Dégustation de quatre sujets

R.S.MacKay, University of Warwick, UK

Topics

- Space-time phases
- Derivation of Langevin equation
- Poincaré's second species orbits
- Gamma ray bursts

Space-time phases for spatially extended nonlinear dynamics

Robert MacKay

Mathematics Institute and Centre for Complexity Science

THE UNIVERSITY OF WARVICK

Happy Birthday, Tassos!

Complexity Science: my view

- The study of systems with many interdependent components
- e.g. laser, condensed matter, cell, brain, ecosystem, climate system, transport network, internet, health service, finance, economy
- Hope for unifying principles: mathematics

Is it new? No!

- Complexity Science builds on much preceding science, e.g. statistical mechanics, nonlinear dynamics, stochastic processes, ecology/ epidemiology, game theory, evolutionary theory, many-body quantum theory...
- "The main themes in complexity theory have been studied by physicists for over a hundred years, and these scientists have evolved a toolkit of concepts and techniques to which complexity studies have added barely a handful of new items." (P Ball, 2004)

New? continued

- "A new branch of mathematics the theory of systems with a large number of locally interacting random components – has developed in recent years. This theory is a natural instrument for the mathematical modeling of ... systems of various natures, such as complex biological, chemical, physical, and cybernetical systems and socio-economic structures." (Dobrushin, Kryukov &Toom, 1978).
- The current wave can be considered to have started with the Santa Fe Institute in 1984.
- But the surface has only been scratched.

What are the questions?

- 1. Emergence
- 2. Robustness
- 3. Control and Design
- 4. More

1. Emergence

- Wikipedia: "Emergence is the way complex systems and patterns arise out of a multiplicity of relatively simple interactions"
- "The whole is more than the sum of its parts" (Aristotle, c330BC)
- "the whole becomes not merely more, but very different from the sum of its parts" (Anderson, 1972)

A "cathedral" mound produced by a termite colony: a classic example of emergence in nature.

Philosophers

- JS Mill, 1843
- Weak v Strong emergence,

e.g. Chalmers, 2006: A high-level phenomenon is weakly / strongly emergent with respect to a low-level domain when it arises from the latter but truths concerning it are

unexpected given the principles governing /

not deducible even in principle from truths in

the low-level domain.

My view: space-time phases

- (a) What emerges from a spatially extended dynamical system is "space-time phases": probability distributions over realisations of state as function of space-time that arise from typical initial probabilities in the distant past.
- (b) Amount of emergence is the "distance" of a space-time phase from the set of products for independent units.
- (c) Strong emergence means non-unique spacetime phase (but not due to decomposability).

(a) Examples of phases

 "Climate" is a probability distribution for temperature, precipitation etc over space-time, compatible with the laws of weather.

Thessaloniki

Equilibrium statistical mechanics

- The allowed probability distributions are the "Gibbs phases" for βH where H represents the sum of contributions h to the energy and β is coolness (1/temperature).
- i.e. probability density

$$\frac{1}{Z}e^{-\Sigma\beta h}$$

wrt reference measure, where *Z* is a normalisation constant, or better those whose conditionals for all finite subsystems and external states satisfy this (Dobrushin,Lanford,Ruelle).

Dihydrofolate reductase in water (Dmitry Nerukh)

Stochastic dynamics

 For Markov chains the phases are the Gibbs phases (over time) for - log p(i,j): probability of sequence i₀, i₁, ..., i_n =

$$\prod_{t} p(i_t, i_{t+1}) = e^{-\sum_{t} -\log p(i_t, i_{t+1})}$$

- Probabilistic cellular automata (PCA): update state σ_s^t at spatial site *s* and time *t* by independent probabilities conditional on current state σ^t
- <u>Demonstration</u>: Toom's NEC majority voter PCA with error rate *p* = 0.15, by Marina Diakonova.
- The phases of a PCA are the space-time Gibbs phases for $-\log p(\sigma_s^{t+1}|\sigma^t)$.

Deterministic dynamics

- Sensitive dependence on initial conditions makes individual trajectories unpredictable but often leads to a unique probability distribution on an attractor for random initial conditions in its basin.
- e.g. trajectories on a topologically mixing uniformly hyperbolic attractor for a map f can be coded by symbol strings σ, and random initial conditions in distant past in the basin give trajectories distributed according to unique Gibbs phase for

 $\beta H = \sum_{t} \log |\det Df_{E^{-}}(x^{t}(\sigma))|$ on time [Sinai, 1967/72]

• Analogous results for continuous-time.

Markov partition for Cerbelli-Giona map

A physical uniformly hyperbolic system

Show video

Minimal geodesics on configuration space from which to make a 40 element Markov partition

Spatially extended deterministic dynamics

- Trajectories of uniformly hyperbolic spatially extended discrete-time system *f* (coupled map lattice) can be coded by space-time symbol tables $\sigma = (\sigma_s^t)$.
- Random initial conditions in distant past lead to distribution of trajectories given by Gibbs phases of $\beta H = \sum_{s,t} tr(\log Df_{E^-}(x_s^{t}(\sigma)))_{ss}$

(M,1995; Bricmont & Kupiainen, 1996).

(b) Distance between multivariate probabilities

- Most metrics on spaces of probabilities do not behave well for large number of variables.
- e.g. product of N independent Bernoulli B(p,1-p) variables on {0,1}^N in total variation metric:

 $D_{TV}(\rho,\sigma) = \sup(\rho(A) - \sigma(A)) \text{ over measurable subsets A,}$ moves with speed ~ $\sqrt{\frac{N}{2\pi p(1-p)}}$ wrt *p*.

