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13h30-16h00 : Handwritten lecture notes allowed

1 Question de cours

1(a) Draw and discuss the phase diagram of the BEG model.

1(b) Draw and discuss the phase diagram of self-gravitating particles bounded in a sphere of ra-
dius R. Discuss similarities and differences.

1(c) Discuss similarities and differences for what concern the statistical mechanics of 2D vortices
and stellar systems.

2 Synchronisation par couplage global

Nous souhaitons étudier la synchronisation d’un grand nombre d’oscillateurs qui interagissent tous,
les uns avec les autres. On parle de couplage global.

Nous allons étudier le modèle introduit par Y. Kuramoto en 1984

dθk
dt

= ωk + ε
1

N

∑
l

sin(θl − θk) , k = 1, . . . , N . (1)

où θk et ωk sont respectivement la phase et la fréquence propre de l’oscillateur repéré par l’indice k,
N le nombre d’oscillateur et ε un nombre réel positif. On introduit le paramètre d’ordre complexe

Z =
1

N

∑
l

exp (iθl) = K eiΦ. (2)

2(a) Que vaut le module K si les phases sont aléatoires ? Si les phases sont proches ?

2(b) Représenter sur un cercle les deux situations, synchronisée et non synchronisée.

2(c) Réécrire l’équation (1) de manière concise en utilisant le paramètre d’ordre (2).

2(d) Expliquer pourquoi cette équation peut faire croire que les oscillateurs sont découplés. Justifier
que ce n’est cependant pas le cas.

2(e) Expliquer pourquoi la phase θk est tirée vers la phase moyenne Φ, plutôt que vers la phase d’un
oscillateur particulier. Quelle est la quantité qui contrôle la force du couplage ? Expliquer le
comportement physique auquel on peut s’attendre ?



2(f) En cherchant des solutions avec le module K constant et la phase Φ en rotation uniforme à la
pulsation Ω, déterminer la condition de synchronisation.

2(g) À votre avis, quel est le comportement du paramètre d’ordre si l’on étudie le système à l’aide
de simulations numériques ?

3 Gravitation in one dimension

3.1 Introduction

A 1D self-gravitating system consists of N sheets of mass density m uniformly distributed in the y–z
plane, free to move along the x axis. The dynamics of the sheets is the same as the dynamics of point
particles of mass m interacting by a linear potential. The particles are free to cross one another. The
thermodynamic limit, limN→∞mN = M = constant, is equivalent to the Kac prescription necessary
to guarantee the extensivity of the energy.

3.1(a) Denoting λ(x, t) the mass density and φ(x, t) the gravitational potential, gives the Poisson
equation.

3.1(b) In order to simplify the expressions, we will work with dimensionless variables. We shall
rescale the mass, length, velocity, potential, and energy by M , L0 (an arbitrary length scale),
V0 =

√
2πGML0, φ0 = 2πGML0 and E0 = MV 2

0 = 2πGM2L0, respectively. Considering
G = M = 1 and defining appropriately a dynamical time scale τD, the Poisson equation can
be written

∇2φ(x, t) = 2ρ(x, t). (3)

Gives the expression of τD as a function of the other variables.

3.1(c) For a particle (sheet) of (reduced) mass density located at x′, gives the expression of the
density.

3.1(d) Deduce the expression of the associated potential.

3.1(e) Is it a long-range or a short-range potential?

3.1(f) Comment the presence or absence of singularities of the potential, in particular with the 3D
counter analog.

3.1(g) A system’s energy takes into account the total work necessary to bring a particle from infinity
(or from a position where the potential is zero) to a position q, i.e.

∫
[φ(q)− φ(∞)] dq. What

is the difference between the 1D and 3D self-gravitating potential? What is the solution?

3.2 Molecular Dynamics

The reduced Hamiltonian for a system of N particles interacting by a one-dimensional gravitational
potential is

H(x, v) =
N∑
i=1

v2
i

2
+

1

2N

N∑
i,j

|xi − xj|, (4)

This Hamiltonian, along with Hamilton’s equations of motion, completely determines the dynamics
of the system.
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3.2(a) Gives the acceleration of a particle at position x, due to its interaction with the other particles.

3.2(b) Simplify this expression by introducing N>(x) and N<(x) the numbers of particles to the
right and to the left of x, respectively.

