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1. Introduction

« Suppose a Hamiltonian system consists of
some slow degrees of freedom coupled to a
high-dimensional chaotic system (e.qg.
conformations of a biomolecule coupled to
vibrations, water movement etc).

* Derive a Langevin equation for the slow
degrees of freedom (i.e. an effective
Hamiltonian + damping + noise).

* Precursors: Ford,Kac&Mazur; Zwanzig;
Mori&Zwanzig, van Kampen, Ottinger;
Ott; Wilkinson; Berry&Robbins; Jarzynski...



2. Assumptions

 Gallavotti-Cohen “chaotic hypothesis™
chaotic Hamiltonian systems can be
treated as if mixing Anosov on each
energy level.

* Anosov condition is unlikely to hold, but
it allows some nice theory, aspects of
which are likely to hold more generally.

* A low-dimensional mechanical example:



The triple linkage




Assumptions in detall

Symplectic manifold (M,w), dim M =2m

Hamiltonian H, vector field X(H), iyw=dH, flow o,
Poisson map m: M — N = R2" |ocally, n <<m

foreach Zin N, x(Z) is a symplectic submanifold of
M; then the restriction H, of H to w'(Z) defines const-
rained dynamics X(H.,) preserving volume Q=w"(M-"),
value of H, and “ergode” u on H,(E) def by uadH=Q.
V;={Z,H} are slow compared to X(Hy).

X(H,) is mixing Anosov on H,'(E); in particular, auto-
correlation of deviation v of V from its mean decays
on short time ¢ compared to significant change in Z
Size of v is of order ¢'2 on slow timescale.

Fast system has bounded specific heat.



3. Aim

Show the distribution of paths np,(Y) for

random Y wrt u on (nxH)'(Z,,E,) is close to
that for the solutions of a stochastic ODE

dZ = (J-pD) VF dt + o dW, Z(0)=4,,
with J representing the Poisson bracket on N,
F = free energy function on N, § = inverse
temperature, W a multidimensional Wiener

process, Einstein-Sutherland relation D+DT =
oo', and Klimontovich interpretation.



4. Strategy:

(a) Zeroth order mean velocity

Let W,(E) = |,,.c Q@ on '(2)

Anosov-Kasuga adiabatic invariant for slow Z
when H'(E) ergodic: W,,(E(t)) = w,,

Let A = wW/W,'(E), normalised ergode

MV) = J Vf, where f(Z) = W, T(w,),
“microcanonical free energy” [see next]

Alternatively, start in canonical ensemble dv =
e-PH-F) Q(dY) on m1(Z) (“monode”) and find
v(V) = JVF, but not obvious how to continue.



Proof

The following calculation shows that
A(V) = JVF. (5)

Firstly, Wz(£(2)) = wg, so VW + W'V f =0, i.e.

k3
WI

Thus (JVf); = {Z;, f} = —+{Z;,W}. Next, the flow x, of Xz .. preserves Q (because it is Hamil-
tonian) and the fibration 7 (because 7 is Poisson). Thus the change of Wz(E) = | (H<E)} Q0 from
Z(0) to Z(u) along the flow y, is the Q-measure of the band in 7#=*(Z(u)) between H~'(E) and
xu((H,Z)"'(E,Z(0)). The rate of change of H along the flow x, is {H,Z; o 7} and we can write
(0= pAdH in a fibre, so

Vf=—— VW (6)

(W,2;} = - / {H,Z;0m}p.
H-\(E)

Finally, (V) = 57 [4 wgy{Ziom Hip.



(b) Fluctuations

* The fluctuations v(t) from the mean can be
approximated by a multidimensional white
noise o dW/dt with covariance

oo’ = [ds Mv(t)v(s)) = D+DT.
* Proofs at various levels, e.g. Green-Kubo for
the weakest [see next], Melbourne&Nicol

vector-valued almost sure invariance principle
for the strongest.

* Refinement of & to make correlations decay
as rapidly as possible could be useful to
Increase accuracy.



