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Bleher, Ott and Grebogi (1989) studied scattering of a particle

from a 4 hill potential V (x, y) = x2y2e−(x2+y2)

and observed numerically an “abrupt bifurcation” from regular

scattering for E > Ec to “fully developed” chaotic scattering

for E < Ec, where Ec = e−2 is the energy of the peaks.

S Bleher, E. Ott and C. Grebogi, Route to chaotic scattering, Phys Rev lett 63, 919–922

(1989)



Bleher, Ott, Grebogi



Our goal is to provide a rigorous mathematical explanation of

their scenario.

Scattering is regular when the outgoing state is a smooth func-

tion of the ingoing state. It is (fully developed) chaotic when

the outgoing state has a Cantor set of singularities as a func-

tion on the ingoing state. It is due to a hyperbolic suspension

of a topological Markov chain (shift on doubly infinite paths in

a graph).



Second motivation: Dynamics of a typical particle in a po-

tential in dimension > 1 is believed to contain chaos.

Most proofs construct a transverse homoclinic orbit to a hy-

perbolic periodic orbit by perturbation from an integrable limit

and then obtain exponentially weak chaos.

Here, we’ll show how to prove strong chaos in suitable circum-

stances, using Aubry’s concept of anti-integrable limit.



Examples:
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Example 1

V (x, y) = y3 − 3x2y − (x2 + y2)2

Ec =
27

256
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Example 2

V (x, y) = y3 − 3x2y − (x2 + y2)3

Ec =
1

4



For each of them we prove:

• 3 maxima with height Ec

• ∃ precisely 6 heteroclinics between them (3× 2 directions)

- For E > Ec there are no bounded orbits.

- For E = Ec the only bounded orbits are the 3 equilibria and

6 heteroclinics between them.

- For E ∈ (Ec− ε, Ec) (some ε > 0) there is a hyperbolic set

shadowing all concatenations of the heteroclinics.

Therefore an abrupt bifurcation.



General setting:

Two degrees of freedom Lagrangian system L = T − V ,

T = 1
2|q̇|

2, with one or more local maxima of V at same height

and some non-degenerate (hyperbolic) connecting orbits be-

tween them.

Say a maximum is circular if the eigenvalues of the linearised

dynamics are ±µ twice, elliptic if ±µ1, ±µ2, with µ1 < µ2.

For connecting orbits to or from an elliptic maximum we sup-

pose they come tangent to the long axis (slow direction) (=generic

case).



Say a concatenation of two connecting orbits is admissible for

E < Ec (resp. E > Ec) if at a circular maximum it turns by

angle > π
2 ( < π

2) and at an elliptic maximum it turns by π (0).

Let G± be the graphs whose vertices are connecting orbits

(distinguishing the two directions) and edges are admissible

transitions for E > Ec (E < Ec).

Let σ± be the shift on the space of doubly infinite paths in G±.
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Theorem:

There exist ε± > 0 such that for all E ∈ (Ec, Ec + ε+), respec-

tively E ∈ (Ec − ε−, Ec), there is a hyperbolic suspension of σ±

whose trajectories follow uniformly closely the corresponding

concatenation of connecting orbits.

Idea of proof of existence of the hyperbolic set:

Trajectory of energy E corresponds to path γ of stationary

Maupertuis action

J(γ) :=
∫ 1

0

√
2(E − V (γ(s)) |γ̇(s)| ds .
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- Choose local neighbourhoods U iδ of the maxima i, e.g. of

the form Ec − V (x) ≤ 1
2δ

2, δ small.

- Divide paths close to a concatenation of connecting orbits

into segments outside the Uδ and inside the Uδ.

- Label them by the points ψn of exit and φn of subsequent

entry.



- The Maupertuis principle gives a locally unique solution for

each outer segment [ψn, φn] if the corresponding connecting

orbit is non-degenerate.

Denote the resulting action by hE(ψn, φn).

- To analyse the inner segments: (wlog Ec = 0)

• for each φn = a, ψn+1 = b and τ large enough there exists a

unique orbit segment in U from a to b in time τ (by hyperbolicity

of equilibrium)

• its energy E(a, b, τ) ∼ −2µ2〈a, b〉e−µτ in the circular case

∼ −2µ2
1a1b1e

−µ1τ in the elliptic case,

• ∂E
∂τ ∼ −µE



So for E > 0 ∃ a connection if 〈a, b〉 ≤ −η in the circular case

or a1b1 ≤ −η in the elliptic case, for some small η,

and for E < 0 . . . . . .≥ η,

and it takes time τ ∼ 1
µ log

{
−2µ2〈a,b〉

E

}
for the circular case or

similar for the elliptic case.

