines of the phase diagram that one can derive from these two limiting cases?

6 The solution in the canonical ensemble

6(a) Write the canonical partition function of this model.

6(b) Show that it can be simplified by introducing f0(β, x), the free energy of the nearest-neighbour
Ising model with an external field x.

6(c) Which method would you use to compute f0(β, x)?

6(d) Using the result f0(β, x) = − 1

βN
ln(λN

++λN
− ) with λ± = eβK/2 cosh(βx)±

√

eβK sinh2(βx) + e−βK ,

give the final expression for the rescaled free energy φ̃(β, x) = βf̃(β, x). Plot the schematical
behavior of f̃(β, x) as a function of x for several values of β.

6(e) Compute the canonical tricritical point.

6(f) How does one compute the the first order line ?

6(g) Draw the phase diagram in the canonical ensemble.

7 The solution in the microcanonical ensemble

7(a) Give the expression of the total energy in terms of the magnetization M =
∑N

i=1
Si and and U

the number of “kinks” in the chain, i.e. links between two neighbouring spins of opposite sign.

7(b) Introducing the number of spins up, N+, and of spins down, N−, compute the number of
microstates in a chain of N spins corresponding to an energy E and a total magnetization M .

7(c) Derive the entropy s̃(ε,m) as a function of m = M/N , u = U/N and ε = E/N .

7(d) From this result, how does one get the entropy s(ε)?

7(e) Compute the critical lines and the microcanonical critical points.

3



Correction

A. Hot Plasma

1. Temperature of a plasma

1(a) A plasma is a quasineutral gas of charged particles and neutral particles which exhibits collective
behaviour: the atoms are dissociated into positive ions (i) and negative electrons (e).

1(b) Plasmas are first made of charged particles: the coulombic interaction is a long-range one.
Second, as charges move, they generate local concentrations of positive and negative charges,
which in turn give rise to electric and magnetic fields. These latter induce long-range forces
that solicit the motion of other particles resulting in a rich and complex self-consistent scenario.

1(c) Considering a gas in thermal equilibrium, the particles velocity v obeys the Maxwell distribution
which, in one dimension, we can write as

f(v) = n

(

m

2πkBT

)1/2

exp

(

−
1

2
mv2

kBT

)

(2)

where kB is the Boltzmann constant and n =
∫

dvf(v) stands for the particle density. m
label the particles’ masses, supposed to be identical. It is straightforward to show that the
average kinetic energy is equal to kBT/2, the factor 1/2 being replaced by 3/2 if one extends
the reasoning to the relevant three-dimensional case.

As it is a long-range interacting system, one should take a priori with a lot of care this expression
in the canonical ensemble.

1(d) Since temperature and energy are closely related, it is customary in plasma physics to express
temperatures in units of energy. To fix ideas, for a 1 eV plasma, we intend a temperature of
the charged gas of particles of T = 1.610−19[J]/1.3810−23[J/K] = 11600 K.

1(e) A plasma can have several temperatures at the same time, since electrons and ions have separate
Maxwell distributions, each characterized by a specific temperature, resp. Te and Ti. In Nicolas
Plihon experiment in the Laboratoire de Physique, for example, electrons are at 3 to 6 eV, while
ions are around 0.1 eV.

1(f) Collisions drive the equilibration process. The thermalization time among ions or electrons
themselves is definitely faster than the thermalization time between ions and electrons. Then
each species can be in its own (thermal) equilibrium while the plasma may not last enough to
allow for the two temperatures to equalise.

1(g) The force acting along the direction parallel to B is different from that which is experienced
along the perpendicular direction. Velocities can consequently attain different distribution
profiles (resp. along the parallel and perpendicular directions as defined by the vector B),
being characterized by different temperature values.
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2. Debye shielding and quasi-neutrality

2(a) This ansatz is motivated by recalling that mi ≫ me, the mass of the electrons: the inertia
of the ions is so large that it prevents them from moving on the timescale of the considered
experiment.

