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Bleher, Ott and Grebogi (1989) studied scattering of a particle
from a 4 hill potential V(z,y) = x2y2e~(@*+v%)
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and observed numerically an “abrupt bifurcation” from regular
scattering for E > E. to “fully developed’ chaotic scattering

for £ < E., Wwhere E. = e 2 is the energy of the peaks.

S Bleher, E. Ott and C. Grebogi, Route to chaotic scattering, Phys Rev lett 63, 919-922

(1989)
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FIG. 1. Plot of deflection angle ¢ vs impact parameter b: (a) E =1.626E; (b) E =0.260E,; (c) and (d) are blowups of (b).
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Our goal is to provide a rigorous mathematical explanation of

their scenario.

Scattering is regular when the outgoing state is a smooth func-
tion of the ingoing state. It is (fully developed) chaotic when
the outgoing state has a Cantor set of singularities as a func-
tion on the ingoing state. It is due to a hyperbolic suspension
of a topological Markov chain (shift on doubly infinite paths in

a graph).



Second motivation: Dynamics of a typical particle in a po-

tential in dimension > 1 is believed to contain chaos.
Most proofs construct a transverse homoclinic orbit to a hy-
perbolic periodic orbit by perturbation from an integrable limit

and then obtain exponentially weak chaos.

Here, we'll show how to prove strong chaos in suitable circum-

stances, using Aubry’'s concept of anti-integrable limit.



Examples:

Example 1 Example 2

v — 3 3220 — (22 4 2)2
(fvay)27 Y %y = @+ Y)7 ) = o3 - 322y — (22 + 42)3
EC:— 1

256 EC:Z



For each of them we prove:

e 3 maxima with height E.

e I precisely 6 heteroclinics between them (3 x 2 directions)

- For E > E. there are no bounded orbits.

- For E = E. the only bounded orbits are the 3 equilibria and

6 heteroclinics between them.

- For £ € (Ec.—¢,E:) (some € > 0) there is a hyperbolic set

shadowing all concatenations of the heteroclinics.

T herefore an abrupt bifurcation.



General setting:

Two degrees of freedom Lagrangian system L =T —V,
T = 1|4/, with one or more local maxima of V at same height
and some non-degenerate (hyperbolic) connecting orbits be-

tween them.

Say a maximum is circular if the eigenvalues of the linearised

dynamics are +u twice, elliptic if £uq, £uo, with uy < po.

For connecting orbits to or from an elliptic maximum we sup-
pose they come tangent to the long axis (slow direction) (=generic

case).



Say a concatenation of two connecting orbits is admissible for
E < E. (resp. E > E.) if at a circular maximum it turns by

angle > 5 ( < 5) and at an elliptic maximum it turns by = (0).

Let GT be the graphs whose vertices are connecting orbits
(distinguishing the two directions) and edges are admissible
transitions for £ > E. (E < E.).

Let oF be the shift on the space of doubly infinite paths in G*.






Theorem:

There exist et > 0 such that for all E € (E., E.+ ¢1), respec-
tively E € (E.— ¢ ,E.), there is a hyperbolic suspension of ot
whose trajectories follow uniformly closely the corresponding

concatenation of connecting orbits.

Idea of proof of existence of the hyperbolic set:

Trajectory of energy E corresponds to path ~ of stationary

Maupertuis action

() = [ 2B~ V() [5(s)] ds.



- Choose local neighbourhoods U} of the maxima i, e.g. of
the form E. — V(z) < 362, § small.

- Divide paths close to a concatenation of connecting orbits

into segments outside the Us and inside the Us.

- Label them by the points v, of exit and ¢, of subsequent

entry.



- The Maupertuis principle gives a locally unique solution for
each outer segment [yYn, ¢n] if the corresponding connecting
orbit is non-degenerate.

Denote the resulting action by hg(1n, dn).

