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Large Deviations and Free Energies for Macroscopic
Variables

We all know the importance of the concepts of entropy and
free energy in equilibrium statistical mechanics.
Free energy of a macrostate (for instance the velocity field, the
density ρ , the one particle distribution function, etc.)

PN [ρ] ∼
N→∞

1
Z
e−N F [ρ]

kBT ,

with Z =
∫

D [ρ] e−N F [ρ]
kBT .

The free energy is

F (T ) =−kBT log(Z (T )) = min
{ρ|
∫

ρ=1 }
F [ρ] .

How to generalize these concepts to non-equilibrium problems?
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Random Transitions in Geophysical Turbulence
A huge number of turbulent flows have a bistable or multistable behavior

VKS experiment Earth Kuroshio current

Other examples:
Turbulent convection, Van Karman, and Couette turbulence.
Multistability in the atmosphere, weather regimes, and so on.
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Phase Transitions in Rotating Tank Experiments
(Quasi Geostrophic dynamics)

Transitions between blocked and zonal states

Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and
M. Ghil)
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The 2D Stochastic-Navier-Stokes Eq.
Non equilibrium phase transitions

∂ω

∂ t
+v.∇ω = ν∆ω−αω +

√
σ fs .

Order parameter : z1 =
∫

dxdy exp(iy)ω (x ,y).

For unidirectional flows |z1| ' 0, for dipoles |z1| ' 0.6−0.7
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The Driven and Overdamped Mean Field Model

Langevin dynamics for an overdamped Hamiltonian system
with long range interactions

dxn

dt
= F − dU

dx
(xn)− 1

N

N

∑
m=1

dV
dx

(xn−xm) +
√

2kBTζn.

F is a constant force driving the system out of equilibrium
(F = 0 : equilibrium problem).
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The Driven and Overdamped Mean Field Model

Langevin dynamics for an overdamped Hamiltonian system
with long range interactions

dxn

dt
= F − dU

dx
(xn)− 1

N

N

∑
m=1

dV
dx

(xn−xm) +
√

2kBTζn.

xn ∈ T = [0,2π[ the one dimensional circle (generalization to
diffusions over the torus T d in dimension d is straightforward).
N particles.
〈ζnζm〉= δ nmδ (t− t ′).

The onsite potential U and the interaction potential V are
periodic functions.
F is a constant force driving the system out of equilibrium
(F = 0 : equilibrium problem).
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The Non-Linear Fokker–Planck Eq. (Vlasov Mac–Kean Eq.)

dxn

dt
= F − dU

dx
(xn)− 1

N

N

∑
m=1

dV
dx

(xn−xm) +
√

2kBT
dβn

dt
.

The empirical density ρN (x) = 1
N ∑

N
n=1 δ (x−xn) .

For large N, a mean field approximation gives the Vlasov
Mac-Kean Eq.:

∂ρ

∂ t
=

∂

∂x

[(
−F +

dU
dx

+
d
dx

V ∗ρ

)
ρ +kBT

∂ρ

∂x

]
,

with (V ∗ρ)(x)≡
∫
dx1 ρ(x1)V (x−x1) .

We assume that a stationary solution of the non-linear
Fokker–Planck equation exists:

∂

∂x

[(
−F +

dU
dx

+
d
dx

V ∗ρi

)
ρi +kBT

∂ρi
∂x

]
= 0.
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The PDF of the Empirical Density

dxn

dt
= F − dU

dx
(xn)− 1

N

N

∑
m=1

dV
dx

(xn−xm) +
√

2kBT
dβn

dt
.

Empirical density:

ρN (t,x) =
1
N

N

∑
n=1

δ (x−xn) .

“Probability Density Function” of the empirical density:

PN [ρ]≡ 〈δ (ρ−ρN)〉N ,

(the probability density to observe ρN to be equal to ρ , where
ρ is a function of x).
Formally defined through the average of any observable A :

〈A [ρ]〉N =
∫

D [ρ] A [ρ]PN [ρ] .
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Large Deviations of the Empirical Density

Empirical density

ρN (t,x) =
1
N

N

∑
n=1

δ (x−xn) .

If the empirical density PDF verifies
1
N

logPN [ρ] ∼
N→∞

−F [ρ]

kBT
,

we call this a large deviation result with rate N and large
deviation functional −F/kBT .
Loosely speaking, we have

PN [ρ] ∼
N→∞

Ce
−N F [ρ]

kBT .

