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1. Three-body Problem (3BP) 

Motion of three bodies:  
•  “Sun”, mass M 
•  “Jupiter”, mass ε 
•  “Another”, mass µ  
under their gravitational attraction: 

 qi” = ∑j mj(qj-qi)/|qj-qi|3, qi in R3 



Two-body problem 

•  The two-body 
problem was solved 
by Newton: Kepler 
orbits about centre 
of mass, e.g. Kepler 
ellipses  

r = a(1-e2)/(1+e cos θ), 
 frequency Ω = a-3/2 



Periodic orbits 

•  Poincaré considered periodic orbits the 
key to understanding the 3BP. 

•  For ε, µ small, he proved existence of 
many, close to pairs of Kepler ellipses 
around S with rational frequency ratio. 

•  But he also proposed another type of 
periodic orbit in the 3BP. 



Second species orbits 
Poincaré, 1892: “Les solutions périodiques dont il a été question 

jusqu’ici ne sont pas les seules dont il soit possible de 
démontrer l’existence.  Ainsi le problème des trois Corps 
comporte des solutions périodiques de la nature suivante: les 
deux petits corps décrivent autour du grand des orbites très peu 
différentes de deux ellipses képlériennes E et E’; à un certain 
moment, ces deux petits corps passent très près l’un de l’autre 
et exercent l’un sur l’autre des perturbations considérables; puis 
ils s’éloignent de nouveau et décrivent alors des orbites qui se 
rapprochent beaucoup de deux nouvelles ellipses képlériennes 
E1 et E’1, très différentes de E et de E’. Les deux petits corps 
s’écartent très peu des ellipses E1 et E’1 jusqu’à ce qu’ils se 
trouvent encore une fois très près l’un de l’autre…” 



Poincaré, Ch 32, vol 3,1899 
Pairs of segments of Kepler orbit joining at 

collisions at each end are either: 
•  Whole numbers of revolutions to the same point, 
•  Coplanar between distinct points, or 
•  Non-coplanar joining points on opposite sides of 

a line through S. 
He claimed he could continue any periodic 

concatenation of such to small ε,µ, subject only 
to conservation of energy and angular 
momentum at each collision. 



Numerics, e.g. Arenstorf 



Existence proof? 

•  Lévy, 1952: “L’existence des solutions 
périodiques de deuxième espèce du 
problème des trois corps n’est pas 
impossible, mais ne doit pas être considérée 
comme établie par l’analyse qu’en a faite 
Poincaré.”  

•  But Poincaré, 1899: “Je ne crois pas devoir 
insister davantage, car ses solutions 
s’écartent trop des orbites réellement 
parcourues par les corps célestes.” 



Yet important 

•  Hénon, 1997: “second species orbits play a 
major role in the problem: indeed they tend to 
dominate the picture.  Besides, second 
species orbits are of practical interest in 
space navigation, where close approaches to 
planets and other bodies are frequently used 
to change the velocity of a probe without 
expending energy (this technique is known as 
“flyby”, swingby”, or “gravity assist”).” 



Voyager Missions 



Some other 2nd species 
missions 

•  Pioneer 10 (1973): Jupiter, escape 
•  Mariner 10 (1973-4): Venus, Mercury 

(x3), orbit round Sun 
•  Ulysses (1990-2): Jupiter, into polar 

orbit round Sun 
•  Cassini (1997-2004): Venus (x2), Earth, 

Jupiter, Saturn, moons of Saturn (x44) 
[show animations] 



Existence proofs again? 
•  Alexeyev 1970, Guillaume 

1980, Perko 1981, Brjuno 
1981, Gomez & Olle 1991…: 
matched asymptotics 

•  Marco & Niederman, 1995 
(following Henrard, 1980): 
Symmetric periodic orbits of 
CR3BP with two near-
approaches per period 

•  Bolotin&M: we allow arbitrarily 
many near-approaches, 
asymmetric and aperiodic 
orbits 



2. Circular Restricted 3BP 

•  “Restricted” means µ=0; so S and J follow 
Kepler orbits around their centre of mass O, 
unaffected by A (“asteroid”). 