3.2(c) What is the scaling with N of the direct simulation of this system?

3.2(d) Explain why the simulation may be simplified by using a vector containing the indices of
each particle, and reordering it according to each particle’s position at each new calculation.

3.2(e) Let us simulate numerically the evolution of a system of particles that are initially distributed
uniformly with positions xi where xi ∈ [−xm, xm] and velocities vi ∈ [−vm, vm]. Introducing
η = (4xmvm)−1, write the initial distribution function f0(x, v)

3.2(f) Compute the initial energy. Hint: Find first the potential that is the solution of the Poisson
equation.

3.3 Equilibrium

We are interested in the relaxation of the system to equilibrium.

3.3(a) Justify and criticize the idea to look for a solution as fmb(x, v) = C e−β(v2/2+φeq(x)). Discuss
the signification of C and β.

3.3(b) Determine the equation satisfied by the equilibrium potential φeq(x).

3.3(c) Solve this equation and show that φeq(x) = − 1
β

ln
[

1
4

sech2
(
βx
2

)]
where sechx = 1/ coshx.

3.3(d) Derive the distribution function at equilibrium feq(x, v).

3.3(d) Determine the value of β.

3.3(e) Figure 1 compare the equilibrium distributions with the results of molecular dynamics sim-
ulations. Discuss.

3.3(f) Recall in a few lines the main points of the theory proposed by Lynden-Bell to predict the
results of molecular dynamics simulations.

3.3(g) Figure 2 compare the predictions of Lynden-Bell statistics with the results of molecular
dynamics simulations. Discuss.

3.3(h) Conclude by relying the above findings with the Kac rescaling.

Inspired by Nonequilibrium statistical mechanics of systems with lon-range interactions
by Y. Levin, R. Pakter, F. B. Rizzato, T. N. Teles, F.P.C Benetti, Physics Reports 535, 1-60 (2014).
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Figure 1: Distributions in (a) position and (b) velocity for a 1D gravitational system with E0 = 0.75,
obtained using MD simulations (points), averaged over times t = 1000τD to t = 1100τD, compared
with the equilibrium distributions (lines). Repeating the MD simulation for the same initial energy
but different initial conditions and taking the average value of the resulting distributions, error bars
showing the standard error are smaller than the symbol size.
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Figure 2: Distributions in (a) position and (b) velocity for a 1D gravitational system with E0 = 0.75,
obtained using MD simulations (points), averaged over t = 1000τD and t = 1100τD, compared with
the LB distributions (lines). Error bars are smaller than the symbol size.
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Correction

1. Question de cours

1(a) Phase diagram for the BEG model.

MTP

CTP

∆

T

A schematic phase diagram near the canonical tricritical point (CTP) and the microcanoni-
cal one (MTP) is given above. In the region between the two tricritical points, the canonical
ensemble yields a first order phase transition at a higher temperature, while in the microcanon-
ical ensemble the transition is still continuous. It is in this region that negative specific heat
appears. Beyond the microcanonical tricritical point, the temperature has a jump at the tran-
sition energy in the microcanonical ensemble. The two lines emerging on the right side from
the MTP correspond to the two limiting temperatures which are reached when approaching
the transition energy from below and from above. The two microcanonical temperature lines
and the canonical first order phase transition line all merge on the T = 0 line at ∆ = 1/2.

1(b) Phase diagram for self-gravitating systems bounded in a sphere of radius R. For sufficiently
low energy or temperature there is no equilibrium state and the system undergoes gravitational
collapse.

−0.3 −0.1 0.1 0.3 0.5 0.7 0.9

Λ=−ER/GM
2

0.5

1.5

2.5

η
=

β
G

M
/R

isothermal collapse

gravothermal 
catastrophe

MCE

CEη
c
=2.52

R=32.1

Λ
c
=0.335

R=709singular 

sphere

The caloric curve has a striking spiral behavior parametrized by the density contrast ρ =
n(0)/n(R) going from 1 (homogeneous system to +∞ (singular sphere) as we proceed along
the spiral.

There is no equilibrium state below Ec = −0.335GM2/R. In that case, the system is expected
to collapse indefinitely. This is called gravothermal catastrophe in the micro canonical ensemble
(fixed E) and isothermal collapse in the canonical ensemble (fixed T ).
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Dynamical models show that the collapse is self-similar and develops a finite time singularity.

