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Large Deviations and Free Energies for Macroscopic
Variables

@ We all know the importance of the concepts of entropy and
free energy in equilibrium statistical mechanics.

o Free energy of a macrostate (for instance the velocity field, the
density p, the one particle distribution function, etc.)
1 _nZkl
@ ~ —e kg T
N [P] N—oo Z ’

. —n:Zlel
with Z:/@[p] e k8T,
@ The free energy is

F(T)= ke Tlog(Z(T)) = min .7 [p].

@ How to generalize these concepts to non-equilibrium problems?
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Random Transitions in Geophysical Turbulence

A huge number of turbulent flows have a bistable or multistable behavior
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Other examples:

@ Turbulent convection, Van Karman, and Couette turbulence.

o Multistability in the atmosphere, weather regimes, and so on.
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Phase Transitions in Rotating Tank Experiments
(Quasi Geostrophic dynamics)

Transitions between blocked and zonal states

Y. Tian and others Eastward jet over topography
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Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and
M. Ghil)
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The 2D Stochastic-Navier-Stokes Eq.

Non equilibrium phase transitions

J
a—(f +v.Vo=vA®w—aw++/of.
6=1.02 6=1.04

Stochastic Navier Stokes 2-D periadi

I
L, =102,v=107) Stochastic Mavier Siokes 2-D poriodic (L L, = 1.04,4<10°%)

Order parameter : z; = [ dxdy exp(iy)o(x,y).

For unidirectional flows |z | ~ 0, for dipoles |z |~ 0.6 —0.7
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The Driven and Overdamped Mean Field Model

@ Langevin dynamics for an overdamped Hamiltonian system
with long range interactions

dx, dU 1Y dV
= = - n) — m 2k n-
gt = @) m g L b xm)+V2ke TG

@ F is a constant force driving the system out of equilibrium
(F=0: equilibrium problem).
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Outline

@ The Driven Overdamped Model with Mean Field Interactions
@ The model and the Vlasov Mac-Kean equation
@ Large deviation of the empirical density
@ Sanov's theorem and large deviations

© Non-Equilibrium Free Energies for the mean field model
@ Dawson—Gartner result
@ A functional Hamilton-Jacobi equation
@ Solution for the stationary Hamilton-Jacobi equation

© Large deviations for turbulent flows
@ Phase Transitions for the 2D Stochastic Navier-Stokes
equations
@ Path integrals and large deviations
@ Instantons for the 2D Stochastic Navier-Stokes equations
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The driven overdamped mean field model The model and the Vlasov Mac-Kean equation
Large deviation of the empirical density
Sanov’s theorem and large deviations

Outline

@ The Driven Overdamped Model with Mean Field Interactions
@ The model and the Vlasov Mac-Kean equation
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The driven overdamped mean field model The model and the Vlasov Mac-Kean equation
Large deviation of the empirical density
Sanov’s theorem and large deviations

The Driven and Overdamped Mean Field Model

@ Langevin dynamics for an overdamped Hamiltonian system
with long range interactions

dx, dU 1 N dV
gt a0 Ty L g G )+ V2ka T

@ x, € T =[0,2x[ the one dimensional circle (generalization to
diffusions over the torus T< in dimension d is straightforward).
N particles.

@ (8nlm)=0""5(t—1t').

@ The onsite potential U and the interaction potential V are
periodic functions.

@ F is a constant force driving the system out of equilibrium
(F =0 equilibrium problem).
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The driven overdamped mean field model The model and the Vlasov Mac-Kean equation

Large deviation of the empirical density
Sanov’s theorem and large deviations

The Non-Linear Fokker—Planck Eq. (Vlasov Mac—Kean Eq.)

dx, dU 1Y
dt _Fidix(x”)iﬁ )y

© The empirical density py(x) = 5 LN 8 (x—xa).

@ For large N, a mean field approximation gives the Vlasov
Mac-Kean Eq.:

adp d du d 8p

with (V*p)(x)E/dxlp(xl)V(x—xl).