•  “Circular” means S and J are chosen to move 
in circles around O. Wlog, M = 1-ε, distance 
SJ = 1, and angular frequency = 1. 

•  “Planar” if A is chosen to move in the plane of 
S and J. 



Jacobi constant 

•  In the CR3BP, H = E - Gz is conserved (E and 
G are Energy and Angular Momentum of A 
about S per unit mass).  Its value is usually 
denoted by -C/2 and C is called “Jacobi’s 
constant”. 

•  If ε=0, Kepler ellipse has  
  C = 1/a + 2√{a(1-e2)} cos i,  
 where “inclination” i is the angle between the 
angular momentum vectors for A and J. 



Circle-crossing orbits 

•  For ε=0, which 
Kepler ellipses cross 
J’s orbit? 

•  Planar case: allowed 
set A(C) of 
frequencies is 1 or 2 
intervals for each C 
in (-√8,+3). 



3. Strategy in Planar Case 

•  Marco & Niederman’s orbit was 
obtained by alternation between two 
arcs of planar Kepler orbits joining 
distinct points on J’s orbit. 

•  In contrast, Bolotin & I chose to study 
concatenations of whole revolutions of 
planar ellipses. 



Planar Theorem 

•  Bolotin & MacKay, 2000:  
 For all C in (-√8,3) there is a dense subset S(C) 
of rationals in the set A(C) such that for all finite 
subsets T of S(C) there is ε0 > 0 such that for any 
sequence Ωn = mn/kn in T and ε in (0,ε0) there is a 
unique trajectory of Jacobi constant C near to a 
chain of collision arcs consisting of mn 
revolutions of a Kepler ellipse during kn of J, 
modulo slow rotation. 



Example in Inertial & Rotating 
frames: Stephen Gin 



Topological Markov chain 

•  S(C) excludes ellipses which collide before a 
whole number of revolutions. 

•  Two ellipses through J for each Ω in S(C), 
label by σ = ±. 

•  Transition rule: in frame rotating with J, must 
not leave J in the same or opposite direction. 

•  So we’ve made a lot of second species 
periodic orbits, given by choosing periodic 
sequences (Ωn, σn). 

•  & uncountably many aperiodic ones: “chaos”. 



Instability 

•  The orbits are very unstable: their Lyapunov 
exponent λ (= growth rate of typical 
infinitesimal displacements) ~ log(1/ε). 

•  For comparison, collinear Lagrange points 
have λ = ½ log(1+√28) as ε goes to 0. 

•  And Poincaré’s chaos near first species 
periodic orbits has λ ~ exp(-π/√2ε). 

•  So strong chaos and strong controllability.	





Idea of the proof 

•  In the rotating frame, trajectories with 
given C between given points 
correspond to critical points of an 
“action” functional S(γ) = ∫T(L-C/2) dt, 

L = |q’|2/2+xy’-yx’+(x2+y2)/2+1/|q|+ε(1/|q|-1/|q-j|+x) 
 in H1([0,1],R3)xR+, q=(x,y,z), j=(1,0,0). 

•  Take a small circle K around J. 



Outside K 
•  For ε=0, the segment 

[uw,vw] of any collision 
arc w outside K is a 
non-degenerate critical 
point of S. 

•  So it continues to a 
segment of trajectory for 
small ε and small 
displacements of the 
ends u and v on K, and 
its action depends C2 
on u,v.  



Inside K 
•  For any pair of 

trajectories of ε=0 with 
given C, one from v on 
K to J and the other 
from J to u’ on K, not 
tangent at J, there is a 
unique continuation of 
their concatenation for ε 
small to a trajectory 
joining v to u’. 

•  Approximately a Kepler 
hyperbola (Rutherford 
scattering). 



Proof of “inside K” 

•  Use Levi-Civita regularisation to turn passage 
near the ε/r singularity into passage at 
pseudo-energy 4ε near a hyperbolic 
equilibrium 0 of a smooth system in square-
root coordinates with rescaled time. 