Denote the resulting Maupertuis action by kE(φn, ψn+1).

Then orbits near concatenation correspond to critical points

of formal sum

· · ·+ hE(ψn, φn) + kE(φn, ψn+1) + . . .

kE can be written kE = Eτ + L, with L =
∫ τ
0 Ldt.

The dominant part of L is S+(φn) + S−(ψn+1),



where S± are the generating functions for the stable / unstable

manifolds W± of the equilibrium, i.e. p = ∓∂S
±

∂q , S±(equil.) = 0.

So let

h̃E(ψn, φn) = hE(ψn, φn) + S−(ψn) + S+(φn)

k̃E(φn, ψn+1) = kE(φn, ψn+1)− S−(ψn+1)− S+(φn) ,

Then k̃Ec = 0 and h̃Ec has a non-degenerate critical point for

ψn, φn corresponding to the connecting orbit.

Can rewrite the variational problem as stationary points of

· · ·+ h̃E(ψn, φn) + k̃E(φn, ψn+1) + . . . .



So the variational problem decouples at Ec into independent

problems for each n (an anti-integrable limit) .

Making E 6= Ec couples weakly as long as the angle condition

holds, e.g. in the circular case k̃E(φ, ψ) ∼ E
µ

(
log(2δ2cos θ

E ) + 1
)

for cos θ
E ≥ η, where θ = π − ψ + φ.

So there exists a locally unique critical point ((ψn, φn))n∈Z. �



Application to Examples 1 and 2:
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Example 1

V (x, y) = y3 − 3x2y − (x2 + y2)2
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Example 2

V (x, y) = y3 − 3x2y − (x2 + y2)3

We proved existence of non-degenerate heteroclinic orbits as

shown. Example 1 has elliptic hills and the heteroclinics come

in same side of short axis so deduce existence of the chaotic

set for E ∈ (Ec − ε, Ec).



Example 2 has circular hills and the heteroclinics meet at angle

π
6 so deduce the same.

We also prove no bounded orbits for E > Ec for both cases.



- What about Bleher, Ott, Grebogi’s examples ?

Example 3: (BOG 1989)

V (x, y) = x2y2e−(x2+y2),

• 4 circular maxima , Ec = e−2

• ≥ 12 heteroclinics between them.
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- For E ∈ (Ec − ε, Ec) there is a hyperbolic set shadowing

the subset of concatenations of the heteroclinics for which

the angle turned at each hill top is 3
4π or π (i.e. not π

2).

So our proof constructs only a subset of what BOG claimed

(we are missing the transitions where angle change is π
2) but

it is much better than what they actually proved.



Example 4: (BOG, Bifurcation to chaotic scattering, Physica D 46, 87–121 (1990)

V (x, y) = r
2(r3 + y3 − 3x2y)e−r

2
,

with r = x2 + y2

• 3 elliptic maxima

• ≥ 6 heteroclinics between them

but the orientation is such that the

heteros come in on opposite sides

of short axis.
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So all our theorem gives is:

For E ∈ (Ec, Ec + ε) there are 2 periodic orbits shadowing the

concatenations of the heteroclinics with angle change 0 at each

hill top and we don’t believe their claim of abrupt bifurcation

to chaos.



Conclusion:

We have made mathematical sense of BOG’s results on the

abrupt bifurcation to chaotic scattering, using an “anti-integrable”

approach. We have constructed the hyperbolic chaotic set in

some explicit examples.

These results are inspired by two papers of Bolotin and MacKay,

proving existence of Poincaré second species orbits in the re-

stricted circular three body problem and could have other

gravitational applications.

S. Bolotin and R.S. MacKay, Periodic and chaotic trajectories of the second species for

the n-centre problem. Celestial Mechanics and Dynamical Astronomy 77, 49–75 (2000);

Nonplanar second species periodic and chaotic trajectories for the circular restricted three-

body problem, CMDA 94, 433-449 (2006)