2(b) The electric potential field φ is given by the Poisson equation

∇2φ = −e(ni − ne)

ε0
. (3)

The ions density ni is constant by virtue of the uniformity condition. In presence of a potential
energy −eφ, the electron velocity distribution gets modified, so to incorporate the apposite
Boltzmann factor, to become

fe(r,v) = A′ exp

(

−
1

2
mv2 − eφ(r)

kBT

)

. (4)

The physical meaning of the above formula is transparent: there are more electrons where φ
is positive, while there are fewer electrons where φ is negative: in the latter case this is due to
the fact that not all electrons have enough energy to get there.

Integration of fe(r,v), given by Eq. (4), over v yields

ne = ni exp

(

eφ

kBT

)

. (5)

Then, inserting (5) into Eq. (3), one gets

∇2φ =
eni

ε0
[exp (eφ/kBT )− 1] . (6)

2(c) In the region of interest to us, |eφ/kBT | ≪ 1, we can then expand the exponential in Taylor
series. Keeping only the linear terms, we get

∇2φ =
e2n∞

ε0kBT
φ (7)

Defining λD =
√

ε0kBT/(e2ni), we get

1

r2
d

dr

(

r2
dφ

dr

)

=
φ

λ2
D

, (8)

which can be rewritten introducing V = rφ as

d2V

dr2
=

V

λ2
D

, (9)

which leads to the solution V = Ce−r/λD+C ′er/λD . C ′ has to vanish because of the impossibility
of divergence in +∞. We finally get

φ(r) = φ0(r) exp (−r/λD) , (10)

5



where φ0(r) = (−e)/(4πε0r) is the usual potential that one would obtain for the charge in
vacuum, and λD is the so called Debye length, a quantitative measure of the shielding distance.

Notice that as ni is increased, the Debye length λD decreases, as it should since each spher-
ical layer of plasma contains more electrons. Furthermore, λD increases with increasing the
temperature.

2(d) If the dimensions of a system L are much larger than λD, then local concentrations of charges
get shielded out in a distance that is short when compared to L, so leaving the bulk of the
plasma free from large electric fields. The plasma is hence quasi–neutral, or neutral enough
so that it is legitimate to assume ni ≃ ne = n, this latter quantity being termed the plasma
density.

3. Klimontovich and Vlasov-Maxwell equations

3(a) The discrete density f s
d(r,v, t) ofNs such particles, belonging to species s, in the six-dimensional

phase space (r,v) reads

f s
d(r,v, t) =

1

Ns

Ns
∑

i=1

δ(r− ri(t))δ(v − vi(t)), (11)

where δ(·) stands for the Dirac delta function.

3(b) The position ri satisfies the trivial equation vi = ṙi and the velocity of particles i obeys the
Lorentz force equation

msv̇i = qs

[

E(ri, t) + vi ×B(ri, t)

]

, (12)

where qs is the charge of the particle, and E and B are the microscopic electric and magnetic
field, respectively. These latter are in turn governed by the Maxwell equations

∇ · E(r, t) =
ρ(r, t)

ǫ0
(13)

∇ ·B(r, t) = 0 (14)

∇× E(r, t) = −∂B(r, t)

∂t
(15)

∇×B(r, t) = µ0J(r, t) + µ0ε0
∂E(r, t)

∂t
. (16)

The description is completed by the microscopic charge density relation

ρ(r, t) =
∑

s

Nsqs

∫

dv f s
d(r,v, t), (17)

while the microscopic current is given by

J(r, t) =
∑

s

Nsqs

∫

dv vf s
d(r,v, t). (18)
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3(c) An exact equation for the evolution of the system of charged particles is obtained by taking
the time derivative of the density f s

d(·). This immediately yields

∂f s
d (r,v, t)

∂t
=− 1

Ns

Ns
∑

i=1

ṙi · ∇rδ(r− ri(t))δ(v − vi(t))−
1

Ns

Ns
∑

i=1

v̇i · ∇vδ(r− ri(t))δ(v − vi(t)),(19)

where ∇r = (∂x, ∂y, ∂z) and ∇v = (∂vx , ∂vy , ∂vz).

