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Happy Birthday, Tassos! 



Complexity Science: my view 
•  The study of systems with many 

interdependent components 
•  e.g. laser, condensed matter, cell, brain, 

ecosystem, climate system, transport 
network, internet, health service, 
finance, economy 

•  Hope for unifying principles: 
mathematics 



Is it new? No! 
•  Complexity Science builds on much preceding 

science, e.g. statistical mechanics, nonlinear 
dynamics, stochastic processes, ecology/
epidemiology, game theory, evolutionary theory, 
many-body quantum theory… 

•  “The main themes in complexity theory have 
been studied by physicists for over a hundred 
years, and these scientists have evolved a 
toolkit of concepts and techniques to which 
complexity studies have added barely a handful 
of new items.” (P Ball, 2004) 



New? continued 
•  “A new branch of mathematics – the theory of systems 

with a large number of locally interacting random 
components – has developed in recent years.  This 
theory is a natural instrument for the mathematical 
modeling of … systems of various natures, such as 
complex biological, chemical, physical, and cybernetical 
systems and socio-economic structures.” (Dobrushin, 
Kryukov &Toom, 1978). 

•  The current wave can be considered to have started with 
the Santa Fe Institute in 1984. 

•  But the surface has only been scratched. 



What are the questions? 
1. Emergence 
2. Robustness 
3. Control and Design 
4. More 



1. Emergence 
•  Wikipedia: “Emergence is 

the way complex systems 
and patterns arise out of a 
multiplicity of relatively 
simple interactions” 

•  “The whole is more than the 
sum of its parts” (Aristotle, 
c330BC) 

•  “the whole becomes not 
merely more, but very 
different from the sum of its 
parts” (Anderson, 1972) A “cathedral” mound produced by  

a termite colony: a classic example  
of emergence in nature. 



Philosophers 
•  JS Mill, 1843 
•  Weak v Strong emergence,  

 e.g. Chalmers, 2006: A high-level phenomenon is 
weakly / strongly emergent with respect to a low-level 
domain when it arises from the latter but truths 
concerning it are  

 unexpected given the principles governing /  
 not deducible even in principle from truths in 

 the low-level domain.   



My view: space-time phases 
(a) What emerges from a spatially extended 

dynamical system is “space-time phases”:  
probability distributions over realisations of 
state as function of space-time that arise from 
typical initial probabilities in the distant past. 

(b) Amount of emergence is the “distance” of a 
space-time phase from the set of products for 
independent units. 

(c) Strong emergence means non-unique space-
time phase (but not due to decomposability).  



(a) Examples of phases 
•  “Climate” is a probability 

distribution for 
temperature, 
precipitation etc over 
space-time, compatible 
with the laws of 
weather. 

Thessaloniki 



Equilibrium statistical mechanics 
•  The allowed probability 

distributions are the “Gibbs 
phases” for βH where H 
represents the sum of 
contributions h to the energy and 
β is coolness (1/temperature). 

•  i.e. probability density  

Dihydrofolate reductase 
 in water (Dmitry Nerukh) 

wrt reference measure, where Z is a 
normalisation constant, or better those 
whose conditionals for all finite 
subsystems and external states satisfy 
this (Dobrushin,Lanford,Ruelle). 
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Stochastic dynamics 
•  For Markov chains the phases are the 

Gibbs phases (over time) for   - log p(i,j): 
probability of sequence i0,i1,…,in = 

•  Probabilistic cellular automata (PCA): 
update state σs

t at spatial site s and time 
t by independent probabilities conditional 
on current state σt    

•  Demonstration: Toom’s NEC majority 
voter PCA with error rate p = 0.15, by 
Marina Diakonova. 

•  The phases of a PCA are the space-time 
Gibbs phases for – log p(σs

t+1|σt).  
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Deterministic dynamics 
•  Sensitive dependence on initial conditions 

makes individual trajectories unpredictable 
but often leads to a unique probability 
distribution on an attractor for random 
initial conditions in its basin. 

•  e.g. trajectories on a topologically mixing 
uniformly hyperbolic attractor for a map f 
can be coded by symbol strings σ, and 
random initial conditions in distant past in 
the basin give trajectories distributed 
according to unique Gibbs phase for  

 on time [Sinai, 1967/72] 
•  Analogous results for continuous-time. 

Markov partition for Cerbelli-Giona map 
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A physical uniformly hyperbolic system 

Minimal geodesics on  
configuration space from  
which to make a 40 
element Markov partition Show video 



Spatially extended deterministic 
dynamics 

•  Trajectories of uniformly hyperbolic spatially 
extended discrete-time system f (coupled map 
lattice) can be coded by space-time symbol 
tables σ = (σs

t). 
•  Random initial conditions in distant past lead to 

distribution of trajectories given by Gibbs phases 
of 

 (M,1995; Bricmont & Kupiainen, 1996). 
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(b) Distance between multivariate probabilities 

•  Most metrics on spaces of probabilities do not behave well for large 
number of variables. 

•  e.g. product of N independent Bernoulli B(p,1-p) variables on {0,1}N 
in total variation metric: 
        over measurable subsets A,  
 moves with speed ~                         wrt p. 

  Can’t save it by dividing by        because diameter in TV = 1. 
 “Total variation convergence essentially never occurs for particle 
systems” (Liggett, 1985).  