(Xn—Xxm)+/2ks T dB"

@ We assume that a stationary solution of the non-linear
Fokker—Planck equation exists:

dJ du  d api|
I {( F+T+d V*p,)p,-l—kBT(9 }—0.
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The driven overdamped mean field model The model and the Vlasov Mac-Kean equation
Large deviation of the empirical density
Sanov’s theorem and large deviations

Outline

@ The Driven Overdamped Model with Mean Field Interactions

@ Large deviation of the empirical density
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The driven overdamped mean field model The model and the Vlasov Mac-Kean equation

Large deviation of the empirical density
Sanov’s theorem and large deviations

The PDF of the Empirical Density

@ "Probability Density Function” of the empirical density:
Znlpl=(6(p—pPn))n>

(the probability density to observe py to be equal to p, where
p is a function of x).

@ Formally defined through the average of any observable «7:

(P = [ 71p)  [p) Zulp]-
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The driven overdamped mean field model The model and the Vlasov Mac-Kean equation
Large deviation of the empirical density
Sanov’s theorem and large deviations

Deviations of the Empirical Density

e Empirical density

1 N
pu(t)= 1 Y 80— x).
o If the empirical density PDF verifies

1
nloeZnlel >~

we call this a large deviation result with rate N and large
deviation functional —% /kgT.
o Loosely speaking, we have
Z[p]

Pylp] ~ Ce T,
N—se0
@ Then .7 [p] is the free energy of the macrostate p.
@ What is the large deviation rate function of the overdamped
mean field model?
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The driven overdamped mean field model The model and the Vlasov Mac-Kean equation
Large deviation of the empirical density
Sanov’s theorem and large deviations

Outline

@ The Driven Overdamped Model with Mean Field Interactions

@ Sanov's theorem and large deviations
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The driven overdamped mean field model The model and the Vlasov Mac-Kean equation
Large deviation of the empirical density
Sanov’s theorem and large deviations

Sanov's Theorem

@ Let us consider N independent and identically distributed
variables {x,} with PDF P(x).

@ What is the large deviation of the empirical density
o (x) = H XN, 8 (x— x,)?

@ Sanov's theorem:
g oulol o~ [plog(B) dx=Fialo|1P].

e Or equivalently

3= 1] den (50) 8(p —pu) ~_ CeMIrbe(F)

@ The large deviation rate functional is the Kullback—Leibler
entropy. If P=1/2r, Zkg[p||P]=-"[p] = — [plog(p) dx.

@ The most probable PDF is P.
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The driven overdamped mean field model The model and the Vlasov Mac-Kean equation
Large deviation of the empirical density
Sanov’s theorem and large deviations

Equilibrium: the Gibbs Distribution

dx,  dU 1AV
it ax )Ty Z ax = Xm)+ v 2ke Tén.

@ It is a Langevin dynamics with Hamiltonian

Hy(x1, .. XN)—ZUX,,)—i— Z V (Xn — Xm)

nml

@ We know that the N-particle stationary measure is the Gibbs
measure with PDF

PR (x1,..,xn) = ——€ FBT.

@ We want to compute

5 N Hy (x5 %)
Pilpl= (30— P =5 [[[dxab(p—pw)e " fo7 .
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The driven overdamped mean field model The model and the Vlasov Mac-Kean equation
Large deviation of the empirical density
Sanov’s theorem and large deviations

Large Deviations of the Empirical Density at Equilibrium

@ We use the mean field “approximation” for the Hamiltonian
1
Hy ~ NsZp]=N [/pU—i—/p(V*p)] .
N—oo 2.

@ Then
S~ Lo [flousto 1w
Ialel e e nleldxnﬁ(p PN) oz BT
with
F[pl= (o) + ks T [ plog(p) d.
@ E. Caglioti, P. L. Lions, C. Marchioro, M. Pulvirenti, Commun. Math.

Phys.,1992.
@ F. Bouchet, J. Barré, J. Stat. Mech., 2005.
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The driven overdamped mean field model The model and the Vlasov Mac-Kean equation

Large deviation of the empirical density
Sanov’s theorem and large deviations

V =0 and F # 0: A Trivial Non-Equilibrium Case

dx,,:,___dU dﬁ,,.
dt

dt &(Xn)‘k 2kBT
o Empirical density
1 N

pn(t,x) = N Y 6(x—xn).

n=1

@ We assume that the initial N-particle PDF is

N
PN(Xla"'7XNa t= 0) = HPO(XH)'
n=1

@ The N particles are statistically independent. We can apply
Sanov's theorem.
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The driven overdamped mean field model The model and the Vlasov Mac-Kean equation
Large deviation of the empirical density
Sanov’s theorem and large deviations

V' =0: A Trivial Non-Equilibrium Case

dx, _ dU dB.