By inserting the equations of motion into Eq. (19), one eventually obtains

∂f s
d (r,v, t)

∂t
= − 1

Ns

Ns
∑

i=1

vi · ∇rδ(r− ri(t))δ(v− vi(t)) (20)

− 1

Ns

Ns
∑

i=1

qs
ms

(E(ri, t) + vi ×B(ri, t)) · ∇vδ(r− ri(t))δ(v− vi(t)).

Using the properties of the Dirac function a δ(a− b) = b δ(a− b) yields

∂f s
d (r,v, t)

∂t
= − 1

Ns

(v · ∇r

Ns
∑

i=1

δ(r− ri(t))δ(v − vi(t)) (21)

− qs
ms

(E(r, t) + v ×B(r, t)) · ∇v

Ns
∑

i=1

δ(r− ri(t))δ(v − vi(t))),

and recalling the definition of the density function f s
d(·) the previous equation can be cast in

the form

∂f s
d (r,v, t)

∂t
+ v · ∇rf

s
d(r,v, t) +

qs
ms

(E(r, t) + v ×B(r, t)) · ∇vf
s
d(r,v, t) = 0. (22)

This is the Klimontovich equation which, together with the Maxwell equations, provides an
exact and general description of any electromagnetic wave-particles system in mutual, self-
consistent evolution.

3(d) The above equation needs to be complemented by proper initial conditions. By assigning initial
particles position and velocity, one can clearly reconstruct the associated densities f s

d (r,v, t =
0). The initial fields are instead chosen to be consistent with the aforementioned Maxwell
equations. The system is hence completely deterministic and both density and fields can be in
principle traced as a function of time and in any position of the generalized phase space.

However the amount of information embedded in the Klimontovich description is enormous.
Equation (22) explicitly contains in fact the orbits of each individual microscopic entity be-
longing to the system under inspection.

3(e) When looking at average quantities, one is primarily interested in knowing how many particles
of type s can be found in a small volume (∆r,∆v) of phase space, positioned in (r,v). In
other terms, it is tempting to invoke an appropriate ensemble average 〈·〉. As explained in the
lecture, this is an average over realizations of the system prepared according to assigned and
reproducible prescriptions. Therefore, we focus the attention on the smooth function

f s
0 (r,v, t) = 〈f s

d(r,v, t))〉. (23)
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An equation for the time evolution of the distribution function f s
0 (r,v, t) can be recovered from

the Klimontovich Eq. (22) by this ensemble averaging. To this end we define the quantities
δf s, δE and δB as obeying the following relations

f s
d(r,v, t) = f s

0 (r,v, t)) +
1√
N
δf s(r,v, t), (24)

E(r,v, t) = E0(r,v, t)) +
1√
N
δE(r,v, t), (25)

B(r,v, t) = B0(r,v, t)) +
1√
N
δB(r,v, t), (26)

with N =
∑

s Ns. The index 0 labels the averaged quantities, namely E0 = 〈E〉 and B0 = 〈B〉,
and the factor 1/

√
N takes into account the typical size of relative fluctuations.

3(f) Inserting this definition in Eq. (22) and performing the ensemble averaging, we get

∂f s
0 (r,v, t)

∂t
+ v · ∇rf

s
0 (r,v, t) +

qs
ms

(E0(r, t) + v ×B0(r, t)) · ∇vf
s
0 (r,v, t)

= − 1

N

qs
ms

〈(δE+ v × δB) · ∇vδf
s(r,v, t)〉. (27)

The right-hand side of Eq. (27) is sensitive to the discrete nature of the fluid, while the left-hand
side deals with collective variables. In the limit of large systems (N → ∞), one can formally
neglect the right-hand side and consequently obtain the Vlasov equation

∂f s
0 (r,v, t)

∂t
+ v · ∇rf

s
0 (r,v, t) +

qs
ms

(E0(r, t) + v ×B0(r, t)) · ∇vf
s
0 (r,v, t) = 0. (28)

The ensemble averaged fields E0 and B0 must satisfy the ensemble averaged Maxwell equations,
which we give here

