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‡ Université de Florence, Italie.

Angel Alastuey, Laboratoire de Physique, ENS Lyon, CNRS, France – p. 1/14



Hard spheres with gravitational interactions

♠ We consider a classical gravitational model made with

• N identical hard spheres (m,σ)

• enclosed in a spherical box (Λ = 4πR3/3)

♠ The corresponding Hamiltonian reads

HN =
N
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2
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v(|ri − rj |)

v(r) = ∞ for r < σ , v(r) = −Gm2/r for r > σ

⋄ No dispersion in shapes, sizes and masses
⋄ No sticking leading to agregation
⋄ Status of the box versus Self-confinement ?
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Microcanonical description

Isolated system, with fixed energy E and no other conserved quantity .

♠ Microcanonical ensemble :

• Distribution in phase space

fmicro(r1, ..., rN ,p1, ...,pN ) = δ(E − HN )

• Number of microstates

Ω(E, N, Λ) = CN

Z

ΛN×R3N

Y

i

d3
rid3

piδ(E − HN )

⋄ fmicro is a stationary solution of evolution equations
⋄ Ω(E, N,Λ) is finite for σ > 0 ; it diverges for σ = 0 and N ≥ 3 [POMEAU, 2007]

♠ Dynamical limitations :

• Existence of quasi-stationary states
[ANTONI-RUFFO-TORCINI,2004],[CHAVANIS,2005]

• Possible ergodicity breaking
[CHABANOL-CORSON-POMEAU,2000],[POSCH-THIRRING,2000]
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The scaling continuous limit

♠ Consider the scaling limit N → ∞ with :

• R = N1/5ℓ0 with ℓ0 fixed → particle density ρp = (3/(4πℓ30))N2/5

• m = N−2/5m0 with m0 fixed → mass density ρ = mρp = 3m0/(4πℓ30)

• σ = N−2/15d0 with d0 fixed → packing fraction η = ρpσ3 = 3d3
0/(4πℓ30)

• E = N(Gm2
0/ℓ0)ε with ε fixed → extensivity of energy

That scaling limit (SL) defines an infinite continuous medium in a stationary state
controlled by two independent dimensionless parameters, namely the energy per particle
ε in units of Gm2

0/ℓ0, and the packing fraction η = d3
0/(8ℓ30).

⋄ Different from the usual thermodynamical limit N → ∞ with E/N , ρp fixed
⋄ Different from other scaling limits [DE VEGA-SANCHEZ, 2002], [JOYCE, 2008]
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Bounds for the potential energy

♠ For any allowed configuration, the potential energy

VN = −
1

2

X

i6=j

Gm2

|ri − rj |

is larger than that of the collapsed configuration where the N hard spheres make a
single cluster with size Lcoll ∼ N1/3σ, which is of order −Gm2N2/Lcoll. In the scaling
limit, this provides the classical version of H-stability

VN > −V0N with V0 = CHS
Gm2

0

d0
> 0

♠ For any allowed configuration, the potential energy should be
smaller than that of a homogeneous surface mass distribution Nm/(4πR2),

VN < −N
Gm2

0

2ℓ0
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Extensivity of potential energy

♠ Thanks to the extensivity of its upper and lower bounds, the average potential energy

〈VN 〉 = −
1

2

Z

Λ2

d3
rd3

r
′ρ(2)(r, r′)

G

|r − r′|

should also be extensive in the scaling limit (like the potential energy of an
homogeneous sphere with mass density ρ).

♠ Extensivity consistent with the expected scaling behaviours for q,q′,... fixed

lim
SL

ρ(1)(Rq) = ρg(1)(q; ε, η)

lim
SL

ρ(2)(Rq, Rq
′) = ρ2g(2)(q,q′; ε, η)
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Fluctuations of the potential energy

♠ The fluctuations 〈V 2
N 〉 − [〈VN 〉]2 can be expressed as spatial integrals of

1/|r − r
′|2, 1/|r − r

′||r − r
′′|, and 1/|r − r

′||r′′ − r
′′′| weighted respectively by two-,

three- and four-body distribution functions. A simple estimation within the considered
scaling limit provides

〈V 2
N 〉 − [〈VN 〉]2 = o(N2)

♠ Accordingly, we will use in further estimations of averages involving VN the ansatz :

VN→〈VN 〉 + WN

for most contributing configurations with WN = o(N) when N → ∞

⋄ Non-rigorous although quite plausible (possible subtle correlations with other variables)
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The inhomogeneous mass density

