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Statistical mechanics of classical self-gravitating systems
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Statistical mechanics of classical self-gravitating systems The deterministic and stochastic N-body problems

The deterministic and stochastic N -body problems
We consider N classical point mass particles in gravitational interaction

dri

dt = vi ,

dvi

dt = −Gm
∑
j 6=i

ri − rj

|ri − rj |3
− ξvi +

√
2D Ri(t),

associated with the Hamiltonian

H =
N∑

i=1

1
2mv2

i −Gm2
∑
i<j

1
|ri − rj |

.

We assume that the friction and diffusion coefficients satisfy the Einstein
relation (fluctuation-dissipation theorem) :

ξ = Dm
kBT .

If ξ = D = 0 : Hamiltonian system (Newton)
If ξ > 0 : Self-gravitating Brownian particles
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Statistical mechanics of classical self-gravitating systems Maximum entropy state

Maximum entropy state
We use a mean field approximation and look for the most probable
distribution of self-gravitating particles at statistical equilibrium.

Microcanonical ensemble (Hamiltonian systems)

max
f
{S [f ] | E [f ] = E ,M [f ] = M} .

Canonical ensemble (Brownian systems)

min
f
{F [f ] = E [f ]− TS [f ] | M [f ] = M} .

where
SB[f ] = −

∫ f
m ln f

m drdv (entropy)

E [f ] =
∫

f v2

2 drdv + 1
2

∫
ρΦ dr (energy)

M [f ] =
∫

f drdv (mass)
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Statistical mechanics of classical self-gravitating systems The series of equilibria of isothermal spheres

The series of equilibria of isothermal spheres
Following Antonov (1962) we consider the statistical mechanics of
self-gravitating systems confined within a spherical box of radius R.
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Statistical mechanics of classical self-gravitating systems The series of equilibria of isothermal spheres

The isothermal density profile

Boltzmann-Poisson equation :

∆Φ = 4πGρ,

ρ(r) = Ae−βmΦ(r).
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For r → +∞, the density profile decreases as ρ ∼ 1/(2πGβmr2).

Pierre-Henri Chavanis Phase transitions in self-gravitating systems May 2012 7 / 42



Statistical mechanics of classical self-gravitating systems The series of equilibria of isothermal spheres

The microcanonical caloric curve
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Statistical mechanics of classical self-gravitating systems The series of equilibria of isothermal spheres

The canonical caloric curve
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Self-gravitating Brownian particles
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Self-gravitating Brownian particles The Smoluchowski-Poisson system

The Smoluchowski-Poisson system

In the mean-field approximation, the dynamical evolution of self-gravitating
Brownian particles is governed by the Vlasov-Kramers-Poisson system

∂f
∂t + v · ∂f

∂r −∇Φ · ∂f
∂v = ξ

∂

∂v ·
(

kBT
m

∂f
∂v + f v

)
,

∆Φ = 4πG
∫

f dv.

In the strong friction limit ξ → +∞, one gets the Smoluchowski-Poisson
system

∂ρ

∂t = 1
ξ
∇ ·
(

kBT
m ∇ρ+ ρ∇Φ

)
,

∆Φ = 4πGρ.
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Self-gravitating Brownian particles Pre-collapse : self-similar solution

Pre-collapse : self-similar solution

When T < Tc, the system undergoes an isothermal collapse. The SP system
admits an analytical self-similar solution

ρ(r, t) = ρ0(t)f
(

r
r0(t)

)
, f (x) = 1

π

3 + x2

(1 + x2)2

ρ0(t) = 1
2 (tcoll − t)−1, r0(t) = (2T )1/2(tcoll − t)1/2

This solution generates a finite time singularity. At t = tcoll , we get the
singular profile

ρ(r , t = tcoll) = T
πr2 .

This singular profile is not a Dirac peak since the mass contained in the core
vanishes : M0(t) ∼ ρ0(t)r3

0 (t) ∼ T3/2(tcoll − t)1/2.
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Self-gravitating Brownian particles Pre-collapse : self-similar solution

Pre-collapse : self-similar solution

10
-3

10
-2

10
-1

10
0

r

10
0

10
4

ρ
(r

,t
) α=2

D=3

T=0.2

η=5

Pierre-Henri Chavanis Phase transitions in self-gravitating systems May 2012 13 / 42



Self-gravitating Brownian particles Pre-collapse : self-similar solution

The collapse time
The collapse time tcoll(T ) depends on the temperature and diverges as
T → Tc. We have developed a perturbative theory that gives analytically the
value of the collapse time. We find

tcoll(T ) = 0.91767702...Tc(Tc − T )−1/2

The exponent −1/2 is the same as the one arising in the expression of the
relaxation time when T > Tc.
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Self-gravitating Brownian particles Post-collapse : the growth of a Dirac peak

