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Long-range interacting systems

d : spatial dimensions of the systems

r � rtyp v(r) ∼ 1

rα
α ≤ d

Gravitational system, one-component plasma

H =
N∑
i=1

p2
i

2m
+

1

2N

N∑
i,j=1

v(qi − qj)

2D, Quasi-2D turbulence and geophysical flows

ex.: 2-d Euler:

∂tω + v · ∇ω = 0 with ω = ∇∧ v , ω = 4ψ

E = −
∫

drdr′ ω(r)G(r , r ′)ω(r′) , G ∼ log |r − r′|

Quasi-2D models: Shallow-water equation, Quasi-geostrophic equation, ...

...



Non-equilibrium statistical mechanics

Short-range systems

Non-equilibrium stationary states sustained by flux of conserved quantities,
broken detailed balance, ...

no analogous to Boltzmann-Gibbs theory

Long-range systems

forcing can act coherently on all the degrees of freedom:

imposed electric fields on a plasma ?

gravitational fields created by other galaxies ?

... ?



Stochastically forced long-range systems

Fluid models

2D and Quasi-2D turbulence models

Large scale structures in constrast with 3D turubulence

Geophysical systems

Energy injection
Wind on oceans
Different layers in atmosphere
...

Dissipation on large scales
effect of boundaries

(Weak?) FLUX OF ENERGY from SMALL to LARGE SCALES

OUT OF EQUILIBRIUM PHENOMENA!



Stochastically forced long-range systems

Stochastically forced quasi-Geostrophic equations

∂tq + v · ∇q = −αq + F (r, t)

〈F (r, t)F (r′, t′)〉 = C(r − r′)δ(t − t′)

q: quasi-geostrophic potential vorticity



Stochastically forced long-range particle systems

IN THIS TALK: stochastically forced Long-range PARTICLE systems

Work in progress (with F. Bouchet & T. Tangarife)

similar theoretical tecniques for stochastically forced 2d fluids

∂tω + v · ∇ω = −αω + F (r, t)

Similarity between 2d Euler and Vlasov equation

non-linear transport equations

infinite number of conserved quantities (Casimirs)

Hamiltonian structure
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HMF model and its equilibrium behavior

Hamiltonian Mean Field model

H =
N∑
i=1

p2
i

2
− 1

2N

∑
i,j

cos(qi − qj) =

=
N∑
i=1

p2
i

2
− N

2
|m|2

magnetization

m(t) =
√

m2
x + m2

y

mx (t) =
1

N

N∑
i=1

cos qi

my (t) =
1

N

N∑
i=1

sin qi

Computational cost of Molecular Dynamics ∼ N

Antoni and Ruffo, PRE 52, 2361-2374 (1995)



Isolated long-range systems: relaxation to equilibrium

H =
N∑
i=1

p2
i

2m
+

1

2N

N∑
i,j=1

v(qi − qj) v(r) ∼ 1

rα
α ≤ d

Relaxation to equilibrium

Quasi-stationary states

Non-ergodicity
lifetime ∼ N (diverging with the system size!)

Y. Yamaguchi, J. Barré, F. Bouchet, T. Dauxois, and S. Ruffo, Physica A (2004)



Isolated long-range systems: kinetic theory

small parameter: 1/N f (q, p, t): density in (q, p) at time t

Vlasov equation (t << τc ∼ Nδ , δ > 0)

∂f

∂t
+ p

∂f

∂q
− ∂f

∂p

∂Φ

∂q
= 0 Φ(q) =

∫
dq′ v(q − q′)f (q′)

Mean field approximation
exact for N →∞

Quasi-Stationary States: stable
equilibria

Infinite number of QSS

Lenard-Balescu equation ... (t ∼ τc)

∂f

∂t
+ p

∂f

∂q
− ∂f

∂p

∂Φ

∂q
=

1

N
C [f ] Lowest order description of finite-N

effects

weak correlations cause slow evolution

analogous to Boltzmann equation

slow relaxation through Quasi-Stationary-States
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Definition of the model

H =
N∑
i=1

p2
i

2m
+

1

2N

N∑
i,j=1

v(qi − qj) Simulations: v(q) = − cos q

STOCHASTIC EQUATIONS OF MOTION

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi
− αpi +

√
αF (qi , t)