Then F [ρ] is the free energy of the macrostate ρ .
What is the large deviation rate function of the overdamped
mean field model?
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Sanov’s Theorem

Let us consider N independent and identically distributed
variables {xn} with PDF P(x).
What is the large deviation of the empirical density
ρN (x) = 1

N ∑
N
n=1 δ (x− xn)?

Sanov’s theorem:
1
N

logPN [ρ] ∼
N→∞

−
∫

ρ log
(

ρ

P

)
dx ≡SKB [ρ ‖P ] .

Or equivalently

〈δ (ρ−ρN)〉N ≡
∫ N

∏
n=1

dxnP (xn) δ (ρ−ρN) ∼
N→∞

Ce−N
∫

ρ log( ρ

P )dx .

The large deviation rate functional is the Kullback–Leibler
entropy. If P = 1/2π, SKB [ρ ‖P ] = S [ρ] =−

∫
ρ log (ρ) dx .

The most probable PDF is P.
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Equilibrium: the Gibbs Distribution

dxn

dt
=−dU

dx
(xn)− 1

N

N

∑
m=1

dV
dx

(xn−xm) +
√

2kBTζn.

It is a Langevin dynamics with Hamiltonian

HN(x1, ...,xN) =
N

∑
n=1

U(xn) +
1
2N

N

∑
n,m=1

V (xn−xm) .

We know that the N-particle stationary measure is the Gibbs
measure with PDF

PS
N(x1, ...,xN) =

1
ZN

e
− HN

kBT .

We want to compute

PS
N [ρ] = 〈δ (ρ−ρN)〉N =

1
ZN

∫ N

∏
n=1

dxn δ (ρ−ρN)e−
HN (x1,...,xN )

kBT .
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Large Deviations of the Empirical Density at Equilibrium

PN [ρ] =
1

ZN

∫ N

∏
n=1

dxn δ (ρ−ρN)e−
HN (x1,...,xN )

kBT .

We use the mean field “approximation” for the Hamiltonian

HN ∼
N→∞

NH [ρ]≡ N
[∫

ρU +
1
2

∫
ρ (V ∗ρ)

]
.

Then

PS
N [ρ] ∼

N→∞

1
ZN

e
−N H [ρ]

kBT

∫ N

∏
n=1

dxn δ (ρ−ρN) ∼
N→∞

1
Z
e
−N F [ρ]

kBT ,

with
F [ρ] = H [ρ] +kBT

∫
ρ log (ρ) dx .

E. Caglioti, P. L. Lions, C. Marchioro, M. Pulvirenti, Commun. Math.
Phys.,1992.
F. Bouchet, J. Barré, J. Stat. Mech., 2005.
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V = 0 and F 6= 0: A Trivial Non-Equilibrium Case

dxn

dt
= F − dU

dx
(xn) +

√
2kBT

dβn

dt
.

Empirical density

ρN (t,x) =
1
N

N

∑
n=1

δ (x− xn) .

We assume that the initial N-particle PDF is

PN(x1, ...,xN , t = 0) =
N

∏
n=1

ρ0(xn).

The N particles are statistically independent. We can apply
Sanov’s theorem.

F. Bouchet ENSL-CNRS Non-Equilibrium Free Energies



The driven overdamped mean field model
Non-eq. free energies for the mean field model

Large deviations for turbulent flows

The model and the Vlasov Mac-Kean equation
Large deviation of the empirical density
Sanov’s theorem and large deviations

V = 0: A Trivial Non-Equilibrium Case

dxn

dt
= F − dU

dx
(xn) +

√
2kBT

dβn

dt
.

The N-particle PDF is PN(x1, ...,xN , t = 0) = ∏
N
n=1 ρ0(x , t), where

ρ0 is the solution to the one particle Fokker-Planck equation
∂ρ0

∂ t
= FP0 [ρ0] with FP0 [ρ]≡ ∂

∂x

[(
−F +

dU
dx

)
ρ +kBT

∂ρ

∂x

]
.

Using Sanov’s theorem we conclude
1
N

logPN [ρ, t] ∼
N→∞

−F [ρ]

kBT
=−

∫
ρ(x) log

(
ρ(x)

ρ0(t,x)

)
dx .

If ρ0,i is the stationary distribution of the one particle
Fokker-Planck equation, we have

FS [ρ] = kBT
∫

ρ(x) log
(

ρ(x)

ρ0,i (x)

)
dx .
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The Non-Equilibrium Interacting Case

dxn

dt
= F − dU

dx
(xn)− 1

N

N

∑
m=1

dV
dx

(xn−xm) +
√

2kBT
dβn

dt
.