In the microcanonical ensemble, the series of equilibria becomes unstable after the point MCE.
At that point, solutions pass from local entropy maxima to saddle points.

In the canonical ensemble, the series of equilibria becomes unstable after the point CE. At that
point, solutions pass from minima of free energy to saddle points.

Before the point MCE, the curve T (E) is univalued so that the equilibriums states are always
stable in the microcanonical ensemble (they are global entropy maxima). By contrast, after the
point MCE the T (E) curve is multivalued and this can lead to a first order phase transition in
the canonical ensemble. The gaseous and condensed phases are thus connected by a Maxwell
plateau which replaces the region of negative specific heats. Point CE is therefore called a
canonical tricritical point, while MCE is the microcanonical tricritical point.

It can be noted that the region of negative specific heats between CE and MCE is stable in the
microcanonical ensemble but unstable in the canonical ensemble.

1(c) Despite the differences, the statistical mechanics of 2D vortices and stellar systems are relatively
similar. Like the point vortex gas, the self-gravitating gas is described at statistical equilibrium
by the Boltzmann distribution, and its structure determined by solving a Boltzmann-Poisson
equation. In analogy between stellar systems and two dimensional vortices, the star density
plays f the role of vorticity ω, the force the role of the velocity and the gravitational potential
φ the role of the stream function ψ. The crucial point to realize is that, for the two systems, the
interaction is long-range unshielded Coulombian interaction (in d = 3 or 2 dimensions). This
makes the connexion between point vortices and stellar systems deeper than between vortices
and electric charges for example.

There are, on the other hand, fundamental differences between star and vortices. A star creates
an acceleration while a vortex creates a velocity. The gravitational interaction is attractive and
directed along the line joining the particles while the interaction of vortices is rotational and
perpendicular to the line joining the vortices.

2. Synchronisation par couplage global

2(a) Si les phases sont aléatoirement réparties sur le cercle unité, K ' 0, alors que si les phases sont
proches K ' 1.

2(b) Si les phases θl sont aléatoires, les phases sont réparties aléatoirement sur le cercle. Au contraire,
dans l’état synchronisé toutes les phases sont proches d’un même point.

2(c) En développant le sinus, on obtient

dθk
dt

= ωk + ε
1

N

∑
l

(sin θl cos θk − sin θk cos θl) (5)

= ωk + ε cos θk

(
1

N

∑
l

sin θl

)
− ε sin θk

(
1

N

∑
l

cos θl

)
(6)

= ωk + ε cos θkX − ε sin θkY (7)

= ωk + ε cos θkK cos Φ− ε sin θkK sin Φ (8)

= ωk + εK sin(θk − Φ). (9)
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2(d) Cette équation peut effectivement faire croire que les oscillateurs sont découplés. Il n’en est
cependant rien, puisque les équations sont couplées à travers le module et la phase du paramètre
d’ordre Z. On pourrait envisager d’essayer d’écrire l’équation d’évolution du paramètre d’ordre
Z, mais l’équation Ż = ... ne dépend pas que de Z et n’est donc pas fermée.

2(e) De manière plus spécifique, la phase θk est donc tirée vers la phase moyenne Φ, plutôt que vers
la phase d’un oscillateur particulier. Par ailleurs, la force de couplage est directement propor-
tionnel à la cohérence K. Cette proportionnalité crée un feedback positif entre le couplage et
la cohérence. Lorsque la population devient plus cohérente, K crôıt et le couplage effectif Kε
augmente, ce qui a tendance) collecter encore plus d’oscillateurs dans le groupe d’oscillateurs
synchronisés.

2(f) En prenant donc Φ = Ωt, l’équation (9) conduit à

dθk
dt

= ωk + εK sin(θk − Ωt). (10)

On est donc ramené à l’équation d’un oscillateur forcé de manière périodique. Il y a donc deux
situations possibles.

Si le forçage est suffisant, i.e. εK > |ωk − Ω|, on est à l’intérieur de la langue d’Arnold, et
le système est synchronisé: θk = Ωt + φk, avec ωk + εK sinφk = 0. Ces oscillateurs seront
accrochés sur la fréquence Ω.

Au contraire, les oscillateurs avec εK < |ωk − Ω|, ne seront pas synchronisés: θ̇k 6= Ω. Ils
tourneront autour du cercle de manière non uniforme.