F Gaussian stochastic process with 〈F (q, t)〉 = 0

〈dF (q, t)dF (q′, t ′)〉 = B(|q − q′|)δ(t − t ′)dt

α: forcing and dissipation parameter

Coherent stochastic forces

Coherent stochastic term: NOT Fi (qi , t)

external stochastic field
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Definition of the model

“Fourier expansion” of F (q,t)

gk =
1

L

∫
dq B(q)e−ikq > 0, F (q, t) =

∑
k

gk e
ikqWk(t)

Wk : independent Weiner processes

gk : forcing at the spatial scale 1/k

Kinetic energy in a steady state: KINETIC TEMPERATURE

T = 2〈Kss〉 =
1

2

∑
k

g 2
k

Detailed balance ↔ gk = g ∀k
Can be far from detailed balance also for α� 1
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Timescales & fluctuations: N and α

N � 1: number of degrees of freedoms
Plasma, self-gravitating systems

α� 1: weak forcing limit
Technical reason: small parameter

Timescales

Collective timescale: τc ∼ N

Stochasticity: τs = 1/α

Fluctuations of intensive observables

Finite-size effects: ∼ 1/
√
N

Stochasticity:
√
α

Limits

Continuous limit: N α� 1

Negligible finite size effects:
similar to 2D fluid models!

N α ∼ 1 or � 1: simple
generalization
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Kinetic theory: the small parameter

Perturbation theory in the SMALL PARAMETER: α� 1/N

FOKKER-PLANCK for the N-particles distribution function fN

∂fN

∂t
+ Liouville terms = −

N∑
i=1

∂(αpi fN)

∂pi
−

α

2

N∑
i,j=1

C(qi − qj )
∂2fN

∂pi∂pj

〈F (q, t)F (q′, t′)〉 = C(|q − q′|)δ(t − t′)

Exact: too much information for a macroscopic description

Distribution functions

fs =
∫

fN d [s + 1]...d [N]

f1 = f : density in µ−space

f2: 2-particles correlations

....

=⇒
BBGKY hierarchy

∂t fs = L[fs , fs+1]

How to close the BBGKY hierarchy?



Kinetic theory: a qualitative idea

First equation of the BBGKY

∂f

∂t
+ Vlasov− ∂

∂p1
[αp1f ]− αT ∂2f

∂p2
1

= C [f2]
blue: order 1

red: order α

non neglegible two-particle correlations

Analogy with finite size effects in Hamiltonian systems

CORRELATIONS finite-N stochastic forces

METHOD

Minimal project: discard 3-particles correlations

Solve the II eq. of BBGKY

Plug the result in the I eq. of BBGKY

KIN. EQ. Lenard-Balescu “Our” kin. eq.

Hypothesis

f stationary stable solution of Vlasov equation at every time

−− > Time-scale separation ∼ f evolves slowly w.r.t. g

homogeneous system: f (p, q, t) = f (p, t)

−− > explicit form of the kinetic equation
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Kinetic theory. First step: closure of the BBGKY

connected components of correlations

f2(1, 2) = f (1)f (2) + αg(1, 2)

f3(1, 2, 3) = f (1)f (2)f (3) + f (1)g(2, 3) + ...+ ...+ h(1, 2, 3)

...

it is SELF-CONSISTENT to suppose:

f ∼ O(1)

αg ∼ O(α)

h ∼� αg

...

Lowest order possible scheme if we want to describe the effect of the forcing

Discard three-particle and higher order correlations while taking
into account two-particle correlations

Analogous to derivation of Boltzmann eq. or Lenard-Balescu eq.



Kinetic theory. Second step: Time-scale separation

I equation BBGKY

1

α

∂f

∂t
+

1

α
Vlasov− ∂

∂p1
[p1f ]− T

∂2f

∂p2
1

=
∂

∂p1

∫
d [2] v ′(q1 − q2)g(1, 2, t)

II equation BBGKY

∂g

∂t
+ L

(1)
f g + L

(2)
f g = C(|q1 − q2|)

∂

∂p1

∂

∂p2
f (1, t)f (2, t)

Lf g : linearized Vlasov operator around f acting on h

Time-scale separation

If f is a STATIONARY AND STABLE solution of the Vlasov equation

f evolves on a timescale of order 1/α

g evolves on a timescale of order 1

Bogoliugov “hypothesis”

We solve II supposing f fixed in time and we insert the STATIONARY solution
in the r.h.s. of I
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Kinetic theory. Third step: solution of the II eq. BBGKY