The N-particle PDF is not known a-priori.
No detail balance, currents in the stationary state.
What to do then ?

F. Bouchet ENSL-CNRS Non-Equilibrium Free Energies



The driven overdamped mean field model
Non-eq. free energies for the mean field model

Large deviations for turbulent flows

Dawson–Gärtner result
A functional Hamilton-Jacobi equation
Solution for the stationary Hamilton-Jacobi equation

Outline

1 The Driven Overdamped Model with Mean Field Interactions
The model and the Vlasov Mac-Kean equation
Large deviation of the empirical density
Sanov’s theorem and large deviations

2 Non-Equilibrium Free Energies for the mean field model
Dawson–Gärtner result
A functional Hamilton-Jacobi equation
Solution for the stationary Hamilton-Jacobi equation

3 Large deviations for turbulent flows
Phase Transitions for the 2D Stochastic Navier-Stokes
equations
Path integrals and large deviations
Instantons for the 2D Stochastic Navier-Stokes equations

F. Bouchet ENSL-CNRS Non-Equilibrium Free Energies



The driven overdamped mean field model
Non-eq. free energies for the mean field model

Large deviations for turbulent flows

Dawson–Gärtner result
A functional Hamilton-Jacobi equation
Solution for the stationary Hamilton-Jacobi equation

An Exact Evolution Equation for the Empirical Density

dxn

dt
= F − dU

dx
(xn)− 1

N

N

∑
m=1

dV
dx

(xn−xm) +
√

2kBT
dβn

dt
.

With Ito formula, we get

∂ρN

∂ t
=

[(
−F +

dU
dx

+
d

dx
(V ∗ρN)

)
ρN +kBT

∂ρN

∂x

]
+

√
2kBT

N
ρNξ ,

with 〈ζ (t,x)ζ (t ′,x ′)〉= δ (t− t ′)δ (x− x ′).
This is a stochastic partial differential equation with weak noise
Path integral formulation (Onsager–Machlup) or Freidlin–Wentzell
theory.
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Freidlin–Wentzell theory or Onsager Machlup Formalism
Classical Large Deviations for SDE or SPDE

dx = f (x)dt +
√

νdW.

Hypothesis: the deterministic dynamics has isolated attractors.
Large deviation results:

P(X )∼ exp
(
−V (X )

ν

)
to mean lim

ν→0
ν logP =−V .

with V (X ) = inf
t>0

inf
{x(t)|x(0)∈0 and x(t)=X}

L [x ] ,

and L [x ] =
1
2

∫ t

0
ds (ẋ− f (x))2 .
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Application of Instanton or Freidlin–Wentzell Theory

∂ρN

∂ t
= j [ρN ] +

√
2kBT

N
ρNξ .

Then the stationary PDF for the empirical distribution verifies a
large deviation principle with

F [ρ] = min
{ρ̃(t,x)|ρ̃(−∞,x)=ρS and ρ̃(0,x)=ρ)}

I [ρ̃] ,

where ρs is the stationary distribution of the non-linear
Fokker-Planck equation, with

I [ρ̃] =
1
4

∫ 0

−∞

dt
∫
dx
(

∂ ρ̃

∂ t
+

∂ j [ρ̃]

∂x

)(
∂

∂x

[
ρ̃

∂

∂x

])−1(
∂ ρ̃

∂ t
+

∂ j [ρ̃]

∂x

)
.

D.A. Dawson and Gärtner, 1987

The stationary large deviations functional can be obtained
solving an intricate variational problem.
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A Simpler Approach: Temporal Evolution of F

We can derive, from scratch, using Ito formula, the evolution
equation for any observable

〈A [ρ]〉N =
∫

D [ρ] A [ρ]PN [ρ, t] .

From this, we get the equation for verified by PN and by
F [ρ, t] = lim

N→∞

1
N logPN [ρ, t]

∂F

∂ t
=
∫

dx

{(
∂

∂x

(
δF

δρ(x)

))2

− j [ρ] (x)
∂

∂x

(
δF

δρ(x)

)}
.

This is a functional Hamilton-Jacobi equation.
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The Functional Hamilton-Jacobi Equation
Trivial solutions

∂F

∂ t
=
∫

dx

{(
∂

∂x
δF

δρ

)2

− j [ρ]
∂

∂x
δF

δρ

}

Check of the results for the trivial cases:
We check that if F = 0, the equilibrium free energy
F [ρ] = H [ρ] +kBT

∫
ρ log (ρ) dx is a solution.

