Non-Equilibrium Free Energies for Particle Systems and Turbulent Flows

F. BOUCHET – ENS-Lyon and CNRS

Statistical Mechanics of Self-Gravitating Particles. October 2012 – Les Treilles.

Collaborators

- Non-Equilibrium free energy of a driven system with long range interactions: K. Gawedzki and C. Nardini (ENS-Lyon and Florence).
- Instantons and large deviations for the 2D Navier-Stokes equations: J. Laurie (Post-doc ANR Statocean), O. Zaboronsky (Warwick).
- Kinetic theory of geostrophic jets: T. Tangarife (ENS-Lyon) and C. Nardini.
- Large deviations for systems with connected attractors: H. Touchette (Queen Mary Univ, London).
- Large deviations and Monte-Carlo simulations of the 2D Euler and Shallow Water eq.: M. Potters (Utrecht university) and A. Licari (ENS-Lyon).
- Large deviations and Monte-Carlo simulations of the 3D axisymmetric Euler eq.: S. Thalabard (CEA Saclay).

Large Deviations and Free Energies for Macroscopic Variables

- We all know the importance of the concepts of entropy and free energy in equilibrium statistical mechanics.
- Free energy of a macrostate (for instance the velocity field, the density ρ, the one particle distribution function, etc.)

$$\mathscr{P}_{N}[\rho] \underset{N \to \infty}{\sim} \frac{1}{Z} e^{-N \frac{\mathscr{P}[\rho]}{k_{B}T}},$$

with $Z = \int \mathscr{D}[\rho] e^{-N \frac{\mathscr{P}[\rho]}{k_{B}T}}$

• The free energy is

$$F(T) = -k_B T \log(Z(T)) = \min_{\{\rho \mid \int \rho = 1\}} \mathscr{F}[\rho].$$

• How to generalize these concepts to non-equilibrium problems?

Random Transitions in Geophysical Turbulence A huge number of turbulent flows have a bistable or multistable behavior

Other examples:

- Turbulent convection, Van Karman, and Couette turbulence.
- Multistability in the atmosphere, weather regimes, and so on.

• • • • • • • • •

Phase Transitions in Rotating Tank Experiments (Quasi Geostrophic dynamics)

Transitions between blocked and zonal states

Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and M. Ghil)

< ロト < 同ト < 三ト

The 2D Stochastic-Navier-Stokes Eq. Non equilibrium phase transitions

Order parameter : $z_1 = \int dx dy \exp(iy)\omega(x,y)$.

For unidirectional flows $|z_1| \simeq 0$, for dipoles $|z_1| \simeq 0.6 - 0.7$

The Driven and Overdamped Mean Field Model

• Langevin dynamics for an overdamped Hamiltonian system with long range interactions

$$\frac{\mathrm{d}x_n}{\mathrm{d}t} = F - \frac{\mathrm{d}U}{\mathrm{d}x}(x_n) - \frac{1}{N}\sum_{m=1}^N \frac{\mathrm{d}V}{\mathrm{d}x}(x_n - x_m) + \sqrt{2k_BT}\zeta_n.$$

• *F* is a constant force driving the system out of equilibrium (F = 0 : equilibrium problem).

Outline

1 The Driven Overdamped Model with Mean Field Interactions

- The model and the Vlasov Mac-Kean equation
- Large deviation of the empirical density
- Sanov's theorem and large deviations
- 2 Non-Equilibrium Free Energies for the mean field model
 - Dawson–Gärtner result
 - A functional Hamilton-Jacobi equation
 - Solution for the stationary Hamilton-Jacobi equation

3 Large deviations for turbulent flows

- Phase Transitions for the 2D Stochastic Navier-Stokes equations
- Path integrals and large deviations
- Instantons for the 2D Stochastic Navier-Stokes equations

The model and the Vlasov Mac-Kean equation Large deviation of the empirical density Sanov's theorem and large deviations

Outline

The Driven Overdamped Model with Mean Field Interactions
 The model and the Vlasov Mac-Kean equation

- Large deviation of the empirical density
- Sanov's theorem and large deviations
- 2 Non-Equilibrium Free Energies for the mean field model
 - Dawson–Gärtner result
 - A functional Hamilton-Jacobi equation
 - Solution for the stationary Hamilton-Jacobi equation
- 3 Large deviations for turbulent flows
 - Phase Transitions for the 2D Stochastic Navier-Stokes equations
 - Path integrals and large deviations
 - Instantons for the 2D Stochastic Navier-Stokes equations

The model and the Vlasov Mac-Kean equation Large deviation of the empirical density Sanov's theorem and large deviations

The Driven and Overdamped Mean Field Model

• Langevin dynamics for an overdamped Hamiltonian system with long range interactions

$$\frac{\mathrm{d}x_n}{\mathrm{d}t} = F - \frac{\mathrm{d}U}{\mathrm{d}x}(x_n) - \frac{1}{N}\sum_{m=1}^N \frac{\mathrm{d}V}{\mathrm{d}x}(x_n - x_m) + \sqrt{2k_BT}\zeta_n.$$

- x_n ∈ T = [0, 2π[the one dimensional circle (generalization to diffusions over the torus T^d in dimension d is straightforward). N particles.
- $\langle \zeta_n \zeta_m \rangle = \delta^{nm} \delta(t-t').$
- The onsite potential *U* and the interaction potential *V* are periodic functions.
- F is a constant force driving the system out of equilibrium (F = 0 : equilibrium problem).