qr = F— a(xn)—l—\/QkBT et

@ The N-particle PDF is Py(xq,...,xn,t = 0) = TN, po(x, t), where
Po is the solution to the one particle Fokker-Planck equation

%0

at

@ Using Sanov's theorem we conclude

%Iog@N[P,t] ol f[p] /p ( ))) dx

o If pg; is the stationary distribution of the one particle
Fokker-Planck equation, we have

Fslp]=keT / p(x)log (p’zf?l)) dx

- J du B
:FP()[po] with FPO[P]EE [( F+— ™ >P+k37'ap]
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The driven overdamped mean field model The model and the Vlasov Mac-Kean equation
Large deviation of the empirical density
Sanov’s theorem and large deviations

The Non-Equilibrium Interacting Case

dx, du Nodv dﬁ,,
E =F- dX (Xn) NmZ:ldix(Xn—Xm)'i— 2k

@ The N-particle PDF is not known a-priori.
@ No detail balance, currents in the stationary state.
e What to do then ?
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Dawson—Gartner result
Non-eq. free energies for the mean field model A functional Hamilton-Jacobi equation
Solution for the stationary Hamilton-Jacobi equation

Outline

© Non-Equilibrium Free Energies for the mean field model
@ Dawson—Gartner result
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Dawson—Gartner result

Non-eq. free energies for the mean field model A functional Hamilton-Jacobi equation
Solution for the stationary Hamilton-Jacobi equation

An Exact Evolution Equation for the Empirical Density

dx, du 1 Y dv dg.
dt —F—E(Xn)—ﬁmglix(xn—xm)‘k 2kBT dt .
o With Ito formula, we get
8PN _ du d 8pN QkBT
at—K—FJF(b(ﬂLdX(V*PN))PNJrkBTaX [ = PNE

with (§(t,x)E(t',x")) = 6(t—t")d(x — ).
@ This is a stochastic partial differential equation with weak noise

@ Path integral formulation (Onsager—Machlup) or Freidlin-Wentzell
theory.
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Dawson—Gartner result
Non-eq. free energies for the mean field model A functional Hamilton-Jacobi equation
Solution for the stationary Hamilton-Jacobi equation

Freidlin-Wentzell theory or Onsager Machlup Formalism
Classical Large Deviations for SDE or SPDE

dx = f(x)dt +/vdW.

@ Hypothesis: the deterministic dynamics has isolated attractors.
Large deviation results:

V(X
P(X) ~exp <_(v)> to mean \I/iLnOvIogP:—v_

with V(X) = inf

inf L[x],
t>0{x(t)|x(0)€0 and x(t)=X}

and L[x] = %./Otds (% — F(x))?.
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Dawson—Gartner result
Non-eq. free energies for the mean field model A functional Hamilton-Jacobi equation
Solution for the stationary Hamilton-Jacobi equation

Application of Instanton or Freidlin—Wentzell Theory

Ipn . 2kg T
W—J[PN]"‘ N pné.

@ Then the stationary PDF for the empirical distribution verifies a
large deviation principle with
Fpl= i min Z1p],
{P(tx)|P(~.x)=ps and p(0.x)=p)}

where ps is the stationary distribution of the non-linear
Fokker-Planck equation, with

o= Lo o (32 (5 b)) (5742,

D.A. Dawson and Gartner, 1987
@ The stationary large deviations functional can be obtained
solving an intricate variational problem.
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Dawson—Gartner result
Non-eq. free energies for the mean field model A functional Hamilton-Jacobi equation
Solution for the stationary Hamilton-Jacobi equation

Outline

© Non-Equilibrium Free Energies for the mean field model

@ A functional Hamilton-Jacobi equation
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Dawson—Gartner result
A functional Hamilton-Jacobi equation

Non-eq. free energies for the mean field model
Solution for the stationary Hamilton-Jacobi equation

A Simpler Approach: Temporal Evolution of .7

@ We can derive, from scratch, using Ito formula, the evolution
equation for any observable

([P = [ 210) 7 [p) Zup.1).

e From this, we get the equation for verified by #y and by
Zp.t] = lim ylog Znlp,1]
—>00

af:/dx{(i <5ii>>>2‘f[p](x)<§x <5ii)>}

@ This is a functional Hamilton-Jacobi equation.
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Dawson—Gartner result
Non-eq. free energies for the mean field model A functional Hamilton-Jacobi equation
Solution for the stationary Hamilton-Jacobi equation

The Functional Hamilton-Jacobi Equation

Trivial solutions

7 o f(207Y 207
ar — ¥\ \axsp ) PloSs
@ Check of the results for the trivial cases:

@ We check that if F =0, the equilibrium free energy
Fp]l=p]+keT [plog(p)dx is a solution.