We check that if V = 0, the free energy we got from Sanov’s
theorem is a solution

F [ρ] = kBT
∫

dx ρ(x) log
(

ρ(x)

ρ0(x , t)

)
.
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Solution for the Stationary Hamilton-Jacobi Eq.

I [F ] [ρ]≡
∫

dx
δF

δρ(x)
[ρ]

{
FP0 [ρ] + ερ(V ′ ∗ρ)− d

dx

[
ρ

d
dx

δF

δρ(x)
[ρ]

]}
.

We want to solve
I [F ] = 0.

We look for a Taylor expansion

F [ρ] =
∫ [1

2
ρ (V ∗ρ) +kBTρ ln(ρ/ρi ,0)

]
+

∞

∑
n=1

ε
nF n [ρ] .
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Taylor Series Solution of the Stationary Hamilton-Jacobi

We expand. We get a hierarchy of non homogeneous linear
problems

IL [Fn] = Hn [Fn−1, ...,F1] ,

with

IL [F ] [ρ]≡
∫

dx
ρ

ρi ,0
FP0

[
ρi ,0

δF

δρ(x)

]
.

Proof of the existence of the expansion : what is the kernel of
IL [F ] and is Hn [Fn−1, ...,F1] in the image of IL (solvability
condition)?

F. Bouchet ENSL-CNRS Non-Equilibrium Free Energies



The driven overdamped mean field model
Non-eq. free energies for the mean field model

Large deviations for turbulent flows

Dawson–Gärtner result
A functional Hamilton-Jacobi equation
Solution for the stationary Hamilton-Jacobi equation

Solvability Condition

We have proven that the solvability condition is satisfied for all
order up to n = 4 included.
We expect that the minima of F is ρi ,ε the stationary solution
to the non-linear Fokker-Planck equation :

d
dθ

δF

δρ(θ)
[ρi ,ε ] = 0.

We have proven that the solvability condition at order n +1 is
satisfied if and only if

d
dθ

δF≤n

δρ(θ)

[
ρ
≤n
i ,ε

]
= O

(
ε

n+1) .
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Solution at Order 2

F≤2 [ρ] =
∫ [

ρ

(
1
2
V ∗ρ

)
+kBTρ ln

ρ

ρi ,0

]
+
1
2

∫ ∫
dx1dx2 ρ(x1)ρ(x2)f1(x1,x2).

with f1 the unique solution to

1
ρi ,0(x1)

FP0,x1

[
ρi ,0(x1)f

′
1(x1,x2)

]
+

1
ρi ,0(x2)

FP0,x2

[
ρi ,0(x2)f

′
1(x1,x2)

]
= ...

...j0V ′ (x1−x2)
[

1
ρi ,0(x1)

− 1
ρi ,0(x2)

]
.

Conjugated effect of the non-equilibrium driving and of the
two-body interactions.
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Non-Equilibrium Free-Energy of the Driven Overdamped
HMF model

We got some explicit results for the computation of the
non-equilibrium free energy of the driven overdamped HMF
model.
This follows the results obtained by Derrida, Bodineau,
Lebowitz, ... , and people from the group of Jona-Lasinio in
Rome.
Our results are for a somewhat more physical model ...
Can we generalize this to turbulence problems?
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Phase Transitions in Rotating Tank Experiments
(Quasi Geostrophic dynamics)

Transitions between blocked and zonal states

Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and
M. Ghil)
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Random Transitions in Geophysical Turbulence
Magnetic Field Reversal (Turbulent Dynamo, MHD Dynamics)

Magnetic field timeseries Zoom on reversal paths

(VKS experiment)

In turbulent flows, transitions from one attractor to another often
occur through a predictable path.

F. Bouchet ENSL-CNRS Non-Equilibrium Free Energies



The driven overdamped mean field model
Non-eq. free energies for the mean field model

Large deviations for turbulent flows

Phase Transitions for the 2D Stochastic Navier-Stokes equations
Path integrals and large deviations
Instantons for the 2D Stochastic Navier-Stokes equations

The 2D Stochastic-Navier-Stokes (SNS) Equations

The simplest model with large scale self-organization of the
flow

∂ω

∂ t
+u.∇ω = ν∆ω−αω +

√
2αfs

where ω = (∇∧u) .ez is the vorticity, fs is a random force, α is the
Rayleigh friction coefficient.
We study the regime with time scale separations:

turnover time = 1�1/α = forcing or dissipation time.