•  It turns the orbits vJ and Ju’ into orbits 
asymptotic to and from 0. 



Continued 
•  For small ε > 0, there is 

an orbit from √v to √u’ if 
the angle change from √
{vJ} to √{Ju’} is less 
than π/2.  

•  Except for π/2, this can 
be achieved by choice 
of sign of one √. 

•  Squaring, there is an 
orbit from v to u’ 
avoiding J if the angle 
change from vJ to Ju’ is 
not 0 or π. 



Levi-Civita via Hamilton 
•  Start from Hamiltonian formulation: 

 qj’ =∂H/∂pj, pj’ = -∂H/∂qj, j = re, im, with 
 H(q,p) = |p-iq|2/2 + Wε(q) - ε/|q|, q,p in C. 

•  Canonical transformation: q=z2, p=w/2z* 
 H’(z,w) = |w/2z*-iz2|2/2 + W(z2) - ε/|z|2 

•  K(z,w) = k + f(z,w) (H’(z,w)-E) on K=k has same 
dynamics as H on H=E, in variables z,w and new time 
ds/dt = f 

•  k=4ε, f=4|z|2 -> K = |w|2/2+4(W(0)-E)|z|2+O(4) 
•  K is smooth and for E>W(0) has a saddle (E =  -C/2 and 

W(0) = -3/2, so saddle for C<3). 



Concatenation 

•  The action S for a 
concatenation of 
alternately exterior 
and interior arcs of 
trajectory from K to 
K has the form 
 ∑n gwn(un,vn) +       ε 
s(vn,un+1;ε) 



Continuation from an “anti-
integrable limit” 

•  The functions gw and s are C2, and the gw have 
non-degenerate critical point at (uw,vw) where w 
crosses K. 

•  Thus the sequence … uw
n-1,vw

n-1, uw
n,vw

n, uw
n+1, 

vw
n+1 … has a locally unique continuation to a 

critical point of S for small ε. 
•  The corresponding concatenation is a true 

trajectory. 



Proof of Instability 

•  The resulting trajectories are uniformly non-
degenerate, meaning the spectrum of D2S is 
bounded away from 0. 

•  The coupling (off-diagonal terms of D2S) 
between successive collision arcs is order ε. 

•  It follows that the invariant set is “uniformly 
hyperbolic” with expansion factor of order 1/ε 
per collision arc. 

•  Hence Lyapunov exponent of order log(1/ε)/T, 
where T = typical duration of collision arcs. 



4. Nonplanar case 

•  We consider 
concatenation of 
segments of orbit of 
Kepler ellipse joining 
diametrically 
opposite points of 
Jupiter’s orbit. 



Conditions 

•  a(1-e2) = 1  
•  1/a +2 cos i = C 
•  So for each C in      

(-2,+3) there is an 
interval A’(C) of 
allowed frequencies 
Ω = a-3/2 



Two ellipses 

•  As in the planar 
case, there are two 
ellipses with the 
same parameters 
joining the same pair 
of points 



Nonplanar theorem 

•  Bolotin & MacKay, 2005: 
 For all C in (-2,3) there is a dense subset 
S’(C) of A’(C) such that for all finite subsets T 
of S’(C) there is ε0 > 0 such that for any 
sequence Ωn in T and ε in (0,ε0) there is a 
unique trajectory of Jacobi constant C near to 
a chain of collision arcs formed from 
nonplanar Kepler ellipses of frequencies Ωn, 
modulo slow rotation. 



Topological Markov chain 

•  Transition rule: in frame rotating with J, 
must not leave in the same or opposite 
direction.  

•  Constructs yet more periodic and 
aperiodic second species orbits. 

•  Same magnitude of Lyapunov 
exponent. 