Post-collapse : the growth of a Dirac peak
The evolution continues in the post-collapse regime with the formation of a
Dirac peak surrounded by a “halo” which undergoes a reversed self-similar
solution

ρ(r, t) = N0(t)δ(r) + ρ0(t)g
(

r
r0(t)

)
ρ0(t) = 1

2 (t − tcoll)−1, r0(t) = (2T )1/2(t − tcoll)1/2

For t & tcoll , the mass contained in the Dirac peak increases as

N0(t) = 8.38917147...
√
2T3/2(t − tcoll)1/2

For t → +∞, we find 1−N0 ∼ e−λ(T)t . For T → 0, using a semi-classical
approach (~↔ T ), we find

λ = 1
4T + 2.33810741...

T1/3

For T > 0, the system develops a Dirac peak containing all the mass in
infinite time. At T = 0 (deterministic motion), the Dirac peak containing all
the mass is formed in a finite time.
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Self-gravitating Brownian particles Post-collapse : the growth of a Dirac peak

Post-collapse : the growth of a Dirac peak
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Self-gravitating Brownian particles Post-collapse : the growth of a Dirac peak

Post-collapse : the growth of a Dirac peak
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Statistial mechanics of quantum particles : fermions
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Statistial mechanics of quantum particles : fermions Self-gravitating fermions

Self-gravitating fermions

We use a mean field approximation and look for the most probable
distribution of self-gravitating fermions at statistical equilibrium.

Microcanonical ensemble

max
f
{S [f ] | E [f ] = E ,M [f ] = M} .

Canonical ensemble

min
f
{F [f ] = E [f ]− TS [f ] | M [f ] = M} .

where
SFD[f ] = −

∫ { f
η0

ln f
η0

+
(
1− f

η0

)
ln
(
1− f

η0

)}
drdv

Pauli exclusion principle : η0 = 2m4/h3 represents the maximum value of the
distribution function.
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Statistial mechanics of quantum particles : fermions Degeneracy parameter

Degeneracy parameter

In the dimensionless equations appears the parameter :

µ = η0
√
512π4G3MR3

It can be written as

µ ∼ η0

〈f 〉 ∼
(

R
R∗

)3/2
∼ 1

h3

where R∗ = 0.181433h2G−1m−8/3g−2/3M−1/3 is the radius of a completely
degenerate fermion ball (e.g. white dwarf star at T = 0) with mass M .

The classical limit correponds to µ→ +∞.
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Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

Dependence of the series of equilibria on the degeneracy
parameter
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Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

The case of large systems : Z -shape caloric curve
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Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

The case of large systems : density profiles

Fermi-Dirac-Poisson equation :

f = η0

1 + λeβm
(

v2
2 +Φ(r)

) ,
∆Φ = 4πG

∫
f dv.
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Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

The case of large systems : microcanonical first order
phase transition
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Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

The case of large systems : vertical Maxwell
construction

-0.9 -0.6 -0.3 0 0.3 0.6
-E

0

0.5

1

1.5

2

2.5
1
/T

µ=10
5

E
c

E
t

GEM

LEM

SP

LEM
GEM

A

B

C

E
*

D

E
gas

SP

T’’’

T’’

T’

Pierre-Henri Chavanis Phase transitions in self-gravitating systems May 2012 25 / 42



Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

The case of large systems : strict caloric curve
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Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

The case of large systems : physical caloric curve
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Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

The case of large systems : summary
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Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

The classical limit µ→ +∞
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Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

The case of small systems : microcanonical caloric curve
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Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

The case of small systems : convex dip
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Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

The case of small systems : N -shape caloric curve
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Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

The case of small systems : canonical first order phase
transition

0 1 2 3
η=βGMm/R

5

10

15

20
J

η
0
/M

First order canonical
phase transition

A

C

A

B

η
t
(µ)

C

η
c

η
*
(µ)

µ=10
3

Pierre-Henri Chavanis Phase transitions in self-gravitating systems May 2012 33 / 42



Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

The case of small systems : horizontal Maxwell
construction
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Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

The case of small systems : strict canonical caloric curve
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Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

The case of small systems : physical canonical caloric
curve
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Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

The case of small systems : summary
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Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

The case of large systems : microcanonical critical point
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Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

The case of small systems : canonical critical point
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Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

Canonical phase diagram

0 1 2 3 4
1/T

0

0.005

0.01

0.015
1

/µ

T
c

T
*

T
t

CCP

Gaseous phase

Condensate
High mass

(H)

Pierre-Henri Chavanis Phase transitions in self-gravitating systems May 2012 40 / 42



Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter

Microcanonical phase diagram
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Statistial mechanics of quantum particles : fermions Dependence of the series of equilibria on the degeneracy parameter
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