I equation BBGKY

1

α

∂f

∂t
− ∂

∂p1
[p1f ]− T

∂2f

∂p2
1

= lim
t→∞

∂

∂p1

∫
d [2] v ′(q1 − q2)g(1, 2, t)

We have reduced the problem to find the stationary solution of II equation
BBGKY

∂g

∂t
+ L

(1)
f g + L

(2)
f g = C(|q1 − q2|)

∂f (1)

∂p1

f (2)

∂p2

Lf g : linearized Vlasov operator around f acting on g

Very similar problem to solve the linear Vlasov equation

∂h

∂t
+ Lf h = 0

Easily doable when f (q, p, t) = f (p, t)

Remark: why we think that this is generalizable to fluids

∂ω + v · ∇ω = −αω +
√
αF

Lf −−− > linear Euler operator



Kinetic theory: resume

Analogy with finite size effects in Hamiltonian systems

CORRELATIONS finite-N stochastic forces

METHOD

Minimal project: discard 3-particles correlations

Solve the II eq. of BBGKY

Plug the result in the I eq. of BBGKY

KIN. EQ. Lenard-Balescu “Our” kin. eq.

Hypothesis

Discarding 3-particle and higher order correlations

f stationary stable solution of Vlasov equation at every time

−− > Time-scale separation ∼ f evolves slowly w.r.t. g

homogeneous system: f (p, q, t) = f (p, t)

−− > explicit form of the kinetic equation



Kinetic equation

KINETIC EQUATION: Non linear Fokker-Planck equation

1

α

∂f (p1, t)

∂t
− ∂

∂p1
[p1f (p1, t)]− ∂

∂p1

[
D[f ](p1)

∂f (p1)

∂p1

]
= 0

α: time-rescaling

Diffusion coefficient D[f ](p1)

D[f ](p) = T + 2π
∑
k=1

vkgk

∫ ∗
dp1

[
1

|ε(k, kp)|2
+

1

|ε(k, kp1)|2

]
1

p1 − p

∂f

∂p

∣∣∣∣
p1

.

T =
1

2

∑
k

g2
k

ε(k, ω) = 1− 2πiNkϕ(k)

∫ ∞
−∞

dp
f ′(p)

−iω + ikp∫ ∗ dp: Chauchy integral

vk : Fourier components of the potential v(q)



Comparing the results: kinetic energy and 〈p4〉

Figure: (a) Kinetic energy density 〈κ〉 and (b) 〈p4〉 as a function of αt, for the values B0 = 1.5 and g1 = 0.75. The data for
different N and α values are obtained from numerical simulations of the stochastically forced HMF model, and involve averaging over 50

histories for N = 104 and 103 histories for N = 103. The data collapse implies that α is the timescale of relaxation to the stationary
state. The inset shows the data without time rescaling by α.



Comparing the results

NON-EQUILIBRIUM STATIONARY VELOCITY DISTRIBUTION
α-independent shape

N = 104

kinetic temperature T = 0.75

forced modes: k = 1, 2



Non-equilibrium phase transitions in the stochastically forced HMF

What happens close to the
phase transition?

Adiabatic change of T

Close to detailed balance

Far from detailed balance Even further from detailed balance



Bistability

lifetime ∼ eλ/α

Bistable behavior described by
a Poisson process



Bistability: analogy with the 2D stochastically forced Euler equation

2D Stochastic Euler

∂tω + v · ∇ω = −αω +
√

2αF (r, t)

Bouchet and Simonnet, PRL, 094504 (2009)

Analogous behavior to

Reversal of earth magnetic field

Path of ocean currents (ex: Kuroshio current)

Experiments on rotating fluids



Conclusions and perspectives

Stochastically perturbed particles interacting with a long-range potential

Kinetic theory in the weak forcing limit

Prediction of NON-EQUILIBRIUM homogeneous states

Numerical observation of bistability

Ongoing works in kinetic theory

2d-turbulence: stochastic Euler equation

∂tω + v · ∇ω = −αω +
√

2αF (q, t)

with F. Bouchet and T. Tangarife

(Long term) perspectives

kinetic theory for geophysical models?
2D stochastic Navier-Stokes, Shallow-water, Quasi-geostrophic equations ...

Theoretical understanding of the bistability



Thank you!
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