Cette explication due à Kuramoto explique donc simplement pourquoi le système se divise en
deux groupes.

2(g) Les simulations montrent que pour toute valeur de K inférieure à une valeur critique Kc,
les oscillateurs agissent comme s’ils étaient découplés: les phases se distribuent de manière
uniforme autour du cercle, et cela à partir de n’importe quelle condition initiale. Par la suite
K(t) oscille pour atteindre zéro avec des fluctuations d’ordre N−1/2 comme on peut l’attendre.

En revanche, lorsque K > Kc, cet état incohérent devient instable et K(t) crôıt de manière
exponentielle du fait de la nucléation d’un petit cluster d’oscillateurs qui se synchronisent. Le
module du paramètre d’ordre sature à une valeur K∞ < 1 avec toujours des fluctuations d’ordre
N−1/2.

La population des oscillateurs se divisent en deux groupes, ceux près du centre de la distribution
qui se synchronisent sur la pulsation Ω, alors que ceux près des queues tournent à leur pulsation
propre. Plus on augment K, plus le nombre d’oscillateurs synchronisés augmentent.

3 Gravitation in one dimension

3.1. Introduction

3.1(a) The Poisson equation for this system is

∇2φ(x, t) = 4πGλ(x, t) (11)

where G is the gravitational constant and λ(x, t) the mass density.
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3.1(b) τD = (4πGρ0)−1/2.

3.1(c) ρ(x, x′) = δ(x− x′)

3.1(d) φ(x, x′) = |x− x′|.

3.1(e) The potential is therefore increasing with the distance, and therefore a long-range potential.

3.1(f) A particularly interesting aspect of the one-dimensional gravity is that the interaction po-
tential does not have any singularities, which simplifies significantly molecular dynamics (MD)
simulations, allowing us to explore in great detail the relaxation of this model to the qSS.

3.1(g) For 3D self-gravitating systems the potential at infinity is zero, and for plasmas it is zero
at the conducting wall. However, it is important to note that for 1D and 2D self-gravitating
systems, the potential diverges at infinity. Since this divergent term appears in both the initial
and the final state, the problem is avoided by using a renormalized energy. See Ref Teles et al,
J. Stat. Mech P05007 (2010) for more details.

3.2. Molecular dynamics

3.2(a) ẍ = − 1
N

∑N
i=1

x−xi
|x−xi|

3.2(b) ẍ = N>(x)−N<(x)
N

3.2(c) To simulate the system according to above equation requires time that scales with N2.

3.2(d) However, the simulation may be simplified by using a vector containing the indices of each
particle, and reordering it according to each particle’s position at each new calculation. Above
equation then may be written as ẍ = (N−i)−(i−1)

N
= N−2i+1

N
, where i is the index of the particle

at position x.

This simplification involves no approximation; the advantage is purely computational, for the
simulations become more efficient regarding the computational time —the typical time required
to order a vector of size N varies at most with N lnN . Using this method, the trajectories
may be obtained exactly, that is, at machine precision. However, for the exact procedure, the
trajectories must be calculated at each collision, and the number of collisions grows as N2.

3.2(e) f0(x, v) = ηΘ(xm − |x|)Θ(vm − |v|)

3.2(f) The potential that is the solution of the Poisson equation (3) at t = 0 is

d2

dx2
φ(x) =

{
1
xm

for |x| ≤ xm

0 for |x| ≥ xm
(12)

with boundary conditions lim|x|→∞ φ(x) = |x| and φ′(0) = 0. The solution is given by

φ(x) =

{
x2

2xm
+ xm

2
for |x| ≤ xm

|x| for |x| ≥ xm.
(13)

Using the definition of the mean energy E0 =
∫

(p2/(2m) + φ/2)f(q, p)dpdq, the initial energy

of the system is found to be E0 = v2m
6

+ 1
3

where without loss of generality we have set xm = 1.
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3.3. Equilibrium

3.3(a) fmb(x, v) = Ce−β(v2/2+w(x)) is the expected solution in the canonical ensemble, with β the
Lagrange multiplier used to conserve total energy, C a normalization constant and ω(x) the
potential of mean force; As N → ∞, interparticle correlations vanish and ω(x) ∼ φ(x). How-
ever, we know that the canonical ensemble is not well defined for a long-range potential: such
an ansatz is therefore not totally expected as discussed during the lecture.

