

MASS AGGREGATION IN A SELF-GRAVITATING ONE-DIMENSIONAL GAS

Jarosław Piasecki

jpias@fuw.edu.pl

Institute of Theoretical Physics, Faculty of Physics, University of Warsaw

Fondation des Treilles

"Statistical mechanics of self-gravitating particles"

22-27 October 2012

Motto:

"Tis much better to do a little with certainty & leave the rest for others that come after, than to explain all things by conjecture without making sure of any thing."

Isaak Newton

"... The evolution of cold sticky matter ... is at least qualitatively like the evolution of self-gravitating matter in an expanding universe. The density distribution of matter becomes less homogeneous in the course of time. ..."

"... in a gravitating medium even without collisions there is effective sticking after the formation of multistream flows."

S.F. Shandarin, Ya. B. Zeldovich, *Large scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium*, Rev. Mod. Phys. **61**, 185 (1989).

SELF-GRAVITATING STICKY GAS IN ONE DIMENSION

Potential energy of a pair of particles

$$\gamma m_i m_j |x_i - x_j|$$

At a binary collision the particles merge instantaneously forming a single point mass

$$(m_i + m_j)$$

with momentum

 $(p_i + p_j)$

INITIAL STATE

N identical masses m starting from points (a, 2a, 3a, ..., Na) with uncorrelated velocities distributed according to some probability density $\phi(v)$.

Limit of a continuous mass distribution:

$$N \to \infty, \quad m \to 0, \quad a \to 0$$

 $M_{tot} = Nm = const, \quad \rho = \frac{m}{a} = const$

At the initial moment

$$\rho(x;0) = \theta(x)\theta\left(\frac{M_{tot}}{\rho} - x\right)\rho$$

CHARACTERISTIC TIME OF GRAVITATIONAL INTERACTION

Static initial distribution: $\phi(v) = \delta(v)$. In the course of time distances between neighbouring particles shrink to $(a - m\gamma t^2)$. Then, all *N* particles merge simultaneously at the moment

$$t = t^* = \sqrt{\frac{a}{\gamma m}} = \frac{1}{\sqrt{\gamma \rho}}$$

In the continuum limit, for times $t < t^*$

$$\rho(x;t) = \theta(x - \gamma M_{tot} \frac{t^2}{2}) \theta\left(\frac{M_{tot}}{\rho} - x - \gamma M_{tot} \frac{t^2}{2}\right) \frac{\rho}{1 - \rho \gamma t^2}$$

$$\lim_{t \nearrow t^*} \rho(x;t) = M_{tot} \delta\left(x - \frac{M_{tot}}{2\rho}\right)$$
Fondation des treilles, 22-27 October 2012 - p. 6/12

PROBABILITY OF COMPLETE AGGREGATION

Initial configuration

 $x_1 < x_2 < \dots < x_N$

 $X^{r}(t)$ = center of mass trajectory of the cluster containing particles 1, 2, ..., r $X^{N-r}(t)$ = center of mass trajectory of the adjacent cluster containing particles r + 1, r + 2, ..., N

$$X^{r}(0) < X^{N-r}(0)$$

Probability of complete aggregation before time t

$$P_N(t) = \left\langle \prod_{r=1}^{N-1} \theta[X^r(t) - X^{N-r}(t)] \right\rangle$$

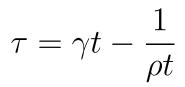
GAUSSIAN INITIAL VELOCITY DISTRIBUTION

$$\phi_{\lambda}(v) = \frac{1}{\sqrt{2\pi\lambda}} \exp\left(-\frac{v^2}{2\lambda^2}\right)$$

$$P_N(\tau) = \sqrt{2\pi N} \int du_1 \dots \int du_{N-1} \phi(u_1) \phi(u_2 - u_1)$$

...
$$\phi(u_{N-1} - u_{N-2})\phi(-u_{N-1})\prod_{r=1}^{N-1} \theta\left\{u_r + \frac{m\tau}{2\lambda}r(N-r)\right\}$$

where



COMPLETE AGGREGATION IN THE CONTINUUM LIMIT

At $\tau = 0$ (or at $t = t^*$), one finds a remarkably simple result

$$P_N(0) = \frac{1}{N}$$

Continuum limit

$$P(\tau) = \theta(\tau) \exp[-A(\tau)]$$

$$A(\tau) = 2 \sum_{n=1} \int_{(M_{tot}/2\lambda)\tau} dy \,\phi(\sqrt{n}\,y)$$

$$MASS DENSITY AT t = t^*$$

$$\rho(X; t^*) = M_{tot} \,\delta\left(X - \frac{M_{tot}}{2\rho}\right)$$

Configurations after t^* consist of a single macroscopic mass surrounded by a dust of non-extensive fragments composed of a finite number of initial particles. Probability $\mu_k(t)$ to have exactly (k-1) fragments at $t > t^*$ is given by the Poisson law

$$\mu_k(t) = \frac{[A(\tau)]^{k-1}}{(k-1)!} \exp[-A(\tau)]$$

 $A(\tau)$ = mean number of fragments.

BEFORE THE APPEARANCE OF A MACROSCOPIC MASS

 $0 < t < t^*$

Most of the kinetic energy is rapidly dissipated by inelastic collisions. The subsequent evolution is dominated by gravitational forces. Conjectures to be proved:

- 6 mass density converges to the uniform density as in the static model
- 5 typical configurations consist of $\sim \sqrt{N}$ aggregates with masses of the order $m\sqrt{N}$

Bibliography

- 1. Ph. A. Martin, J. Piasecki, J. Stat. Phys. 84, 837 (1996).
- 2. E. Weinan, Yu. G. Rykov, Ya. G. Sinai, *Commun. Math. Phys.* **177**, 349 (1996).
- 3. J. C. Bonvin, Ph. A. Martin, J. Piasecki, X. Zotos, *J. Stat.Phys.* **91**, 177 (1998).
- 4. L. Frachebourg, Ph. A. Martin, J. Piasecki, *Physica A* 279, 69 (2000).