∇ · E0(r, t) =
ρ0
ε0
, (29)

∇ ·B0(r, t) = 0, (30)

∇× E0(r, t) = −∂B0(r, t)

∂t
, (31)

∇×B0(r, t) = µ0J0(r, t) + µ0ε0
∂E0(r, t)

∂t
, (32)

with

ρ0 =
∑

s

Nsqs

∫

dv f s
0 (r,v, t), (33)

J(r, t) =
∑

s

Nsqs

∫

dv vf s
0 (r,v, t). (34)

4. Bernstein-Greene-Kruskal modes

4(a) Introducing the convective derivative D/Dt, the Vlasov equation can be rewritten as
(

∂

∂t
+ v · ∇x + v̇ · ∇v

)

f s
0 (x, v, t) =

Df s
0 (x, v, t)

∂t
= 0. (35)
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It is then straightforward to note that a particle distribution function f s
0 (·) for the species s

which can be expressed as a function of selected constants of motions, here termed Cj(x,v, t),
is a stationary solution of the Vlasov equation since

D

Dt
f s
0 (· · · , Cj(x,v, t), · · · ) =

∑

j

∂f s
0

∂Cj

DCj

Dt
= 0. (36)

The energy msv
2
x/2 + qsφ(x) being a constant of motion, any function f s

0 (v
2
x + 2qsφ(x)/ms) is

a stationary Vlasov solution.

4(b) The Poisson equation reads

∂2φ

∂x2
=

e(ne − ni)

ε0
=

e

ε0

∫

+∞

−∞

dv
[

f e
0 (v

2 − 2eφ(x)/me)− f i
0(v

2 + 2eφ(x)/mi)
]

. (37)

Solving this integro-differential equation for φ(x) subject to proper boundary conditions return
a closed solution of the inspected problem.

4(c) Selecting only the positive root inside the delta function, one gets f e
0 (x, v) = n0

ve
v
δ(v−ṽe) where

ṽe =
√

v2e + 2eφ(x)/me, and analogously f i
0(x, v) = n0

vi
v
δ(v − ṽi) with ṽi =

√

v2i − 2eφ(x)/mi.
Here ve and vi are positive constants that we choose large enough so that ṽe and ṽi are real
positive quantities. Notice that we have chosen the same normalization constant n0 both in the
definition of f e

0 (x, v) and f i
0(x, v), an assumption that implies dealing with an overall neutral

plasma.

The Poisson equation can therefore be written as

∂2φ

∂x2
=

e

ε0

[

n0

ve
ṽe

− n0

vi
ṽi

]

. (38)

4(d) The pseudo-potential is defined by

V (φ) = −n0

ε0

[

mev
2

e

(

1 +
2eφ(x)

mev2e

)1/2

+miv
2

i

(

1− 2eφ(x)

miv
2
i

)1/2
]

, (39)

where the dependence on ṽe (resp. ṽi) has been removed in favour of ve (resp. vi).

4(e) For mev
2
e = miv

2
i ≡ kBT , the pseudo-potential becomes

V (φ) = −n0

ε0
kBT

[

(

1 +
2eφ(x)

kBT

)1/2

+

(

1− 2eφ(x)

kBT

)1/2
]

(40)

and is plotted versus φ in Fig. 1.

With an initial choice of the energy between −(2)1/2n0kBT/ε0 and −2n0kBT/ε0, the pseudo-
particle oscillates indefinitely in the well, resulting in a spatially periodic potential that oscillates
between −φ0 and +φ0.
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0

φ

V
(φ

)

-k
B
T/2e k

B
T/2e

-2 n0kBT/ ε0

-(2)
1/2

n0 KBT/ε0

-φ0 φ0

Figure 1: The pseudo–potential (40) which arises when studying the BGK modes, under the simpli-
fying hypothesis mev

2
e = miv

2
i ≡ kBT .