@ We check that if V =0, the free energy we got from Sanov's
theorem is a solution

Fp] = ke T/dxp(x) log (p:’((x’i)t)) .
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Dawson—Gartner result
Non-eq. free energies for the mean field model A functional Hamilton-Jacobi equation
Solution for the stationary Hamilton-Jacobi equation

Outline

© Non-Equilibrium Free Energies for the mean field model

@ Solution for the stationary Hamilton-Jacobi equation
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Dawson—Gartner result
Non-eq. free energies for the mean field model A functional Hamilton-Jacobi equation
Solution for the stationary Hamilton-Jacobi equation

Solution for the Stationary Hamilton-Jacobi Eq.

11711 = [axg2 s W { FRalplen(v/p) - o oot 5o 1ol |-

dx 8p(x)

@ We want to solve
I[Z#]=0.

@ We look for a Taylor expansion

f{p]—/[zp(wp)wsrmnp/p,o i Zalpl.
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Dawson—Gartner result
Non-eq. free energies for the mean field model A functional Hamilton-Jacobi equation
Solution for the stationary Hamilton-Jacobi equation

Taylor Series Solution of the Stationary Hamilton-Jacobi

@ We expand. We get a hierarchy of non homogeneous linear

problems
/L [3?”] = t%ﬂn [ynfly“wyl] )
with 5.7
_ p
LIFP1= [ox 2ppy oS .

@ Proof of the existence of the expansion : what is the kernel of
IL[#] and is 7, [Fp-1,...,-Z1] in the image of I (solvability
condition)?
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Dawson—Gartner result
Non-eq. free energies for the mean field model A functional Hamilton-Jacobi equation
Solution for the stationary Hamilton-Jacobi equation

Solvability Condition

@ We have proven that the solvability condition is satisfied for all
order up to n =4 included.

@ We expect that the minima of .% is p; ¢ the stationary solution
to the non-linear Fokker-Planck equation :

d aﬁ‘ B

@ We have proven that the solvability condition at order n+1 is
satisfied if and only if
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Dawson—Gartner result
Non-eq. free energies for the mean field model A functional Hamilton-Jacobi equation
Solution for the stationary Hamilton-Jacobi equation

Solution at Order 2

§2[p]:/ {p (%V*p>

with f; the unique solution to

} 2//dX1dX2P(X1) () A (x1,%2).

FPo x, {Pi,o(xl)fll(XLXZ)} + FPo x, [Pi4o(X2)f1/(X17X2)] =

_1 _1
pio(x1) pio(x2)

) [yt

o Conjugated effect of the non-equilibrium driving and of the
two-body interactions.
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Dawson—Gartner result
Non-eq. free energies for the mean field model A functional Hamilton-Jacobi equation
Solution for the stationary Hamilton-Jacobi equation

Non-Equilibrium Free-Energy of the Driven Overdamped
HMF model

@ We got some explicit results for the computation of the
non-equilibrium free energy of the driven overdamped HMF
model.

@ This follows the results obtained by Derrida, Bodineau,
Lebowitz, ... , and people from the group of Jona-Lasinio in
Rome.

@ Our results are for a somewhat more physical model ...

@ Can we generalize this to turbulence problems?

F. Bouchet ENSL-CNRS Non-Equilibrium Free Energies



Phase Transitions for the 2D Stochastic Navier-Stokes equat
Path integrals and large deviations
Large deviations for turbulent flows Instantons for the 2D Stochastic Navier-Stokes equations

Outline

© Large deviations for turbulent flows
@ Phase Transitions for the 2D Stochastic Navier-Stokes
equations
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Phase Transitions for the 2D Stochastic Navier-Stokes equat
Path integrals and large deviations
Large deviations for turbulent flows Instantons for the 2D Stochastic Navier-Stokes equations

Phase Transitions in Rotating Tank Experiments
(Quasi Geostrophic dynamics)

Transitions between blocked and zonal states

Y. Tian and others Eastward jet over topography
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Y. Tian and col, J. Fluid. Mech. (2001) (groups of H.
M. Ghil)

Swinney and
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Phase Transitions for the 2D Stochastic Navier-Stokes equat
Path integrals and large deviations
Large deviations for turbulent flows Instantons for the 2D Stochastic Navier-Stokes equations

Random Transitions in Geophysical Turbulence

Magnetic Field Reversal (Turbulent Dynamo, MHD Dynamics)

Y
SR

1

MagneticField (gauss)

200

g st'.«w-mmw,u.» uv\\,Ay.'mf«.,\; g\ e

T 75 1 : .