Analogies with geophysical flows (Quasi Geostrophic and
Shallow Water layer models).
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Statistical Equilibria for the 2D-Euler Eq. (doubly periodic)

Bifurcation analysis : degeneracy removal, either by the domain
geometry (g) or by the nonlinearity of the vorticity-stream function

relation (f , parameter a4).

Derivation: normal form for an Energy-Casimir variational problem.
A general degeneracy removal mechanism.
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Non-Equilibrium Phase Transition
The time series and PDF of the order parameter

Order parameter : z1 =
∫

dxdy exp(iy)ω (x ,y).

For unidirectional flows |z1| ' 0, for dipoles |z1| ' 0.6−0.7.

F. Bouchet, and E. Simonnet, PRL (2009)
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Path Integrals And Large Deviations In Non-Equilibrium
Statistical Mechanics

Aim: entropy and free energy encode all the statistics of the
equilibrium system. How to define and compute similar
quantities for non-equilibrium systems?
Answer: large deviations for ensembles of dynamical paths =
non-equilibrium and dynamical free energies
How to compute those?
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Kramer’s Problem: a Pedagogical Example for Bistability

Historical example: Computation by Kramer of the Arrhenius law
for a bistable mechanical system with noise

dx
dt

=−dV
dx

(x) +
√
2Dη (t) Rate : λ = Aexp

(
−∆V

RT

)
with RT ∝ 2D
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< τ > = 36.2

The problem was solved by Kramers (30’). Modern approach: path
integral formulation (instanton theory, physicists) or large deviation
theory (Freidlin-Wentzell, mathematicians)
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Path Integrals for ODE – Onsager Machlup (50’)

dx
dt
− f (x) = +

√
2Dη(x ,t)

Path integral representation of transition probabilities:

P(x0,xT ,T ) =
∫ x(T )=xT

x(0)=x0
D [x]exp

(
−S [T ,x]

2D

)
with S [T ,x] =

1
2

∫ T

0
dt
{
[ẋ− f (x)]2−2Df ′(x)

}
.

Instanton: the most probable path with fixed boundary
conditions

S(T ,x0,xT ) = min
{x|x(0)=x0 and x(T )=xT }

{S [T ,x ]}

Saddle point approximation (WKB) gives large deviations results:

logP(x0,xT ,T ) ∼
D→0
−S(T ,x0,xT )

2D
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What to Do with Path Integrals ?

Solving the equations in the saddle point approximation using
theory or numerical optimization (gradient methods)
Transition rates and transition trajectories are given by minima
and minimizers of the action
It explains why most transition trajectories concentrate close
to a single one (instanton trajectory)
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The Action of the 2D Stochastic Navier-Stokes

∂ω

∂ t
+u.∇ω = ν∆ω−αω +

√
2αfs with

〈
fs(x, t), fs(x′, t ′)

〉
= C (x−x′)δ (t− t ′)

S [T ,x ] =
1
2

∫ T

0
dt
∫

D
dxdx′ p(x,t)C (x−x′)p(x′,t)

with p =
∂ω

∂ t
+u.∇ω + αω−ν∆ω

Theory: we can compute explicitly and study the stability of
many instantons (parallel to parallel flows, spatial white noise,
Laplacian eigenmodes, etc.)
Numerical minimization of the action (using gradient methods)
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Instantons from Dipole to Parallel Flows

We can numerically compute instantons connecting dipoles to
parallel flows
They depend on the force spectrum
Not much
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Degenerate Forces Prevent Bistability

Definition: Ck =
∫
D dxC (x)exp(ik.x) . The force is degenerate

if Ck = 0 for some k, non-degenerate otherwise
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Order parameter : z1 =
∫

dxdy exp(iy)ω (x ,y). Direct numerical
simulations for different force spectrums

Possible relations with weather regimes in the atmosphere
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Conclusions from Instanton Analysis

We can numerically compute instantons for simple turbulent
flows
The result depends much on the force spectrum
There is no large deviations for transitions between attractors
for non-degenerate forces
No bistability for non-degenerate forces
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Conclusion

Explicit computation of non-equilibrium free energy for an
overdamped system with long range interactions.
Numerical computations of instantons and large deviations for
the 2D stochastic Navier-Stokes equations.
Kinetic theory of zonal jets for the 2D stochastic
Navier-Stokes equations and quasi-geostrophic jets.
Perspectives : explicit computation of large deviations for
quasi-linear approximation of quasi-geostrophic jet formation.
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