4(f) If φ0 ≪ kBT/(2e), one can expand the square roots in Eq. (40) to get for Eq. (38)

∂2φ

∂x2
+

2n0e
2

ε0kBT
φ = 0 (41)

whose solution reads
φ(x) = φ0 sin(

√
2x/λD) (42)

where λD =
√

ε0kBT/n0e2 is the Debye length. Notice that in the linearized version (42) the
function φ(x) is sinusoidal, while this is not the case in the general setting considered above.

4(g) In practice, we have here proved that, within a self-consistent picture where particles influence
the fields and vice-versa, there is a spatially periodic potential. The ion beam gets accelerated
through regions of large negative potential, and thus reduces its density. Conversely the elec-
trons are decelerated when they meet a region of negative potential. The net result is clearly a
negative net charge in regions of large negative potential. The opposite holds in regions where
the potential is instead positive.

The important point is that this process works not only in the linear regime (see Eq. (42)) but
also in the non linear one, as governed by Eq. (38).

Interestingly, it turns out that almost any potential φ(x) can be constructed by choosing
appropriate distributions of (un-)trapped electrons and ions.

There are many practical applications of the BGK modes, including the non linear stage of the
Landau damped Langmuir waves, theories of shock waves and double layers and many more
domains which fall outside the scope of this book.
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B. Ising model with long and short-range interactions

5. Introduction

5(a) In this 1D spin chains, the first term has an infinite-range and corresponds to the Curie-Weiss
Hamiltonian. This term is responsible for the non additive properties of the model.

The prefactor in front of the first term has been set to one by an appropriate renormalization
of the energy. This choice amounts to focus on the ferro coupling, with no loss of generality.

On the contrary, the second term of (1) corresponds to an interaction between nearest neigh-
bours along a one-dimensional lattice with periodic boundary conditions. The coupling con-
stant K might be either positive or negative, and both cases will be hereafter discussed.

5(b) At T = 0, one can determine if the model has a phase transition at some value of K by
comparing the energy of the ferromagnetic state with that of the antiferromagnetic one, since
only the energy term of the free energy matters.

Ferromagnetic state

✻✻✻✻✻✻✻✻✻✻✻

Antiferromagnetic state

✻
❄
✻
❄
✻
❄
✻
❄
✻
❄
✻
❄

The ferromagnetic state with all spins up (Si = 1, ∀i) or down (Si = −1, ∀i) has a negative
energy EF = −N/2. For the antiferromagnetic state with alternate signs of nearest neighbour
spins, the first term of (1) gives a vanishing contribution to the energy. The total energy reads
therefore EA = KN . By imposing EA = EF one gets the phase transition value Kt = −1/2
at which a discontinuity of the order parameter is found, from m = 0 to m = 1. Therefore we
have a first order phase transition.

5(c) For non zero temperature, one has to take into account the entropic term of the free energy,
which measures disorder. When the coupling constant K vanishes, one fully recovers the Curie-
Weiss Hamiltonian, which exhibits a second order phase transition at T = 1 (see lecture).

5(d) One therefore expects that the (T,K) phase diagram displays a transition line which is first
order at low T and second order at high T , dividing the (T,K) plane in different regions as
sketched in Fig. 7. The transition line separates a ferromagnetic from a paramagnetic state,
although exactly at T = 0 and K < −1/2 the state is antiferromagnetic.

Antiferromagnetic state

Paramagnetic state

Ferromagnetic state

1st order PT

K−1/2 0

1

T

✛ 2nd order PT

✲

✻

✻
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6. The solution in the canonical ensemble

6(a) The partition function can be written as follows

Z(β,N) =
∑

{S1,...,SN}

e−βH =
∑

{S1,...,SN}

exp





β

2N

(

N
∑

i=1

Si

)2

+
βK

2

N
∑

i=1

(SiSi+1 − 1)



 . (43)

6(b) To get rid of the quadratic term, we use the Hubbard-Stratonovich transformation

exp





β

2N

(

N
∑

i=1

Si

)2


 =

√

βN

2π

∫

+∞

−∞

dx exp

[

−βN

2
x2 + βx

N
∑

i=1

Si

]

, (44)

so that the partition function (43) can be rewritten as

Z(β,N) =

√

βN

2π

∫

+∞

−∞

dx e
−βN

2
x2
∑

{S1,...,SN}

[

e

βx
N
∑

i=1

Si +
βK

2

N
∑

i=1

(SiSi+1 − 1)]

(45)

=

√

βN

2π

∫

+∞

−∞

dx e−Nβf̃ (β, x), (46)

if one introduces the free energy-like function f̃(β, x) as

f̃(β, x) =
1

2
x2 + f0(β, x), (47)

where f0(β, x) is the free energy of the nearest-neighbour Ising model with an external field x.