♠ The mass density is

ρ(1)(r) = ρ(r) = m〈
N

X

i=1

δ(ri − r)〉

Using fmicro, the standard integration over the momenta pi leads to

ρ(r) = cst

Z

ΛN−1,|ri−rj |>σ

N
Y

i=2

d3
ri[E − VN (r, r2, ..., rN )]3N/2−1

♠ Introduce the gravitational potential Φ(r|r2, ..., rN ) at r created by the (N − 1)

particles located at r2, ..., rN . Since

VN = VN−1 + mΦ

we can exactly rewrite

ρ(r) = cst

*

N
Y

i=2

θ(|ri − r|/σ − 1)[E − VN−1]3/2[1 −
mΦ

E − VN−1
]3N/2−1

+

N−1
Angel Alastuey, Laboratoire de Physique, ENS Lyon, CNRS, France – p. 8/14



Emergence of thermalization

• Rewrite

[1 −
mΦ

E − VN−1
]3N/2−1 = exp



(3N/2 − 1) ln[1 −
mΦ

E − VN−1
]

ff

Since mΦ = O(1) and E − VN−1 = O(N), the expansion of the logarithm leads
to

[1 −
mΦ

E − VN−1
]3N/2−1 ∼ exp



−
(3N/2 − 1)mΦ

E − VN−1

ff

• If we apply the fluctuation ansatz to VN−1 in the average defining ρ(r), we can
replace E − VN−1 by E − 〈VN−1〉N−1 at leading order, and we find

ρ(r) ∼ cst

*

N
Y

i=2

θ(|ri − r|/σ − 1) exp



−
(3N/2 − 1)mΦ

E − 〈VN−1〉N−1

ff

+

N−1

⇒ THERMALIZATION with T ∼ 2(E − 〈VN 〉)/(3N)
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Hydrostatic picture

♠ A hydrostatic approach is justified thanks to

• Local thermodynamical equilibrium is ensured by hard-core repulsion entirely.

• At the local scale, particles feel the average gravitational potential

φ(r) = 〈mΦ〉 = −

Z

Λ
d3

r
′ρ(r′)

Gm

|r′ − r|

• The local correlation length λHS is much smaller
than the characteristic variation length R of ρ(r).

♠ Accordingly, the hydrostatic equilibrium reads

∇P (r) = −ρ(r)∇φ(r)

where P (r) is the pressure for a homogeneous gas of hard spheres (no gravitation ) at
temperature T and number density ρ(r)/m

P (r) = T
ρ(r)

m
pHS(ηρ(r)/ρ)
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Limit of point-particles

♠ Once the SL has been taken, we can take the limit η → 0 where pHS(ηρ(r)/ρ) → 1.
The integration of the hydrostatic equation provides

ρ(r) = C exp



−
φ(r)

T

ff

with

φ(r) = −

Z

Λ
d3

r
′ρ(r′)

Gm

|r′ − r|

⇒ ISOTHERMAL SPHERE
[EMDEN,1907],[ANTONOV,1964],[LYNDEN-BELL,1968]

⋄ Continuity of ρ(r) when η → 0 at fixed ε ?
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Consistency checks of the a priori assumptions

♠ Within the hydrostatic approach :

• Mass distribution ρ(r) varies on the scale R

• Correlations, like [ρ(2)(r, r′) − ρ(r)ρ(r′)], decay over the hard-sphere local
correlation length λHS of order σ

♠ This implies :

• The average potential energy is indeed extensive , 〈VN 〉 = Vself + Vcorr with

Vself = O(N) and Vcorr = O(N1/3).

• Fluctuations behave as 〈V 2
N 〉 − [〈VN 〉]2 = O(N)

⋄ Fluctuations similar to that of an ordinary system with short-range interactions
at thermodynamical equilibrium .
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Expected limitations at low negative energies

The hydrostatic approach should provide the exact mass distribution for ε positive large
enough and η small enough. That approach should be no longer valid for ε sufficiently
negative and/or η sufficiently large, because :

• Local cristalisation →ρ(r) varies on the scale σ

• Absence of solutions for the hydrostatic equations

• Multiplicity of solutions for the hydrostatic equations → Phase transitions ?
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Concluding comments

♠ The scaling ensures the emergence of local thermodynamical equilibrium

♠ Gravitational interactions can be treated at the mean-field level

♠ Short-range repulsion controls the shape of the mass distribution

Open questions within the present scaling :

• States with ǫ sufficiently negative ?

• Evaporation ?

• Fragmentation ?

• Phase transitions [CHAVANIS, 2006]
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