The model and the Vlasov Mac-Kean equation Large deviation of the empirical density Sanov's theorem and large deviations

The Non-Linear Fokker–Planck Eq. (Vlasov Mac–Kean Eq.)

$$\frac{\mathrm{d}x_n}{\mathrm{d}t} = F - \frac{\mathrm{d}U}{\mathrm{d}x}(x_n) - \frac{1}{N}\sum_{m=1}^N \frac{\mathrm{d}V}{\mathrm{d}x}(x_n - x_m) + \sqrt{2k_BT}\frac{\mathrm{d}\beta_n}{\mathrm{d}t}.$$

- The empirical density $\rho_N(x) = \frac{1}{N} \sum_{n=1}^N \delta(x x_n)$.
- For large *N*, a mean field approximation gives the Vlasov Mac-Kean Eq.:

$$\frac{\partial \rho}{\partial t} = \frac{\partial}{\partial x} \left[\left(-F + \frac{\mathrm{d}U}{\mathrm{d}x} + \frac{\mathrm{d}}{\mathrm{d}x} V * \rho \right) \rho + k_B T \frac{\partial \rho}{\partial x} \right],$$

with $(V * \rho)(x) \equiv \int \mathrm{d}x_1 \rho(x_1) V(x - x_1).$

• We assume that a stationary solution of the non-linear Fokker–Planck equation exists:

$$\frac{\partial}{\partial x}\left[\left(-F+\frac{\mathrm{d}U}{\mathrm{d}x}+\frac{\mathrm{d}}{\mathrm{d}x}V*\rho_i\right)\rho_i+k_BT\frac{\partial\rho_i}{\partial x}\right]=0.$$

The model and the Vlasov Mac-Kean equation Large deviation of the empirical density Sanov's theorem and large deviations

Outline

The Driven Overdamped Model with Mean Field Interactions

- The model and the Vlasov Mac-Kean equation
- Large deviation of the empirical density
- Sanov's theorem and large deviations
- 2 Non-Equilibrium Free Energies for the mean field model
 - Dawson–Gärtner result
 - A functional Hamilton-Jacobi equation
 - Solution for the stationary Hamilton-Jacobi equation
- 3 Large deviations for turbulent flows
 - Phase Transitions for the 2D Stochastic Navier-Stokes equations
 - Path integrals and large deviations
 - Instantons for the 2D Stochastic Navier-Stokes equations

The model and the Vlasov Mac-Kean equation Large deviation of the empirical density Sanov's theorem and large deviations

Image: A matrix and a matrix

The PDF of the Empirical Density

$$\frac{\mathrm{d}x_n}{\mathrm{d}t} = F - \frac{\mathrm{d}U}{\mathrm{d}x}(x_n) - \frac{1}{N}\sum_{m=1}^N \frac{\mathrm{d}V}{\mathrm{d}x}(x_n - x_m) + \sqrt{2k_BT}\frac{\mathrm{d}\beta_n}{\mathrm{d}t}.$$

• Empirical density:

$$\rho_N(t,x) = \frac{1}{N} \sum_{n=1}^N \delta(x-x_n).$$

• "Probability Density Function" of the empirical density:

$$\mathscr{P}_{N}[\rho] \equiv \langle \delta(\rho - \rho_{N}) \rangle_{N},$$

(the probability density to observe ρ_N to be equal to ρ , where ρ is a function of x).

• Formally defined through the average of any observable \mathscr{A} :

$$\langle \mathscr{A}[\rho] \rangle_{N} = \int \mathscr{D}[\rho] \mathscr{A}[\rho] \mathscr{P}_{N}[\rho].$$

The model and the Vlasov Mac-Kean equation Large deviation of the empirical density Sanov's theorem and large deviations

Large Deviations of the Empirical Density

Empirical density

$$\rho_N(t,x) = \frac{1}{N} \sum_{n=1}^N \delta(x-x_n).$$

• If the empirical density PDF verifies

$$\frac{1}{N}\log \mathscr{P}_N[\rho] \underset{N \to \infty}{\sim} - \frac{\mathscr{F}[\rho]}{k_B T},$$

we call this a large deviation result with rate N and large deviation functional $-\mathscr{F}/k_BT$.

Loosely speaking, we have

$$\mathscr{P}_{N}[\rho] \underset{N \to \infty}{\sim} C \mathrm{e}^{-N \frac{\mathscr{F}[\rho]}{k_{B}T}}$$

- Then $\mathscr{F}[\rho]$ is the free energy of the macrostate ρ .
- What is the large deviation rate function of the overdamped mean field model?