6(c) One has to use the transfer integral method: λ± are the two eigenvalues of the transfer matrix.

6(d) As λ+ is greater than λ− for all values of x, only the larger eigenvalue λ+ is relevant in the
limit N → ∞. One thus finally gets the following expression

φ̃(β, x) = βf̃(β, x) =
β

2
x2 − ln

[

eβK/2 cosh(βx) +

√

eβK sinh2(βx) + e−βK

]

(48)

which is plotted in Figs. 2 for different values of the nearest-neighbour coupling K.

In the large N -limit, the application of the saddle point method to Eq. (46) finally leads to the
free energy f(β), which is obtained by taking the value of x which minimizes φ̃(β, x) in formula
(48).

From the knowledge of the free energy, as anticipated, one gets either a second (see left panel
of Fig. 2) or a first order (see right panel of Fig. 2) phase transition depending on the value of
the coupling constant K.

6(e) As usual, the expansion of f̃(β, x) in power of x is the appropriate procedure to define the
critical lines and points. One gets here

f̃(β, x) = − ln 2 cosh
βK

2
+

β

2
x2
(

1− βeβK
)

+
β4

24
eβK

(

3e2βK − 1
)

x4 +O(x6). (49)
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Figure 2: Evolution of f̃(β, x) for different values of the inverse temperature. Left panel: Second

order phase transition: β = 1.1 (dashed line), 1.4 (dotted), 2.5 (solid) when K = −0.25. Right panel:
First order phase transition: β = 10 (dotted), 2.4 (solid), 2.35 (dash-triple dot), 2 (dashed) when
K = −0.4. Note that the different curves have been vertically shifted for readability purposes.

The critical point of the second order transition is obtained for each K by computing the value
βc at which the quadratic term of the expansion (49) vanishes provided the coefficient of the
fourth order term is positive: we get therefore βc = exp (−βcK).

When also the fourth order coefficient vanishes, which means when 3 exp(2βK) = 1, one gets
the canonical tricritical point (CTP). This condition corresponds to particular values of the
local coupling constant K and of the inverse temperature β

KCTP = − ln 3

2
√
3
≃ −0.317 with βCTP =

√
3 , (50)

in which βCTP corresponds to the canonical tricritical inverse temperature.

6(f) One gets finally the first order line, numerically, by requiring that f(β, 0) = f(β, x∗), where x∗

is one of the two symmetric local minima. Figure 3 represents the phase diagram in both the
canonical and the microcanonical ensemble. The features of this phase diagram are very close
to those of the BEG model.

6(g) The phase diagram in the canonical ensemble is plotted in Fig. 3.

-0.5 -0.4 -0.3 -0.2
0

0.2

0.4

0.6

0.8

MTP

CTP

T

K

m=0

m≠0

Figure 3: The canonical and microcanonical (K, T ) phase diagram. In the canonical ensemble, the
large K transition is continuous (bold solid line) down to the tricritical point CTP where it becomes
first order (dashed line). In the microcanonical ensemble, the continuous transition coincides with
the canonical one at large K (bold line). It persists at lower K (dotted line) down to the tricritical
point MTP where it turns first order, with a branching of the transition line (solid lines). The shaded
area is not accessible in the microcanonical ensemble.
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7. The solution in the microcanonical ensemble

7(a) In the microcanonical ensemble, one can proceed with a simple counting method. The first
term of the Hamiltonian (1) can be straightforwardly rewritten as −M2/(2N). Concerning the
second term of the Hamiltonian, since two identical neighbouring spins do not contribute to it
(SiSi+1− 1 being equal to zero), while two different adjacent spins give a contribution equal to
K, the total contribution associated with the second term is KU . Therefore, the total energy
can be written as E = −M2/(2N) +KU .