Proof

The simplest version is to let z(t) = fc: v(s) ds (I denote it by 2 rather than Z because this expression
does not include the mean velocity of Z nor the fact that the distribution of v changes as Z moves) and

prove that
A(z:(t)z;(t))/t — Ry

as t — +00 (Green-Kubo formula).
Here is a proof. From the definitions of z and C, A(z(t)z;(t)) f_ (t — |ul)Cis(u) du. So

Az (t)z(8) /t = / (1-

—t

Ju

“)Cis(u) du

Tackle the positive and negative ranges of u separately. Convergence of the integral for R implies that
given £ > 0 there is a ¢y such that | [, C(v) dv| < ¢ for all £ > u > ¢3. Then for ¢ > {;,

/ C(u) du —/ (1 - -)C(u) du —/ C(u) du+ 1 /0‘0 uC'(u) du + % /: /:ax(u'w C(v) dv du.

The ﬁrst and third terms are each at most £ in absolute value. The second is at most £ as soon as
t > 1 [ uC(u) du. Hence [(1—%)C(u) du — [;* C(u) du ast — oc. Similarly for u < 0 and hence the

result. .\ote that in contrast to a btatement in [Gal it is not necessary to assume 7 [ fT t|C(t) dt — 0 as
T — oo: it follows automatically from [~ C(t) dt < oc.



(c) Correction to A

 If Z(t) is varied slowly, the measure on
1(Z(t)) starting with A for given w, at t=-«
(Stosszahlansatz) lags behind that for t.

* Ruelle’s formula for 1st order change in SRB
for t-dependent mixing Anosov system:

8<O(t)> =Jtds <d(Op, )dX >

for any observable O (¢,,= flow from s to t).
* In particular (assuming w, conserved), find

o<V>= (W'D)/W’ J dZ/dt = -gDVHf, with

D; =Jt ds Mvi(t)v(s)), v = V-\(V) along
constrained orblts B = (logW’) = 1/T.



Proof

Let us calculate the change in the mean of V' due to slow motion of Z. For X, we use Xy, and
for the ensemble average we use Az, g. Any motion of Z can be specified as the result of a (possibly
time-dependent) Hamiltonian flow on N, with some Hamiltonian G, so Z = JVG. The function G lifts
to Gowmon M and so induces a fibre-preserving flow x on M, which we can use to identify points of
different fibres. In particular for X, in Ruelle’s formula we can use xj, Xy, (), which can be written as

X(HOX‘.«)Z:::!' Then
d(V; 0 thes) Xs = {Vj 0 ths, H © Xt } 20 (9)

where {, }7 is the Poisson bracket on 7=*(Z), defined via the restriction of the symplectic form to the
fibre. Thus Ruelle’s formula gives a time-integral of an energy-level average of a Poisson bracket on a
fibre.

Lemma: For symplectic manifold K with volume form 2, Hamiltonian H, energy level F, normalised
energy level volume Ag and any smooth functions F, G : K — & for which the required integrals converge,

/ (F,G} dAg = ﬁa% (W’(E) / (F, H}G d)\g) . (10)



Proof: For any smooth functions F,U : K — R for which the integral converges,

/ (F,U} dQ = / dF(Xy) dQ = 0,

because it is the integral of the rate of change of F' along orbits of X;; with respect to an invariant
measure. Apply this to a product U/ = GA and use Leibniz’ rule and antisymmetry for Poisson brackets
to deduce that

A{F,G} dQ = [{A,F}G d. (11)
/ /

Now take A to be (a sequence of smooth approximations to) §(E — H):
/ 5(E — H){F,G} dQ / (6(E — H), F}G d = — / §'(E — H){H, F}G d9, (12)
since {., '} is a derivation. The right hand side can be written as
d
3E /6(5 — H){F, H}G df.