The model and the Vlasov Mac-Kean equation Large deviation of the empirical density Sanov's theorem and large deviations

Outline

The Driven Overdamped Model with Mean Field Interactions

- The model and the Vlasov Mac-Kean equation
- Large deviation of the empirical density
- Sanov's theorem and large deviations
- 2 Non-Equilibrium Free Energies for the mean field model
 - Dawson-Gärtner result
 - A functional Hamilton-Jacobi equation
 - Solution for the stationary Hamilton-Jacobi equation
- 3 Large deviations for turbulent flows
 - Phase Transitions for the 2D Stochastic Navier-Stokes equations
 - Path integrals and large deviations
 - Instantons for the 2D Stochastic Navier-Stokes equations

The model and the Vlasov Mac-Kean equation Large deviation of the empirical density Sanov's theorem and large deviations

Sanov's Theorem

- Let us consider N independent and identically distributed variables $\{x_n\}$ with PDF P(x).
- What is the large deviation of the empirical density $\rho_N(x) = \frac{1}{N} \sum_{n=1}^N \delta(x x_n)?$
- Sanov's theorem:

$$\frac{1}{N}\log \mathscr{P}_{N}[\rho] \underset{N \to \infty}{\sim} - \int \rho \log \left(\frac{\rho}{P}\right) dx \equiv \mathscr{S}_{KB}[\rho \| P].$$

• Or equivalently

$$\langle \delta(\rho - \rho_N) \rangle_N \equiv \int \prod_{n=1}^N dx_n P(x_n) \, \delta(\rho - \rho_N) \underset{N \to \infty}{\sim} C e^{-N \int \rho \log\left(\frac{\rho}{P}\right) dx}$$

- The large deviation rate functional is the Kullback–Leibler entropy. If $P = 1/2\pi$, $\mathscr{S}_{KB}[\rho || P] = \mathscr{S}[\rho] = -\int \rho \log(\rho) dx$.
- The most probable PDF is P.

The model and the Vlasov Mac-Kean equation Large deviation of the empirical density Sanov's theorem and large deviations

Equilibrium: the Gibbs Distribution

$$\frac{\mathrm{d}x_n}{\mathrm{d}t} = -\frac{\mathrm{d}U}{\mathrm{d}x}(x_n) - \frac{1}{N}\sum_{m=1}^N \frac{\mathrm{d}V}{\mathrm{d}x}(x_n - x_m) + \sqrt{2k_BT}\zeta_n.$$

• It is a Langevin dynamics with Hamiltonian

$$H_N(x_1,...,x_N) = \sum_{n=1}^N U(x_n) + \frac{1}{2N} \sum_{n,m=1}^N V(x_n - x_m).$$

• We know that the *N*-particle stationary measure is the Gibbs measure with PDF

$$P_N^S(x_1,...,x_N) = \frac{1}{Z_N} e^{-\frac{H_N}{k_B T}}$$

• We want to compute

$$\mathscr{P}_{N}^{S}[\rho] = \langle \delta(\rho - \rho_{N}) \rangle_{N} = \frac{1}{Z_{N}} \int \prod_{n=1}^{N} \mathrm{d}x_{n} \,\delta(\rho - \rho_{N}) \,\mathrm{e}^{-\frac{H_{N}(x_{1},\dots,x_{N})}{k_{B}T}}.$$

The model and the Vlasov Mac-Kean equation Large deviation of the empirical density Sanov's theorem and large deviations

Large Deviations of the Empirical Density at Equilibrium

$$\mathscr{P}_{N}[\rho] = \frac{1}{Z_{N}} \int \prod_{n=1}^{N} \mathrm{d}x_{n} \,\delta(\rho - \rho_{N}) \,\mathrm{e}^{-\frac{H_{N}(x_{1},\ldots,x_{N})}{k_{B}T}}$$

• We use the mean field "approximation" for the Hamiltonian

$$H_{N} \underset{N \to \infty}{\sim} N \mathscr{H}[\rho] \equiv N \left[\int \rho U + \frac{1}{2} \int \rho (V * \rho) \right]$$

Then

$$\mathscr{P}_{N}^{\mathsf{S}}[\rho] \underset{N \to \infty}{\sim} \frac{1}{Z_{N}} e^{-N \frac{\mathscr{K}[\rho]}{k_{B}T}} \int \prod_{n=1}^{N} \mathrm{d}x_{n} \,\delta\left(\rho - \rho_{N}\right) \underset{N \to \infty}{\sim} \frac{1}{Z} e^{-N \frac{\mathscr{K}[\rho]}{k_{B}T}},$$

with

$$\mathscr{F}[\rho] = \mathscr{H}[\rho] + k_B T \int \rho \log(\rho) \, \mathrm{d}x.$$

- E. Caglioti, P. L. Lions, C. Marchioro, M. Pulvirenti, *Commun. Math. Phys.*,1992.
- F. Bouchet, J. Barré, J. Stat. Mech., 2005.

The model and the Vlasov Mac-Kean equation Large deviation of the empirical density Sanov's theorem and large deviations

Image: A math a math

V = 0 and $F \neq 0$: A Trivial Non-Equilibrium Case

$$\frac{\mathrm{d}x_n}{\mathrm{d}t} = F - \frac{\mathrm{d}U}{\mathrm{d}x}(x_n) + \sqrt{2k_BT}\frac{\mathrm{d}\beta_n}{\mathrm{d}t}.$$

Empirical density

$$\rho_N(t,x) = \frac{1}{N} \sum_{n=1}^N \delta(x-x_n).$$

• We assume that the initial N-particle PDF is

$$P_N(x_1,...,x_N,t=0) = \prod_{n=1}^N \rho_0(x_n).$$

• The *N* particles are statistically independent. We can apply Sanov's theorem.

