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1. Introduction 
•  Suppose a Hamiltonian system consists of 

some slow degrees of freedom coupled to a 
high-dimensional chaotic system (e.g. 
conformations of a biomolecule coupled to 
vibrations, water movement etc). 

•  Derive a Langevin equation for the slow 
degrees of freedom (i.e. an effective 
Hamiltonian + damping + noise). 

•  Precursors: Ford,Kac&Mazur; Zwanzig; 
   Mori&Zwanzig, van Kampen, Ottinger; 
   Ott; Wilkinson; Berry&Robbins; Jarzynski… 



2. Assumptions 

•  Gallavotti-Cohen “chaotic hypothesis”: 
chaotic Hamiltonian systems can be 
treated as if mixing Anosov on each 
energy level. 

•  Anosov condition is unlikely to hold, but 
it allows some nice theory, aspects of 
which are likely to hold more generally. 

•  A low-dimensional mechanical example: 



The triple linkage 



Assumptions in detail 
•  Symplectic manifold (M,ω), dim M = 2m 
•  Hamiltonian H, vector field X(H), iXω=dH, flow ϕt 
•  Poisson map π: M → N = R2n locally, n << m 
•  for each Z in N, π-1(Z) is a symplectic submanifold of 

M; then the restriction HZ of H to π-1(Z) defines const-
rained dynamics X(HZ) preserving volume Ω=ω∧(m-n), 
value of H, and “ergode” µ on HZ

-1(E) def by µ∧dH=Ω. 
•  Vj={Zjπ,H} are slow compared to X(HZ). 
•  X(HZ) is mixing Anosov on HZ

-1(E); in particular, auto-
correlation of deviation v of V from its mean decays 
on short time ε compared to significant change in Z 

•  Size of v is of order ε-1/2 on slow timescale. 
•  Fast system has bounded specific heat. 



3. Aim 

   Show the distribution of paths πϕt(Y) for 
random Y wrt µ on (πxH)-1(Z0,E0) is close to 
that for the solutions of a stochastic ODE 

     dZ = (J-βD) ∇F dt + σ dW, Z(0)=Z0, 
   with J representing the Poisson bracket on N, 

F = free energy function on N, β = inverse 
temperature, W a multidimensional Wiener 
process, Einstein-Sutherland relation D+DT = 
σσT, and Klimontovich interpretation. 



4. Strategy:  
(a) Zeroth order mean velocity 
•  Let WZ(E) = ∫H≤E Ω on π-1(Z) 
•  Anosov-Kasuga adiabatic invariant for slow Z 

when H-1(E) ergodic: WZ(t)(E(t)) ≈ w0. 
•  Let λ = µ/WZ’(E), normalised ergode 
•  λ(V) = J ∇f, where f(Z) = WZ

-1(w0), 
“microcanonical free energy” [see next] 

•  Alternatively, start in canonical ensemble dν = 
e-β(H-F) Ω(dY) on π-1(Z) (“monode”) and find     
ν(V) = J∇F, but not obvious how to continue. 



Proof 



(b) Fluctuations 

•  The fluctuations v(t) from the mean can be 
approximated by a multidimensional white 
noise σ dW/dt with covariance 

   σσT = ∫ds λ(v(t)v(s)) = D+DT. 
•  Proofs at various levels, e.g. Green-Kubo for 

the weakest [see next], Melbourne&Nicol 
vector-valued almost sure invariance principle 
for the strongest. 

•  Refinement of π to make correlations decay 
as rapidly as possible could be useful to 
increase accuracy. 



Proof 



(c) Correction to λ 
•  If Z(t) is varied slowly, the measure on  
    π-1(Z(t)) starting with λ for given w0 at t=-∞ 

(Stosszahlansatz) lags behind that for t. 
•  Ruelle’s formula for 1st order change in SRB 

for t-dependent mixing Anosov system: 
   δ<O(t)> =∫t ds <d(Oϕts)δXs> 
   for any observable O (ϕts= flow from s to t). 
•  In particular (assuming w0 conserved), find 

 δ<V> = (W’D)’/W’ J dZ/dt ≈ -βD∇f, with 
   Dij =∫t ds λ(vi(t)vj(s)), v = V-λ(V) along 

constrained orbits, β = (logW’)’ = 1/T. 



Proof 







(d) Put together 

•  Adding the preceding ingredients yields 
   V = (J-βD) ∇f + σ dW/dt 
   to first order. 
•  Now remove constraint of externally 

imposed Z(t) and conservation of W: 
hope to get  

   dZ/dt = V = (J-βD) ∇f + σ dW/dt; 
   need to examine correlations (cf.Kifer). 



(e) Micro to canonical 

•  For m large, f ≈ F+cst, canonical free energy, 
because  

    ∇F =∫e-βEWZ’(E) ∇f dE /∫e-βEWZ’(E) dE  
   and e-βEWZ’(E) is sharply peaked around E0 

for which (logW’)’ = β (large deviation theory, 
assuming specific heat bounded) [see next] 

•  If σ depends on Z, Klimontovich interpret-
ation is necessary to make e-βF ω∧n stationary 
(but probably differences are beneath this 
order of approximation) 



Proof 



5. Overdamped case 

•  If N=T*L, H(Q,P,z) = PTM-1P/2 + h(Q,z) 
then F(Q,P) = PTM-1P/2 + G(Q) and D 
has PP-block only and indpt of P. 

•  If motion of Q is slow on time T|MD-1| 
then P relaxes onto a slow manifold and 
get further reduction to  

   dQ = -TD-1∇G dt + 2Tσ-T dW on L 
   as used by biochemists. 



6. Quantum DoF 
•  Quantum Mechanics is Hamiltonian: for 

Hermitian operator h on complex Hilbert 
space U, take M = P(U) with Fubini-Study 
form, and H(ψ) = <ψ|hψ>/<ψ|ψ>; gives 
Schrodinger evolution i dψ/dt = hψ. 

•  Or take M = (dual of) Lie algebra of Hermitian 
operators on U with inner product <A,B> =  Tr 
AB and its Lie-Poisson bracket, and H(A) = Tr 
hA; gives von Neumann dA/dt = -i [h,A]. 

•  So can incorporate quantum DoF, e.g. 
electrons in rhodopsin conformation change.  

•  Not Anosov, but maybe not really required. 



7. Kinetics out of chemical 
equilibrium 

•  N can be a covering space, e.g. base= 
conformation of myosin, decks differ by 
number of ATP 

•  Need to adapt for constant pressure 



8. Conclusion/Comments 
•  Mathematical justification of the Langevin equation 

looks possible. 
•  Can probably extend to some non-Anosov fast 

dynamics, e.g. partial hyperbolicity + accessibility may 
suffice for Ruelle formula (e.g. Eyink et al). 

•  Main interest may be ways in which the above 
program can fail, e.g. no gap in spectrum of 
timescales, heat bath with long-time correlations. 

•  Reference: RS MacKay, Langevin equation for slow 
degrees of freedom of Hamiltonian systems, in: 
``Nonlinear Dynamics and Chaos", eds M Theil, J 
Kurths, MC Romano, G Karolyi, A Moura (Springer, 
2010) 89 -102. 