Idea of proof 

As in the planar case, but:  
•  dense set S’(C) is to obtain second 

collision 
•  replace circle K by a sphere around J 
•  use Kustaanheimo-Stiefel regularisation 



5. Extensions? 
•  Include arcs between different points in the planar case: 

probably yes. 
•  Include whole revolutions in the nonplanar case: delicate. 
•  Mix planar and nonplanar arcs: delicate. 
•  Make unbounded orbits: delicate (Kaloshin?). 
•  Elliptic restricted 3BP: delicate (Bolotin, 2004) 
•  Unrestricted 3BP: delicate. 
•  N-body problem: delicate 
•  Can view Tel, Grebogi, Ott chaotic scattering from 

potential hills in same framework 
•  Interaction of charges in a magnetic field: yes (Pinheiro & 

M, Nonlinearity 19 (2006) 1713 & JNLS 18 (2008) 615) 



5. Two charges in a magnetic 
field: (a) planar case 

•  Pinheiro & M, Nonlinearity 19 (2006) 
1713-1745 

•  Suppose uniform magnetic field B, masses 
m1,m2 moving in perpendicular plane with 
charges e1,e2 of opposite sign, and e1/m1+e2/
m2≠0. 

•  Theorem: Every high enough energy level 
contains a covering of a suspension of a 
nontrivial topological Markov chain (TMC). 



More precisely 

•  There is a δ(e2/e1,m2/m1)>0 such that 
for H3/2 > |e1-e2|3B/(m1+m2)1/2ε0δ 
(H=energy) the reduction by linear and 
angular momentum possesses a 
suspension of a nontrivial TMC. 

•  Linear momentum P=∑pj+kjJqj, where 
pj=mjdqj/dt, kj=-ejB, J=rotation by π/2  

•  Angular momentum L=∑qjJpj-kj|qj|2/2 



Idea of proof 
•  Scaling symmetry: H large ↔ 1/ε0 small 
•  Anti-integrable (AI) limit 1/ε0=0: declare its “traject-

ories” to consist of sequences of segments of pairs of 
gyro-orbit joined at collisions, conserving H,P,L and 
with angle change of relative velocity not 0,π 



continued 
•  When e1e2<0, e1/m1+e2/m2≠0, the set of AI 

trajectories contains a suspension of a non-trivial 
TMC, and for 1/ε0<δ they persist to a set of true 
trajectories (cf. second species chaos in celestial 
mechanics, Bolotin&M, 2000, 2006; also Grebogi et 
al scattering from three hills). 



continued 
•  When e1e2<0, e1/m1+e2/m2≠0, the set of AI 

trajectories contains a suspension of a non-trivial 
TMC, and for 1/ε0<δ they persist to a set of true 
trajectories (cf. second species chaos in celestial 
mechanics, Bolotin&M, 2000, 2006; also Grebogi et 
al scattering from three hills). 



(b) 3D case 
•  For charges of same 

sign, the subspace of 
planar motions is 
essentially normally 
hyperbolic.  Get regular 
scattering, partitioned 
into “bounce back” and 
“pass through”, plus 
formula for the flux. 



Opposite signs 
•  Put q = x/(1-x2)2 and ds/

dt = 1/(1+q2). Then q=∞, 
p=0 becomes 
essentially normally 
hyperbolic and its 
invariant manifolds 
separate state space 
into regions of trapped 
and free motion with 
possible transitions at 
q=0, giving atoms and 
(numerical) chaotic 
scattering. 



Transport effects 

•  In general, scattering results in transfer of 
parallel momentum and perpendicular kinetic 
energy and changes in guiding centre lines. 

•  In particular, can obtain large perpendicular 
energy transfers for equal gyrofrequencies, 
because of “resonant interaction” rather than 
“collision”.  This seems to be missed by 
classical magnetised plasma transport theory! 



6. Conclusions 
•  Poincaré had a good idea 
•  But didn’t prove it 
•  And missed the occasion to discover much 

stronger chaos than his exponentially weak form 
•  Solar system missions have proved it 

experimentally 
•  So far only the simplest cases are proved 

mathematically 
•  But the idea has been extended to other contexts 
•  And I hope the insight will lead to better 

understanding. 