The model and the Vlasov Mac-Kean equation Large deviation of the empirical density Sanov's theorem and large deviations

V = 0: A Trivial Non-Equilibrium Case

$$\frac{\mathrm{d}x_n}{\mathrm{d}t} = F - \frac{\mathrm{d}U}{\mathrm{d}x}(x_n) + \sqrt{2k_BT}\frac{\mathrm{d}\beta_n}{\mathrm{d}t}.$$

• The N-particle PDF is $P_N(x_1,...,x_N,t=0) = \prod_{n=1}^N \rho_0(x,t)$, where ρ_0 is the solution to the one particle Fokker-Planck equation

$$\frac{\partial \rho_0}{\partial t} = FP_0[\rho_0] \text{ with } FP_0[\rho] \equiv \frac{\partial}{\partial x} \left[\left(-F + \frac{\mathrm{d}U}{\mathrm{d}x} \right) \rho + k_B T \frac{\partial \rho}{\partial x} \right].$$

• Using Sanov's theorem we conclude

$$\frac{1}{N}\log \mathscr{P}_{N}[\rho,t] \underset{N \to \infty}{\sim} - \frac{\mathscr{F}[\rho]}{k_{B}T} = -\int \rho(x)\log\left(\frac{\rho(x)}{\rho_{0}(t,x)}\right) \mathrm{d}x.$$

• If $\rho_{0,i}$ is the stationary distribution of the one particle Fokker-Planck equation, we have

$$\mathscr{F}_{S}[\rho] = k_{B}T \int \rho(x) \log\left(\frac{\rho(x)}{\rho_{0,i}(x)}\right) \mathrm{d}x.$$

The model and the Vlasov Mac-Kean equation Large deviation of the empirical density Sanov's theorem and large deviations

The Non-Equilibrium Interacting Case

$$\frac{\mathrm{d}x_n}{\mathrm{d}t} = F - \frac{\mathrm{d}U}{\mathrm{d}x}(x_n) - \frac{1}{N}\sum_{m=1}^N \frac{\mathrm{d}V}{\mathrm{d}x}(x_n - x_m) + \sqrt{2k_BT}\frac{\mathrm{d}\beta_n}{\mathrm{d}t}$$

- The N-particle PDF is not known a-priori.
- No detail balance, currents in the stationary state.
- What to do then ?

Dawson-Gärtner result A functional Hamilton-Jacobi equation Solution for the stationary Hamilton-Jacobi equation

Image: A mathematical states and a mathem

Outline

1 The Driven Overdamped Model with Mean Field Interactions

- The model and the Vlasov Mac-Kean equation
- Large deviation of the empirical density
- Sanov's theorem and large deviations

2 Non-Equilibrium Free Energies for the mean field model

- Dawson–Gärtner result
- A functional Hamilton-Jacobi equation
- Solution for the stationary Hamilton-Jacobi equation

Large deviations for turbulent flows

- Phase Transitions for the 2D Stochastic Navier-Stokes equations
- Path integrals and large deviations
- Instantons for the 2D Stochastic Navier-Stokes equations

Dawson-Gärtner result A functional Hamilton-Jacobi equation Solution for the stationary Hamilton-Jacobi equation

• □ • • □ • • □ • •

An Exact Evolution Equation for the Empirical Density

$$\frac{\mathrm{d}x_n}{\mathrm{d}t} = F - \frac{\mathrm{d}U}{\mathrm{d}x}(x_n) - \frac{1}{N}\sum_{m=1}^N \frac{\mathrm{d}V}{\mathrm{d}x}(x_n - x_m) + \sqrt{2k_BT}\frac{\mathrm{d}\beta_n}{\mathrm{d}t}.$$

With Ito formula, we get

$$\frac{\partial \rho_N}{\partial t} = \left[\left(-F + \frac{\mathrm{d}U}{\mathrm{d}x} + \frac{\mathrm{d}}{\mathrm{d}x} \left(V * \rho_N \right) \right) \rho_N + k_B T \frac{\partial \rho_N}{\partial x} \right] + \sqrt{\frac{2k_B T}{N} \rho_N} \xi,$$

with $\langle \zeta(t,x)\zeta(t',x')
angle = \delta(t-t')\delta(x-x').$

- This is a stochastic partial differential equation with weak noise
- Path integral formulation (Onsager–Machlup) or Freidlin–Wentzell theory.

Dawson-Gärtner result A functional Hamilton-Jacobi equation Solution for the stationary Hamilton-Jacobi equation

Image: A math a math

Freidlin–Wentzell theory or Onsager Machlup Formalism Classical Large Deviations for SDE or SPDE

$$dx = f(x)dt + \sqrt{v}dW.$$

• Hypothesis: the deterministic dynamics has isolated attractors. Large deviation results:

$$P(X) \sim \exp\left(-rac{V(X)}{v}
ight)$$
 to mean $\lim_{v \to 0} v \log P = -V$.

with
$$V(X) = \inf_{t>0\{x(t)|x(0)\in 0 \text{ and } x(t)=X\}} L[x]$$
,

and
$$L[x] = \frac{1}{2} \int_0^t ds (\dot{x} - f(x))^2$$
.