3.3(b) If the system relaxes to equilibrium the gravitational potential must satisfy the Poisson equa-
tion ∇2φ(x) = 2n(x) where n(x) is the equilibrium density distribution. Using the Maxwell-
Boltzmann distribution, fmb(x, v) = Ce−β(v2/2+w(x)), the equilibrium density distribution is
given by

n(x) =

∫
fmb(x, v) dv =

√
2π

β
Ce−βω(x) , (14)

As N → ∞, interparticle correlations vanish and ω(x) ∼ φ(x). Substituting equation (14) in
the Poisson-Boltzmann equation in its dimensionless form, we get

∇2φeq(x) =

√
8π

β
C e−βφeq(x) . (15)

3.3(c) Solving this equation using the boundary conditions lim|x|→∞ φeq(x) = |x| and φ′eq(0) = 0,

the potential is found to be φeq(x) = − 1
β

ln
[

1
4

sech2
(
βx
2

)]
.

3.3(d) The distribution function is given by feq(x, v) =
√

β3

32π
e−

βv2

2 sech2
[
βx
2

]
.

3.3(e) The value of β = 3/(2E) is determined by the conservation of energy with f̄(x, v) = feq(x, v).

3.3(e) The equilibrium density and velocity distributions are given by n(x) = β
4

sech2
(
βx
2

)
and

n(v) =
√

β
2π
e−βv

2/2. As can be seen in Fig 1, the predictions of equilibrium statistical mechanics

are very different from those of MD simulations. This clearly shows that the ergodicity required
by the Boltzmann-Gibbs statistical mechanics is violated.

3.3(f) The application of Lynden-Bell statistics to one-dimensional gravitational systems has spanned
various decades, with divergent results. See lecture for more details.

In order to determine flb(x, v) for a one-dimensional gravitational system, we need to calculate
the gravitational potential φlb(x). To do this we must solve the Poisson equation with f(x, v) =
flb(x, v) and the one-particle energy given by ε(x, v) = v2/2 + φlb(x). Integrating the Lynden-
Bell distribution over momentum, we obtain the Poisson equation

d2φlb(x)

dx2
= −

√
8π

β
ηLi1/2

[
−e−β(φlb(x)−µ)

]
, (16)

where µ is the Lagrange multiplier associated to normalisation of the distribution function, and
with boundary conditions lim|x|→∞ φlb(x) = |x| and φ′lb(0) = 0, where Lin(x) is the polyloga-
rithm function of order n. The solution to this equation is obtained numerically.
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3.3(g) Fig 2, which compares the position and the velocity distributions n(x) =
∫
flb(x, v)dv and

n(v) =
∫
flb(x, v)dx with the results of MD simulations, show that the predictions of LB

statistics are better than the equilibrium distribution, although not perfect.

The problem, common to both BG and LB statistics, is that in thermodynamic limit, systems
with LR forces are intrinsically non-ergodic, invalidating the basic assumptions that underlie
both theories. For systems with a finite number of particles, however, ergodicity is restored
on a sufficiently long time scale. Such systems will eventually relax to the BG equilibrium
(if it exists, and the BG entropy has a maximum), after being trapped in a qSS for a time
proportional to the number of particles in the system.

3.3(h) The Kac scaling required by the long-range nature of the interaction potential destroys
the correlations (collisions) between the particles. Therefore, in thermodynamic limit, long-
range systems are intrinsically collisionless – particles move under the action of the mean-field
potential produced by all the other particles. In general, the mean-field potential has a complex
dynamics, characterized by quasi-periodic oscillations. It is possible, therefore, for some particle
to enter in resonance with the oscillations and gain large amounts of energy at the expense
of the collective motion. This process, known as Landau damping, diminishes the amplitude
of the oscillations and leads to the formation of a tenuous halo of highly energetic particles
which surround the high density core. After all the oscillations have died out, a stationary state
state is established. The phase space distribution of particles in the quasi-stationary state has
a characteristic core-halo structure, very different from the predictions of either Boltzmann-
Gibbs or Lynden Bell statistics. Once the stationary state is established, there is no longer
a mechanism through which highly energetic particles of the halo can equilibrate with the
particles of the core, and the ergodicity is broken.
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