7(b) The number of microstates in a chain of N spins corresponding to an energy E and a total
magnetization M can be written as

Ω(E,M ;N) = Ω(N+, N−,U) ≃
(

N+

U/2

)(

N−

U/2

)

, (51)

where N+, N− and U are related to N = N+ + N−, E and M by the above relations. The
formula is derived by taking into account that we have to distribute N+ spins among U/2
groups and N− among the remaining U/2. Each of these distributions gives a binomial term,
and, since they are independent, the total number of states is the product of the two binomials.
The expression is not exact because we are on a ring, but corrections are however of order N
and do not affect the entropy. A slight correction to formula (51) is present for small N+, N−

and U/2, and all these numbers should be indeed reduced by a unity.

7(c) Introducing m = M/N , u = U/N and ε = E/N = −m2/2 +Ku, one gets the entropy

s̃(ε,m) =
1

N
ln Ω =

1

2
(1 +m) ln(1 +m) +

1

2
(1−m) ln(1−m)− u lnu

− 1

2
(1 +m− u) ln(1 +m− u)− 1

2
(1−m− u) ln(1−m− u), (52)

where u can be expressed as a function of ε and m.

As shown in Fig. 4 for different values of the energy ε, the shape of this function strongly
depends on the value of the nearest-neighbour coupling K.

Figure 4: Evolution of the entropy s̃(ε,m) for different values of the energy. Right panel: Second

order phase transition. ε = −0.1 (dashed line), −0.15 (dotted), −0.2 (solid) when K = −0.25. Left
Panel: First order phase transition. ε = −0.25 (dotted), −0.305 (dash-dotted), −0.3138 (solid),
−0.32 (dash-triple dot), −0.33 (dashed) when K = −0.4. The gaps present in the lower dashed
curve are related to ergodicity breaking. Note that the different curves have been vertically shifted
for readability purposes.
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7(d) In the large N -limit, the last step is to maximize entropy s̃(ε,m) with respect to magnetization
m, leading to the entropy s(ε) = s̃(ε,m∗), where m∗ is the equilibrium value. As anticipated,
one gets either a second or a first order phase transition depending on the value of the coupling
constant K.

7(e) As usual, and analogously to what has been done in the canonical ensemble, the expansion of
s̃(ε,m) in powers of m is the appropriate procedure to define the critical lines and points. One
gets here

s̃(ε,m) = s0(ε) + Amc m
2 +Bmc m

4 +O(m4), (53)

with the paramagnetic zero magnetization entropy

s0(ε) = − ε

K
ln

ε

K
−
(

1− ε

K

)

ln
(

1− ε

K

)

(54)

and the expansion coefficients

Amc =
1

2

[

1

K
ln

K − ε

ε
− ε

K − ε

]

(55)

Bmc =
ε3

12(ε−K)3
− K2 +K

4(ε−K)2
+

1

8Kε
. (56)

Using these expression, it is straightforward to find the second order phase transition line by
requiring that Amc = 0 (Bmc < 0), finding βc = exp(−βcK), which is the same equation found
for the canonical ensemble. Again, as far as second order phase transitions are concerned, the
two ensembles are equivalent. The tricritical point is obtained by the condition Amc = Bmc = 0,
which leads to

KMTP ≃ −0.359 and βMTP ≃ 2.21 , (57)

which are close, but definitely different, fromKCTP ≃ −0.317 and βCTP =
√
3 found in Eq. (50).

The microcanonical first order phase transition line is obtained numerically by equating the
entropies of the ferromagnetic and paramagnetic phases. At a given transition energy, there are
two temperatures, thus giving a temperature jump as for the BEG and the generalized HMF
model. In conclusion, similarly to the mean-field models discussed before, this model, that
combines short and long-range interactions, exhibits a region of negative specific heat when the
phase transition is first order in the canonical ensemble. This striking feature is therefore not
restricted to mean-field models.
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