Application of Instanton or Freidlin-Wentzell Theory

$$\frac{\partial \rho_N}{\partial t} = j \left[\rho_N \right] + \sqrt{\frac{2k_B T}{N} \rho_N} \xi.$$

• Then the stationary PDF for the empirical distribution verifies a large deviation principle with

$$\mathscr{F}[\rho] = \min_{\left\{\tilde{\rho}(t,x) \mid \tilde{\rho}(-\infty,x) = \rho_{\mathcal{S}} \text{ and } \tilde{\rho}(0,x) = \rho\right\}} \mathscr{I}[\tilde{\rho}],$$

where ρ_s is the stationary distribution of the non-linear Fokker-Planck equation, with

$$\mathscr{I}[\tilde{\rho}] = \frac{1}{4} \int_{-\infty}^{0} \mathrm{d}t \int \mathrm{d}x \left(\frac{\partial \tilde{\rho}}{\partial t} + \frac{\partial j[\tilde{\rho}]}{\partial x} \right) \left(\frac{\partial}{\partial x} \left[\tilde{\rho} \frac{\partial}{\partial x} \right] \right)^{-1} \left(\frac{\partial \tilde{\rho}}{\partial t} + \frac{\partial j[\tilde{\rho}]}{\partial x} \right).$$

D.A. Dawson and Gärtner, 1987

• The stationary large deviations functional can be obtained solving an intricate variational problem.

Dawson–Gärtner result A functional Hamilton-Jacobi equation Solution for the stationary Hamilton-Jacobi equation

Image: A mathematical states and a mathem

Outline

The Driven Overdamped Model with Mean Field Interactions

- The model and the Vlasov Mac-Kean equation
- Large deviation of the empirical density
- Sanov's theorem and large deviations
- Non-Equilibrium Free Energies for the mean field model
 - Dawson–Gärtner result
 - A functional Hamilton-Jacobi equation
 - Solution for the stationary Hamilton-Jacobi equation
 - Large deviations for turbulent flows
 - Phase Transitions for the 2D Stochastic Navier-Stokes equations
 - Path integrals and large deviations
 - Instantons for the 2D Stochastic Navier-Stokes equations

A Simpler Approach: Temporal Evolution of ${\mathscr F}$

• We can derive, from scratch, using Ito formula, the evolution equation for any observable

$$\langle \mathscr{A}[\rho] \rangle_{N} = \int \mathscr{D}[\rho] \mathscr{A}[\rho] \mathscr{P}_{N}[\rho, t].$$

• From this, we get the equation for verified by \mathscr{P}_N and by $\mathscr{F}[\rho,t] = \lim_{N \to \infty} \frac{1}{N} \log \mathscr{P}_N[\rho,t]$

$$\frac{\partial \mathscr{F}}{\partial t} = \int \mathrm{d}x \left\{ \left(\frac{\partial}{\partial x} \left(\frac{\delta \mathscr{F}}{\delta \rho(x)} \right) \right)^2 - j[\rho](x) \frac{\partial}{\partial x} \left(\frac{\delta \mathscr{F}}{\delta \rho(x)} \right) \right\}.$$

• This is a functional Hamilton-Jacobi equation.

Dawson–Gärtner result A functional Hamilton-Jacobi equation Solution for the stationary Hamilton-Jacobi equation

The Functional Hamilton-Jacobi Equation Trivial solutions

$$\frac{\partial \mathscr{F}}{\partial t} = \int \mathrm{d}x \left\{ \left(\frac{\partial}{\partial x} \frac{\delta \mathscr{F}}{\delta \rho} \right)^2 - j \left[\rho \right] \frac{\partial}{\partial x} \frac{\delta \mathscr{F}}{\delta \rho} \right\}$$

- Check of the results for the trivial cases:
- We check that if F = 0, the equilibrium free energy $\mathscr{F}[\rho] = \mathscr{H}[\rho] + k_B T \int \rho \log(\rho) dx$ is a solution.
- We check that if V = 0, the free energy we got from Sanov's theorem is a solution

$$\mathscr{F}[\rho] = k_B T \int \mathrm{d}x \, \rho(x) \log\left(\frac{\rho(x)}{\rho_0(x,t)}\right).$$

Dawson–Gärtner result A functional Hamilton-Jacobi equation Solution for the stationary Hamilton-Jacobi equation

• • • • • • • • •

Outline

1) The Driven Overdamped Model with Mean Field Interactions

- The model and the Vlasov Mac-Kean equation
- Large deviation of the empirical density
- Sanov's theorem and large deviations

2 Non-Equilibrium Free Energies for the mean field model

- Dawson–Gärtner result
- A functional Hamilton-Jacobi equation

• Solution for the stationary Hamilton-Jacobi equation

Large deviations for turbulent flows

- Phase Transitions for the 2D Stochastic Navier-Stokes equations
- Path integrals and large deviations
- Instantons for the 2D Stochastic Navier-Stokes equations