- To analyse the inner segments: (wlog E. = 0)

e for each ¢n = a, ¥,41 = b and 7 large enough there exists a
unique orbit segment in U from a to b in time 7 (by hyperbolicity

of equilibrium)

e its energy E(a,b,7) ~ —2u?(a,ble ™7 in the circular case
~ —2u2a1b1e H17 in the elliptic case,
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So for E > 0 4 a connection if {(a,b) < —n in the circular case
or a1b1 < —n in the elliptic case, for some small n,
and for E <O ...... > n,

2
and it takes time 7 ~ %Iog {—QM (a,b)

E

} for the circular case or
similar for the elliptic case.

Denote the resulting Maupertuis action by kg(¢n, ¥n41).

Then orbits near concatenation correspond to critical points

of formal sum

R hE(lbna ¢n) + kE(¢na wn—l—l) + ...

kgp can be written kg = E7 + £, with £ = [] Ldt.
The dominant part of £ is ST(én) + S~ (¥pa1),



where ST are the generating functions for the stable / unstable
+

manifolds W= of the equilibrium, i.e. p = :Faaiq, SE(equil.) = 0.

So let

hE(n, dn) = hg(n, on) + S~ (¥n) + ST (¢n)
kE(dns Ynt1) = kp(én, Ynat1) — S~ (Wna1) — ST (én)

Then kg, = 0 and hg_ has a non-degenerate critical point for

Un, pn COrresponding to the connecting orbit.

Can rewrite the variational problem as stationary points of

R EE(wna Cbn) + EE(%’ ¢n—|—1) + ...



So the variational problem decouples at E. into independent

problems for each n (an anti-integrable limit) .

Making E # E. couples weakly as long as the angle condition
holds, e.g. in the circular case kr(¢, ) ~ % (Iog(252c<§9) | 1)
for €92% > 5, where § =7 — ¢ + ¢.

So there exists a locally unique critical point ((¢¥n, ¢n))nez. U




Application to Examples 1 and 2:

N

s

%
E——
-0.75-0.5-0.25 0

Example 1
V(z,y) =y> — 32%y — (22 + y2)?

Example 2

V(z,y) = y3 — 32%y — (22 4+ y2)3

We proved existence of non-degenerate heteroclinic orbits as
shown. Example 1 has elliptic hills and the heteroclinics come
iIn same side of short axis so deduce existence of the chaotic
set for £ € (E. — ¢, E¢).



Example 2 has circular hills and the heteroclinics meet at angle

% so deduce the same.

We also prove no bounded orbits for £ > E. for both cases.



- What about Bleher, Ott, Grebogi’'s examples ?
Example 3: (BOG 1989)
V(z,y) = 22y2e @+,

e 4 circular maxima , E. = e~

2

e > 12 heteroclinics between them.

(easy: straight lines)

- For E € (E. — ¢, E.:) there is a hyperbolic set shadowing
the subset of concatenations of the heteroclinics for which
the angle turned at each hill top is %77 or m (i.e. not 3).
So our proof constructs only a subset of what BOG claimed
(we are missing the transitions where angle change is 5) but

It iIs much better than what they actually proved.



Example 4: (BOG, Bifurcation to chaotic scattering, Physica D 46, 87—121 (1990)
2 ‘ |

V(z,y) = 5(r3 +y> — 3z2%y)e ",

with r = 22 + y2

e 3 elliptic maxima @.\}\\\

but the orientation is such that the N= e

e > O heteroclinics between them

heteros come in on opposite sides

of short axis.

So all our theorem gives is:

For E € (E., E: + ¢) there are 2 periodic orbits shadowing the
concatenations of the heteroclinics with angle change O at each
hill top and we don’'t believe their claim of abrupt bifurcation

to chaos.



Conclusion:

We have made mathematical sense of BOG's results on the
abrupt bifurcation to chaotic scattering, using an “anti-integrable”
approach. We have constructed the hyperbolic chaotic set in
some explicit examples.

T hese results are inspired by two papers of Bolotin and MacKay,
proving existence of Poincaré second species orbits in the re-
stricted circular three body problem and could have other
gravitational applications.

S. Bolotin and R.S. MacKay, Periodic and chaotic trajectories of the second species for
the n-centre problem. Celestial Mechanics and Dynamical Astronomy 77, 49—75 (2000);
Nonplanar second species periodic and chaotic trajectories for the circular restricted three-

body problem, CMDA 94, 433-449 (2006)