H v -30

% w0 w0 7m0 w0 %0 'WJ % Ho -5 0 5 10
Timels Timets t(s)

Magnetic field timeseries ~ Zoom on reversal paths
(VKS experiment)

In turbulent flows, transitions from one attractor to another often
occur through a predictable path.

F. Bouchet EN ilibrium Free Energies



Phase Transitions for the 2D Stochastic Navier-Stokes equat
Path integrals and large deviations
Large deviations for turbulent flows Instantons for the 2D Stochastic Navier-Stokes equations

The 2D Stochastic-Navier-Stokes (SNS) Equations

@ The simplest model with large scale self-organization of the

flow
aﬁ

ot

where @ = (V Au).e, is the vorticity, f; is a random force, o is the
Rayleigh friction coefficient.

+uVo=vAw—aw-+V2aof.

o We study the regime with time scale separations:

turnover time = 1<1/a = forcing or dissipation time.

@ Analogies with geophysical flows (Quasi Geostrophic and
Shallow Water layer models).
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Phase Transitions for the 2D Stochastic Navier-Stokes equat

Path integrals and large deviations
Instantons for the 2D Stochastic Navier-Stokes equations

Large deviations for turbulent flows

Statistical Equilibria for the 2D-Euler Eq. (doubly periodic)

ay

A 7x
8 F
stable mixed state

stable pure state (X=0)

g
stable pure state (X=0)

metastable pure state (X=1) &7 '*

unstable mixed state

unstgble pure state (X=1)

Bifurcation analysis : degeneracy removal, either by the domain
geometry (g) or by the nonlinearity of the vorticity-stream function
relation (f, parameter az).

Derivation: normal form for an Energy-Casimir variational problem.

A general degeneracy removal mechanism.
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Phase Transitions for the 2D Stochastic Navier-Stokes equat
Path integrals and large deviations
Large deviations for turbulent flows Instantons for the 2D Stochastic Navier-Stokes equations

Non-Equilibrium Phase Transition

The time series and PDF of the order parameter

6=1.02 &=1.04

N -
Stochastic Navier Stokes 2-D periodic (L /L, = 102,v=107) Stochastic Navier Stokes 2-D periodic (L /L, = 1.04,v=10"")

M

time*y

Order parameter : z; = [ dxdy exp(iy)o(x,y).
For unidirectional flows |z | ~ 0, for dipoles |z | ~ 0.6 —0.7.

F. Bouchet, and E. Simonnet, PRL (2009)
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Phase Transitions for the 2D Stochastic Navier-Stokes equat
Path integrals and large deviations
Large deviations for turbulent flows Instantons for the 2D Stochastic Navier-Stokes equations

Outline

© Large deviations for turbulent flows

@ Path integrals and large deviations
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Phase Transitions for the 2D Stochastic Navier-Stokes equat
Path integrals and large deviations
Large deviations for turbulent flows Instantons for the 2D Stochastic Navier-Stokes equations

Path Integrals And Large Deviations In Non-Equilibrium
Statistical Mechanics

@ Aim: entropy and free energy encode all the statistics of the
equilibrium system. How to define and compute similar
quantities for non-equilibrium systems?

@ Answer: large deviations for ensembles of dynamical paths =
non-equilibrium and dynamical free energies

@ How to compute those?