Dawson–Gärtner result A functional Hamilton-Jacobi equation Solution for the stationary Hamilton-Jacobi equation

< - 12 →

Solution for the Stationary Hamilton-Jacobi Eq.

$$I[\mathscr{F}][\rho] \equiv \int \mathrm{d}x \frac{\delta\mathscr{F}}{\delta\rho(x)}[\rho] \left\{ FP_0[\rho] + \varepsilon\rho(V'*\rho) - \frac{\mathrm{d}}{\mathrm{d}x} \left[\rho \frac{\mathrm{d}}{\mathrm{d}x} \frac{\delta\mathscr{F}}{\delta\rho(x)}[\rho]\right] \right\}.$$

• We want to solve

$$I[\mathscr{F}] = 0.$$

• We look for a Taylor expansion

$$\mathscr{F}[\rho] = \int \left[\frac{1}{2}\rho\left(V*\rho\right) + k_B T \rho \ln\left(\rho/\rho_{i,0}\right)\right] + \sum_{n=1}^{\infty} \varepsilon^n \mathscr{F}_n[\rho].$$

Taylor Series Solution of the Stationary Hamilton-Jacobi

• We expand. We get a hierarchy of non homogeneous linear problems

$$I_{L}[\mathscr{F}_{n}] = \mathscr{H}_{n}[\mathscr{F}_{n-1},...,\mathscr{F}_{1}],$$

with

$$I_{L}[\mathscr{F}][\rho] \equiv \int \mathrm{d}x \, \frac{\rho}{\rho_{i,0}} FP_{0}\left[\rho_{i,0} \frac{\delta\mathscr{F}}{\delta\rho(x)}\right].$$

 Proof of the existence of the expansion : what is the kernel of *I*_L[*F*] and is *H*_n[*F*_{n-1},...,*F*₁] in the image of *I*_L (solvability condition)?

Dawson–Gärtner result A functional Hamilton-Jacobi equation Solution for the stationary Hamilton-Jacobi equation

Solvability Condition

- We have proven that the solvability condition is satisfied for all order up to *n* = 4 included.
- We expect that the minima of \mathscr{F} is $\rho_{i,\varepsilon}$ the stationary solution to the non-linear Fokker-Planck equation :

$$\frac{\mathsf{d}}{\mathsf{d}\theta}\frac{\delta\mathscr{F}}{\delta\rho(\theta)}[\rho_{i,\varepsilon}]=0.$$

• We have proven that the solvability condition at order n+1 is satisfied if and only if

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\frac{\delta\mathscr{F}^{\leq n}}{\delta\rho(\theta)}\left[\rho_{i,\varepsilon}^{\leq n}\right] = \mathscr{O}\left(\varepsilon^{n+1}\right).$$

Dawson–Gärtner result A functional Hamilton-Jacobi equation Solution for the stationary Hamilton-Jacobi equation

< ロ > < 同 > < 三 >

Solution at Order 2

$$\mathscr{F}^{\leq 2}[\rho] = \int \left[\rho\left(\frac{1}{2}V * \rho\right) + k_B T \rho \ln \frac{\rho}{\rho_{i,0}} \right] + \frac{1}{2} \int \int dx_1 dx_2 \rho(x_1) \rho(x_2) f_1(x_1, x_2).$$

with f_1 the unique solution to

$$\frac{1}{\rho_{i,0}(x_1)}FP_{0,x_1}\left[\rho_{i,0}(x_1)f_1'(x_1,x_2)\right] + \frac{1}{\rho_{i,0}(x_2)}FP_{0,x_2}\left[\rho_{i,0}(x_2)f_1'(x_1,x_2)\right] = \dots$$
$$\dots j_0 V'(x_1 - x_2)\left[\frac{1}{\rho_{i,0}(x_1)} - \frac{1}{\rho_{i,0}(x_2)}\right].$$

• Conjugated effect of the non-equilibrium driving and of the two-body interactions.

Dawson–Gärtner result A functional Hamilton-Jacobi equation Solution for the stationary Hamilton-Jacobi equation

Image: A math a math

Non-Equilibrium Free-Energy of the Driven Overdamped HMF model

- We got some explicit results for the computation of the non-equilibrium free energy of the driven overdamped HMF model.
- This follows the results obtained by Derrida, Bodineau, Lebowitz, ... , and people from the group of Jona-Lasinio in Rome.
- Our results are for a somewhat more physical model ...
- Can we generalize this to turbulence problems?