All that remains is to write §(E — H) dQ = W'(E) dX on both sides. [



Applying the lemma to (9) produces

3 L
a{Vj) = ﬁ(m (‘/V"(E')_/_ac ds{({H,H o xu}zV; ou’m)). (13)

Now

d
all O Xst — _{IIaGO"T}a\li

so for times s out to some decorrelation time, which we supposed to be £ < 1, we can write to leading
order

{H Hoxut=(t—s){H,{H,Gon}lr}z.
Specialising to G = Z; gives {H,G o}y = —Vi. So the integral in (13) becomes

[ ds =9 vida(avs(e)

To justify this approximation gmperly requires some hypothesis on the rate of decay of the correla-
tion function of v (probably [~ [tC(t)| dt < oc suffices). Now {H,Vi}z = —%%* along the flow of
Xy, so integration by parts (with again some assumption about sufficiently rapid convergence of the
autocorrelation integral) transforms the integral to

- / ds{(Vi(s) — (Ve))V;(8)) = =Dz,

with D given by (2). Taking G to be an arbitrary linear combination of Z; yields

(W'D

) 1
)2 (14)

BV (1) = —




(d) Put together

» Adding the preceding ingredients yields
V = (J-pD) VI + o dW/dt
to first order.

* Now remove constraint of externally
imposed Z(t) and conservation of W:
hope to get
dZ/dt =V = (J-fD) Vf + o dW/dft;

need to examine correlations (cf.Kifer).



(e) Micro to canonical

* For m large, f = F+cst, canonical free energy,
because

VF =JefEW,’(E) Vf dE /|ePEW,’(E) dE
and ePEW.’(E) is sharply peaked around E,

for which (logW’) = 3 (large deviation theory,
assuming specific heat bounded) [see next]

* |f o depends on Z, Klimontovich interpret-
ation is necessary to make efF w”" stationary

(but probably differences are beneath this
order of approximation)



Proof

VF = / e HEW'Vf dE | / e~ M EW! dE.

For large k = m — n, assume the heat capacity per degree of freedom c(e) = 77 (A jasa function of the

energy € per degree of freedom is positive and bounded uniformly in k (say for simplicity that the limit
as k — oo exists). It follows by integration that B(E) = 1/T(F) is a function of € nearly independent of
k, and by another integration the same for | log W’(E); write the latter as s(e), the entropy per degree
of freedom. Then the function e W'(E) of E is approxunately e~ k(Boe—s(e)) which is sharply peaked
around the ey such that s'(ey) = 3y (because s”(e) = < 0), i.e. B(Ey) = By . Thus VF for 3y is

tf £)
approximated by V f for this E().



5. Overdamped case

« If N=T"L, H(Q,P,z) = PTM-'P/2 + h(Q,z)
then F(Q,P) = PT™M-"P/2 + G(Q) and D
has PP-block only and indpt of P.

» If motion of Q is slow on time T|MD-|

then P relaxes onto a slow manifold and
get further reduction to

dQ =-TD'VG dt + 2ToTdWon L
as used by biochemists.




6. Quantum DoF

Quantum Mechanics is Hamiltonian: for
Hermitian operator h on complex Hilbert
space U, take M = P(U) with Fubini-Study
form, and H(y) = <y|hy>/<y|yp>; gives
Schrodinger evolution i dy/dt = hy.

Or take M = (dual of) Lie algebra of Hermitian
operators on U with inner product <A,B>= Tr
AB and its Lie-Poisson bracket, and H(A) = Tr
hA; gives von Neumann dA/dt = -i [h,A].

So can incorporate quantum DoF, e.q.
electrons in rhodopsin conformation change.

Not Anosov, but maybe not really required.



/. Kinetics out of chemical
equilibrium

* N can be a covering space, e.g. base=
conformation of myosin, decks differ by
number of ATP

* Need to adapt for constant pressure



8. Conclusion/Comments

Mathematical justification of the Langevin equation
looks possible.

Can probably extend to some non-Anosov fast
dynamics, e.g. partial hyperbolicity + accessibility may
suffice for Ruelle formula (e.g. Eyink et al).

Main interest may be ways in which the above
program can fail, e.g. no gap in spectrum of
timescales, heat bath with long-time correlations.

Reference: RS MacKay, Langevin equation for slow
degrees of freedom of Hamiltonian systems, in:
“"Nonlinear Dynamics and Chaos", eds M Theil, J
Kurths, MC Romano, G Karolyi, A Moura (Springer,
2010) 89 -102.