F. Bouchet ENSL-CNRS Non-Equilibrium Free Energies



Phase Transitions for the 2D Stochastic Navier-Stokes equat

Path integrals and large deviations

Large deviations for turbulent flows Instantons for the 2D Stochastic Navier-Stokes equations

Kramer's Problem: a Pedagogical Example for Bistability

Historical example: Computation by Kramer of the Arrhenius law
for a bistable mechanical system with noise

dx dv AVY
e —E(x)+\/2Dn(t) Rate: A = Aexp (_ﬁ) with RT o< 2D

1 T T 15 <1>=362
.

0 < y\\
8
g

\ / s ' oo
v
N

1 0.001
0

Vi)
—
—
0

5
986 988 99 992 99.4 99.6 998 100

o
2 45 1 05 0 05 1 15 2
11000

The problém was solved by Kramers (30'). Modern approac'g: path
integral formulation (instanton theory, physicists) or large deviation
theory (Freidlin-Wentzell, mathematicians)
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Phase Transitions for the 2D Stochastic Navier-Stokes equat
Path integrals and large deviations
Large deviations for turbulent flows Instantons for the 2D Stochastic Navier-Stokes equations

Path Integrals for ODE — Onsager Machlup (50")

dx
P f(x) = +V2Dn(x,t)

o Path integral representation of transition probabilities:

x(T)=xT Z[T,x]
— G —
P(xo0,x7,T) = ./x(o):xo 2[x] exp( 5D )

with 7 [T,x] = %/()Tdt (1= FCP 207 ()}

@ Instanton: the most probable path with fixed boundary
conditions

S(T,x0,x7) = min {Z1T,x]}

{x|x(0):x0 and x( T):XT}
@ Saddle point approximation (WKB) gives large deviations results:

S( T7X07XT)

|OgP(X0,XT7 T) D:O_ 2D
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Phase Transitions for the 2D Stochastic Navier-Stokes equat
Path integrals and large deviations

Large deviations for turbulent flows Instantons for the 2D Stochastic Navier-Stokes equations

What to Do with Path Integrals ?

@ Solving the equations in the saddle point approximation using
theory or numerical optimization (gradient methods)

@ Transition rates and transition trajectories are given by minima
and minimizers of the action

@ It explains why most transition trajectories concentrate close
to a single one (instanton trajectory)

Action S

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20
t

T
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Phase Transitions for the 2D Stochastic Navier-Stokes equat
Path integrals and large deviations
Large deviations for turbulent flows Instantons for the 2D Stochastic Navier-Stokes equations

Outline

© Large deviations for turbulent flows

@ Instantons for the 2D Stochastic Navier-Stokes equations
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Phase Transitions for the 2D Stochastic Navier-Stokes equat
Path integrals and large deviations
Large deviations for turbulent flows Instantons for the 2D Stochastic Navier-Stokes equations

The Action of the 2D Stochastic Navier-Stokes

%%+qu:vAwfaw+anﬂmm<ﬂ@¢)ﬂ&ﬂﬁ>:C&4xﬁMtfﬂ

y[T,x]:;/ont /@dxdx’p(x,t)C(x—x’)p(x’,t)

do

with p = 3

+uVo+oaw—-vAw

@ Theory: we can compute explicitly and study the stability of
many instantons (parallel to parallel flows, spatial white noise,
Laplacian eigenmodes, etc.)

@ Numerical minimization of the action (using gradient methods)

F. Bouchet ENSL-CNRS Non-Equilibrium Free Energies



Phase Transitions for the 2D Stochastic Navier-Stokes equat
Path integrals and large deviations

Large deviations for turbulent flows Instantons for the 2D Stochastic Navier-Stokes equations

Instantons from Dipole to Parallel Flows

@ We can numerically compute instantons connecting dipoles to
parallel flows

@ They depend on the force spectrum

@ Not much
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Degenerate Forces Prevent Bistability

@ Definition: Gy = [, dxC(x)exp(ik.x). The force is degenerate
if Ci =0 for some k, non-degenerate otherwise

M

Order parameter : z; = [ dxdy exp(iy)®(x,y). Direct numerical
simulations for different force spectrums

@ Possible relations with weather regimes in-the atmosphere
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Conclusions from Instanton Analysis

@ We can numerically compute instantons for simple turbulent
flows

@ The result depends much on the force spectrum

@ There is no large deviations for transitions between attractors
for non-degenerate forces

@ No bistability for non-degenerate forces
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Conclusion

@ Explicit computation of non-equilibrium free energy for an
overdamped system with long range interactions.

@ Numerical computations of instantons and large deviations for
the 2D stochastic Navier-Stokes equations.

@ Kinetic theory of zonal jets for the 2D stochastic
Navier-Stokes equations and quasi-geostrophic jets.

@ Perspectives : explicit computation of large deviations for
quasi-linear approximation of quasi-geostrophic jet formation.
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