Phase Transitions for the 2D Stochastic Navier-Stokes equat Path integrals and large deviations Instantons for the 2D Stochastic Navier-Stokes equations

Image: A matrix and a matrix

Outline

1 The Driven Overdamped Model with Mean Field Interactions

- The model and the Vlasov Mac-Kean equation
- Large deviation of the empirical density
- Sanov's theorem and large deviations
- 2 Non-Equilibrium Free Energies for the mean field model
 - Dawson–Gärtner result
 - A functional Hamilton-Jacobi equation
 - Solution for the stationary Hamilton-Jacobi equation

3 Large deviations for turbulent flows

- Phase Transitions for the 2D Stochastic Navier-Stokes equations
- Path integrals and large deviations
- Instantons for the 2D Stochastic Navier-Stokes equations

Phase Transitions for the 2D Stochastic Navier-Stokes equat Path integrals and large deviations Instantons for the 2D Stochastic Navier-Stokes equations

< ロ > < 同 > < 三 >

Phase Transitions in Rotating Tank Experiments (Quasi Geostrophic dynamics)

Transitions between blocked and zonal states

Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and M. Ghil)

Phase Transitions for the 2D Stochastic Navier-Stokes equat Path integrals and large deviations Instantons for the 2D Stochastic Navier-Stokes equations

Random Transitions in Geophysical Turbulence Magnetic Field Reversal (Turbulent Dynamo, MHD Dynamics)

Magnetic field timeseries

Zoom on reversal paths

(VKS experiment)

In turbulent flows, transitions from one attractor to another often occur through a predictable path.

Phase Transitions for the 2D Stochastic Navier-Stokes equat Path integrals and large deviations Instantons for the 2D Stochastic Navier-Stokes equations

The 2D Stochastic-Navier-Stokes (SNS) Equations

• The simplest model with large scale self-organization of the flow

$$\frac{\partial \omega}{\partial t} + \mathbf{u} \cdot \nabla \omega = \mathbf{v} \Delta \omega - \alpha \omega + \sqrt{2\alpha} f_s$$

where $\omega = (\nabla \wedge \mathbf{u}) \cdot \mathbf{e}_z$ is the vorticity, f_s is a random force, α is the Rayleigh friction coefficient.

• We study the regime with time scale separations:

turnover time = $1 \ll 1/\alpha$ = forcing or dissipation time.

• Analogies with geophysical flows (Quasi Geostrophic and Shallow Water layer models).

Phase Transitions for the 2D Stochastic Navier-Stokes equat Path integrals and large deviations Instantons for the 2D Stochastic Navier-Stokes equations

Statistical Equilibria for the 2D-Euler Eq. (doubly periodic)

Bifurcation analysis : degeneracy removal, either by the domain geometry (g) or by the nonlinearity of the vorticity-stream function relation $(f, parameter a_4)$.

Derivation: normal form for an Energy-Casimir variational problem. A general degeneracy removal mechanism.

Phase Transitions for the 2D Stochastic Navier-Stokes equat Path integrals and large deviations Instantons for the 2D Stochastic Navier-Stokes equations

イロト イポト イヨト イヨト

Non-Equilibrium Phase Transition The time series and PDF of the order parameter

Order parameter : $z_1 = \int dx dy \exp(iy) \omega(x, y)$.

For unidirectional flows $|z_1| \simeq 0$, for dipoles $|z_1| \simeq 0.6 - 0.7$.

F. Bouchet, and E. Simonnet, PRL (2009)

Phase Transitions for the 2D Stochastic Navier-Stokes equat Path integrals and large deviations Instantons for the 2D Stochastic Navier-Stokes equations

Image: A mathematical states of the state

Outline

The Driven Overdamped Model with Mean Field Interactions

 The model and the Vlasov Mac-Kean equation
 Large deviation of the empirical density
 Sanov's theorem and large deviations

 Non-Equilibrium Free Energies for the mean field model

 Dawson–Gärtner result
 A functional Hamilton-Jacobi equation
 Solution for the stationary Hamilton-Jacobi equation

3 Large deviations for turbulent flows

- Phase Transitions for the 2D Stochastic Navier-Stokes equations
- Path integrals and large deviations
- Instantons for the 2D Stochastic Navier-Stokes equations

Phase Transitions for the 2D Stochastic Navier-Stokes equat Path integrals and large deviations Instantons for the 2D Stochastic Navier-Stokes equations

Path Integrals And Large Deviations In Non-Equilibrium Statistical Mechanics

- Aim: entropy and free energy encode all the statistics of the equilibrium system. How to define and compute similar quantities for non-equilibrium systems?
- Answer: large deviations for ensembles of dynamical paths = non-equilibrium and dynamical free energies
- How to compute those?

Phase Transitions for the 2D Stochastic Navier-Stokes equat Path integrals and large deviations Instantons for the 2D Stochastic Navier-Stokes equations

Kramer's Problem: a Pedagogical Example for Bistability

Historical example: Computation by Kramer of the Arrhenius law for a bistable mechanical system with noise

$$\frac{dx}{dt} = -\frac{dV}{dx}(x) + \sqrt{2D}\eta(t) \text{ Rate : } \lambda = A\exp\left(-\frac{\Delta V}{RT}\right) \text{ with } RT \propto 2D$$

The problem was solved by Kramers (30'). Modern approach: path integral formulation (instanton theory, physicists) or large deviation theory (Freidlin-Wentzell, mathematicians)

Phase Transitions for the 2D Stochastic Navier-Stokes equat Path integrals and large deviations Instantons for the 2D Stochastic Navier-Stokes equations