Can't save it by dividing by \sqrt{N} because diameter in TV = 1.

"Total variation convergence essentially never occurs for particle systems" (Liggett, 1985).

Dobrushin metric

- If *X* is a product of (complete separable, bounded diameter) metric spaces (X_s, d_s) over *s* in a countable set *S*, define Dobrushin's functions $f: X \rightarrow R$, continuous wrt product topology and "summably component-wise Lipschitz": $||f|| = \sum_s \Lambda_s(f) < \infty$, where $\Lambda_s(f)$ is the Lipschitz constant for *f* wrt x_s .
- For (Borel wrt product topology) probabilities ρ,σ on X, define

$$D(\rho, \sigma) = \sup \frac{\rho(f) - \sigma(f)}{\|f\|}$$

over non-constant Dobrushin *f*, where $\rho(f)$ is the mean of *f* wrt ρ .

- + Gives speed of product of N Bernoulli *B*(*p*, *1*-*p*) variables = 1.
- + Streamlines Dobrushin's proof of unique phase for "weakly dependent" PCA (e.g. Toom NEC for *p* in (1/3,2/3).
- + Proves uniformly smooth change of phase wrt parameters for PCA with spectral gap (I-P invertible on space of neutral measures).
- Not easy to compute (yet)

WARWICK

Amount of emergence

- is the distance of a space-time phase from the set of product probabilities for independent units.
- measures how far the behaviour is from mean-field approximations
- does not capture what some people want to mean by "emergence", e.g. law of averages, selection of Maxwellian velocity distribution
- but does capture a likely consequence of having interdependent components
- More interesting would be to determine correlation structure of the phase

(c) Strong emergence

- More than one possible phase ("phase transition")
- Example: 2D Ising model (Peierls)
- Example: Toom's majority voter PCA with error rate 0.05
- Say amount of strong emergence is the diameter of the set of phases. An alternative is the persistent mutual information between well separated parts of space-time (Ball, Diakonova, M)
- Non-unique phase can arise for topological reasons, e.g. more than one attractor, or 2-piece attractor; more generally, because system is "decomposable". Don't count as strong emergence.
- A system with a space-time symbolic description is "indecomposable" if any allowable configurations on two sufficiently separated space-time patches can be joined into an allowable configuration ("specification property").
- Non-trivial strong emergence requires infinite system, but is reflected in long-range correlations for finite versions.

Proved examples of strong emergence

- Ferromagnetic phases of 2D Ising model
- Ferromagnetic phases of Toom's NEC voter PCA
- Period-2 phases of <u>Toom's</u> NEC voter (error rate 0.95)
- Examples with (at least) 2ⁿ extremal phases [demo], and also non-monotonic examples, e.g. 3 phases [demo]
- Endemic infection v disease-free phases of contact processes (Stavskaya...)
- Coupled map lattices based on these (Sakaguchi, Gielis&MacKay, Bardet&Keller)

2. Robustness

- (i) How does a phase respond to a shock?
- Exponential decaying response to shocks in case of PCA with spectral gap, but more generally?
- (ii) How does the phase or set of phases (closed, convex) vary with parameters?
- For PCA with a spectral gap, under small changes the unique phase stays unique and varies smoothly (cf. Ruelle for SRB measure of a uniformly hyperbolic dynamical system)
- For systems whose phases are Gibbsian, the set of phases varies upper hemi-continuously.
- But not always lower, e.g. 2D Ising as magnetic field crosses 0.

Bifurcations

- In equilibrium statistical mechanics, co-existence of N (extremal) phases is of codimension N-1 (Gibbs phase rule).
- But for space-time phases, non-unique phase can be robust, e.g. Toom PCA.
- Does the set of phases generically vary smoothly? Perhaps there is a spectral projection that contains all the dynamics of domains?
- Proved examples of bifurcation: kinetic 2D Ising, Keller's globally coupled maps
- Universality classes? Renormalisation (=aggregation + rescaling)?

3. Control and Design

- What changes to a phase can be achieved with local control? A zealot can have huge effect in opinion-copying models [Mobilia, 2003]
- Boundary control can have a large effect when phase is non-unique.
- What changes to the set of phases can be obtained with infinitesimal (but high gain) control? (cf. "control of chaos")
- How to design a complex system so that its phases optimise some objective function or partial order?

4. More questions

- More realistic systems, e.g. general network instead of a lattice, interaction of mobile units via proximity in space (swarms)
- Special classes, e.g. multi-agent games, number-conserving systems, many-body quantum systems, quantum gravity?
- Systems that never settle down (evolution?)?
- Aggregation procedures
- Reduction to macroscopic models
- Fitting to data

Conclusion

- Complexity Science offers a lot of serious and worthwhile challenges to Mathematics.
- Complexity Science needs serious input from Mathematics.

Advertisements

- Warwick EPSRC Mathematics Research Centre Symposium Year on "The Mathematics of Complexity Science and Systems Biology", Sept 09 - Sep 10. Remaining workshop: 14-16 September 2010: Ecology, epidemiology and evolution
- UK Complex Systems Dynamics LMS network (CoSyDy).
- Warwick EPSRC Doctoral Training Centre in Complexity Science.
- ERASMUS MUNDUS 2-year MSc in Complexity Science, joint with Ecole Polytechnique, Chalmers University and University of Goteborg.