N
2π p(1− p)

DTV (ρ,σ ) = sup(ρ(A) − σ (A))

N



Dobrushin metric 
•  If X is a product of (complete separable, bounded diameter) metric 

spaces (Xs,ds) over s in a countable set S, define Dobrushin’s 
functions                   ,  continuous wrt product topology and 
“summably component-wise Lipschitz”:                                   ,  
where Λs(f) is the Lipschitz constant for f wrt xs. 

•  For (Borel wrt product topology) probabilities ρ,σ on X, define 

 over non-constant Dobrushin f, where ρ(f) is the mean of f wrt ρ.   
+  Gives speed of product of N Bernoulli B(p,1-p) variables = 1. 
+  Streamlines Dobrushin’s proof of unique phase for “weakly 

dependent” PCA (e.g. Toom NEC for p in (1/3,2/3). 
+  Proves uniformly smooth change of phase wrt parameters for PCA 

with spectral gap (I-P invertible on space of neutral measures). 
-  Not easy to compute (yet) 

€ 

f : X→ R
f = Σs Λs ( f ) < ∞

D(ρ,σ ) = sup ρ( f ) − σ ( f )
f



Amount of emergence 
•  is the distance of a space-time phase from the set of 

product probabilities for independent units. 
•  measures how far the behaviour is from mean-field 

approximations 
•  does not capture what some people want to mean by 

“emergence”, e.g. law of averages, selection of 
Maxwellian velocity distribution 

•  but does capture a likely consequence of having 
interdependent components 

•  More interesting would be to determine correlation 
structure of the phase   



(c) Strong emergence 
•  More than one possible phase (“phase transition”) 
•  Example: 2D Ising model (Peierls) 
•  Example: Toom’s majority voter PCA with error rate 0.05 
•  Say amount of strong emergence is the diameter of the set of 

phases.  An alternative is the persistent mutual information 
between well separated parts of space-time (Ball, Diakonova, M) 

•  Non-unique phase can arise for topological reasons, e.g. more 
than one attractor, or 2-piece attractor; more generally, because 
system is “decomposable”. Don’t count as strong emergence. 

•  A system with a space-time symbolic description is 
“indecomposable” if any allowable configurations on two 
sufficiently separated space-time patches can be joined into an 
allowable configuration (“specification property”). 

•  Non-trivial strong emergence requires infinite system, but is 
reflected in long-range correlations for finite versions. 



Proved examples of strong emergence 
•  Ferromagnetic phases of 2D Ising model 
•  Ferromagnetic phases of Toom’s NEC voter PCA 
•  Period-2 phases of Toom’s NEC voter (error rate 0.95) 
•  Examples with (at least) 2n extremal phases [demo], and also non-monotonic 

examples, e.g. 3 phases [demo] 
•  Endemic infection v disease-free phases of contact processes (Stavskaya…) 
•  Coupled map lattices based on these (Sakaguchi, Gielis&MacKay, Bardet&Keller) 



2. Robustness 
(i) How does a phase respond to a shock? 
•  Exponential decaying response to shocks in case of 

PCA with spectral gap, but more generally?  
(ii) How does the phase or set of phases (closed, convex)

vary with parameters? 
•  For PCA with a spectral gap, under small changes the 

unique phase stays unique and varies smoothly (cf. 
Ruelle for SRB measure of a uniformly hyperbolic 
dynamical system) 

•  For systems whose phases are Gibbsian, the set of 
phases varies upper hemi-continuously. 

•  But not always lower, e.g. 2D Ising as magnetic field 
crosses 0. 



Bifurcations 
•  In equilibrium statistical mechanics, co-existence 

of N (extremal) phases is of codimension N-1 
(Gibbs phase rule).  

•  But for space-time phases, non-unique phase can 
be robust, e.g. Toom PCA. 

•  Does the set of phases generically vary smoothly? 
Perhaps there is a spectral projection that contains 
all the dynamics of domains? 

•  Proved examples of bifurcation: kinetic 2D Ising, 
Keller’s globally coupled maps 

•  Universality classes? Renormalisation 
(=aggregation + rescaling)? 



3. Control and Design 
•  What changes to a phase can be achieved with 

local control? A zealot can have huge effect in 
opinion-copying models [Mobilia, 2003]  

•  Boundary control can have a large effect when 
phase is non-unique. 

•  What changes to the set of phases can be 
obtained with infinitesimal (but high gain) control? 
(cf. “control of chaos”) 

•  How to design a complex system so that its 
phases optimise some objective function or partial 
order? 



4. More questions 
•  More realistic systems, e.g. general network 

instead of a lattice, interaction of mobile units via 
proximity in space (swarms) 

•  Special classes, e.g. multi-agent games, 
number-conserving systems, many-body 
quantum systems, quantum gravity? 

•  Systems that never settle down (evolution?)? 
•  Aggregation procedures 
•  Reduction to macroscopic models 
•  Fitting to data 



Conclusion 

•  Complexity Science offers a lot of serious 
and worthwhile challenges to 
Mathematics. 

•  Complexity Science needs serious input 
from Mathematics. 
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•  UK Complex Systems Dynamics LMS network (CoSyDy).   
•  Warwick EPSRC Doctoral Training Centre in Complexity 

Science. 
•  ERASMUS MUNDUS 2-year MSc in Complexity Science, 

joint with Ecole Polytechnique, Chalmers University and 
University of Goteborg. 