Path Integrals for ODE – Onsager Machlup (50')

$$\frac{dx}{dt} - f(x) = +\sqrt{2D}\eta(x,t)$$

• Path integral representation of transition probabilities:

$$P(x_0, x_T, T) = \int_{x(0)=x_0}^{x(T)=x_T} \mathscr{D}[x] \exp\left(-\frac{\mathscr{S}[T, x]}{2D}\right)$$

with $\mathscr{S}[T, x] = \frac{1}{2} \int_0^T dt \left\{ [\dot{x} - f(x)]^2 - 2Df'(x) \right\}.$

• Instanton: the most probable path with fixed boundary conditions

$$S(T, x_0, x_T) = \min_{\{x \mid x(0) = x_0 \text{ and } x(T) = x_T\}} \{\mathscr{S}[T, x]\}$$

• Saddle point approximation (WKB) gives large deviations results:

$$\log P(x_0, x_T, T) \underset{D \to 0}{\sim} - \frac{S(T, x_0, x_T)}{2D}$$

Phase Transitions for the 2D Stochastic Navier-Stokes equat Path integrals and large deviations Instantons for the 2D Stochastic Navier-Stokes equations

What to Do with Path Integrals ?

- Solving the equations in the saddle point approximation using theory or numerical optimization (gradient methods)
- Transition rates and transition trajectories are given by minima and minimizers of the action
- It explains why most transition trajectories concentrate close to a single one (instanton trajectory)

Phase Transitions for the 2D Stochastic Navier-Stokes equat Path integrals and large deviations Instantons for the 2D Stochastic Navier-Stokes equations

Outline

1 The Driven Overdamped Model with Mean Field Interactions

- The model and the Vlasov Mac-Kean equation
- Large deviation of the empirical density
- Sanov's theorem and large deviations
- 2 Non-Equilibrium Free Energies for the mean field model
 - Dawson–Gärtner result
 - A functional Hamilton-Jacobi equation
 - Solution for the stationary Hamilton-Jacobi equation
- 3 Large deviations for turbulent flows
 - Phase Transitions for the 2D Stochastic Navier-Stokes equations
 - Path integrals and large deviations
 - Instantons for the 2D Stochastic Navier-Stokes equations

~

Phase Transitions for the 2D Stochastic Navier-Stokes equat Path integrals and large deviations Instantons for the 2D Stochastic Navier-Stokes equations

The Action of the 2D Stochastic Navier-Stokes

$$\frac{\partial \omega}{\partial t} + \mathbf{u} \cdot \nabla \omega = v \Delta \omega - \alpha \omega + \sqrt{2\alpha} f_s \text{ with } \langle f_s(\mathbf{x}, t), f_s(\mathbf{x}', t') \rangle = C(\mathbf{x} - \mathbf{x}') \delta(t - t')$$

$$\mathscr{S}[T, \mathbf{x}] = \frac{1}{2} \int_0^T dt \int_{\mathscr{D}} d\mathbf{x} d\mathbf{x}' \, p(\mathbf{x}, \mathbf{t}) C(\mathbf{x} - \mathbf{x}') p(\mathbf{x}', \mathbf{t})$$

with $p = \frac{\partial \omega}{\partial t} + \mathbf{u} \cdot \nabla \omega + \alpha \omega - \mathbf{v} \Delta \omega$

- Theory: we can compute explicitly and study the stability of many instantons (parallel to parallel flows, spatial white noise, Laplacian eigenmodes, etc.)
- Numerical minimization of the action (using gradient methods)

Phase Transitions for the 2D Stochastic Navier-Stokes equat Path integrals and large deviations Instantons for the 2D Stochastic Navier-Stokes equations

Instantons from Dipole to Parallel Flows

- We can numerically compute instantons connecting dipoles to parallel flows
- They depend on the force spectrum
- Not much

Phase Transitions for the 2D Stochastic Navier-Stokes equat Path integrals and large deviations Instantons for the 2D Stochastic Navier-Stokes equations

Degenerate Forces Prevent Bistability

• Definition: $C_{\mathbf{k}} = \int_{\mathscr{D}} d\mathbf{x} C(\mathbf{x}) \exp(i\mathbf{k}.\mathbf{x})$. The force is degenerate if $C_{\mathbf{k}} = 0$ for some \mathbf{k} , non-degenerate otherwise

Order parameter : $z_1 = \int dx dy \exp(iy)\omega(x,y)$. Direct numerical simulations for different force spectrums

Phase Transitions for the 2D Stochastic Navier-Stokes equat Path integrals and large deviations Instantons for the 2D Stochastic Navier-Stokes equations

Conclusions from Instanton Analysis

- We can numerically compute instantons for simple turbulent flows
- The result depends much on the force spectrum
- There is no large deviations for transitions between attractors for non-degenerate forces
- No bistability for non-degenerate forces

Phase Transitions for the 2D Stochastic Navier-Stokes equat Path integrals and large deviations Instantons for the 2D Stochastic Navier-Stokes equations

Conclusion

- Explicit computation of non-equilibrium free energy for an overdamped system with long range interactions.
- Numerical computations of instantons and large deviations for the 2D stochastic Navier-Stokes equations.
- Kinetic theory of zonal jets for the 2D stochastic Navier-Stokes equations and quasi-geostrophic jets.
- Perspectives : explicit computation of large deviations for quasi-linear approximation of quasi-geostrophic jet formation.