-

Responseto external perturbations
In systemswith long-range
Inter actions

STEFANO RUFFO

Dipartimento di Energetica “S. Stecco”, Universita di Firenze, Italy, and
ENS-Lyon, Laboratoire de Physique

Fondation des Treilles, october 22-27 (2012)



oo 0 0

Plan

HMF model
Quasistationary states
Inhomogeneous steady states

Linear response of quasistationary states

-

Response to external perturbations in systems with long-range interactions — p.2/3



Gravity
E

Instein equations

d?z? LT dzt dx”
dr? Y dr dt

Newton equations

o -

Response to external perturbations in systems with long-range interactions — p.3/3



HMF model
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Self-gravitating ring
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where ¢ is the softening parameter.
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Quasl-stationary states
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U = 0.69, from left to right N = 102,103,2 x 103,5 x 103,104, 2 x 10%.
Initially A6 = =, hence My = 0.
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Time scale
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Power law increase of the lifetime, exponent 1.7
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1D self-gravitating
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Separ ation of time scales
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Vlasov equation

of | of _deO)f]of _

ot o8 o op "
®O)[f] = 1— Mz[f]cos(f) — My[f]sin(F),
M) = [ £0.p.1) costaodp
My[f] = /f(@,p,t) sin dodp .

Energy

UL = [0 /2)5(6.p,0)d00p +1/2 — (M2 + 213) /2

and momentum

P[f] = /pf(9,p, t)dodp

are conserved.

Response to external perturbations in systems with long-range interactions — p.10/3.



0.08 0.08
0.06 0.06
0.04 0.04
0.02 0.02
0.00 0.00

0.10 3

0.08 f 008
005 : 0.06
004 . 0.04
0.02 > 0.02
0.00 -3 0.00

“5-2-10 1 2 3

Response to external perturbations in systems with long-range interactions — p.11/3.



Exact inhomogeneous steady states

Vlasov equation for the HMF model

of , oI VIf0.0)df _
— 4 —0
ot 00 00 op

where
VIfl(0,t) = // do’dp’ f(0',p’,t) (1 — cos(8' — 9))
Any function
fs(0,p) = F(h(0,p)) with
with

p2
h(0,p) = & + VIfs(0).

and
V(0)[fs] =1 — Maz[fs]cos(0) — My[fs]sin(0)

IS a stationary solution of the Vlasov equation, once we require that it has the correct
properties of a one-particle distribution (Bernstein-Green-Kruskal (BGK) modes).

P. de Buyl, D. Mikanel
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Non interacting particles

Consider the dynamics of an ensemble of uncoupled particles moving in a fixed external field H

p2
e(0,p) = 5~ H cos 6

For an arbitrary function F'(e(@, p)) to be a steady state of the interacting model, H has to
satisfy the following self-consistency condition

H=m4z = //d@dpF(e(G,p)) cos ; my =0

To relate an initial distribution to the steady state to which it evolves, consider an initial
distribution fo (6, p). The dynamics of the uncoupled model is such that particles in a given
energy shell [e, e + de] keep moving inside that shell, eventually reaching a homogeneous
distribution within it. As a result, the system attains the following steady state distribution

[ d9'dp’ fo(6,p") 0 (e(¢,p") — €(6,p))
PO.p) = [ do"dp’ 5 (e(0',p") — €(6,p))
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Initial water bag
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AAOAp 1 , for |0 < Afand |p| < Ap
N

, otherwise.




Energy distribution

In order to evaluate P(0, p), it is convenient to first consider the energy distribution P (¢).
For the waterbag initial state it is given by

df d5——H 6
4A9Ap/ / P o cosf —¢)

Pc(e) =

Integrating over p
1

do :
2A0Ap V/2(e + H cos0)

Pc(e) =

for —H < e < Ap?/2 — H cos Af and zero outside this range.
The integration over 6 need to be done in the domain enclosed by the initial waterbag

A 2
0<e+ HcosO < Tp
Thus,
2 90 1
Pc(e) = V2 do (1)
2A0Ap V/ (e + H cos 0)

where 6y and 6, satisfy the conditions described in the next slide.
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|ntegration limits
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, for — H < e < —HcosAf
, fore > —H cos A6,

Jfor — H < e<Ap?/2—H
,for Ap? /2 — H < e <

Ap? /2 — H cos Af
, fore > Ap?/2 — H cos Af .
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Steady state distribution

In the steady state, the distribution is such that all the microstates corresponding to a given
energy are equally probable. The boundaries on (6, p) imposed by the initial waterbag are
no longer valid. Thus, the steady state distribution P (60, p) may be expressed as

1 Pe(e(8,p))
4A0AD Qc(€(0,p))

P(0,p) = 156(6(9,}9)) ;

where Q(¢) is given by P(e) with the bounds given by the waterbag removed. Integrating
over p, it is straightforward to express, without any approximation, the marginal in 0 as

e’e) 1 _
Py (6, H) :ﬂ/_Hcosede N YT P.(e) .

and then impose the consistency relation

+7
H :/ dOPy(6, H) cosO .
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Marginals
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Marginals in # and in p of the steady state distribution for
Af=1and Ap = 1.
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Results

o .

Unless Af = w, the r.h.s of the consistency relations is

proportional to v/ H. This implies that there is always a tail
IN magnetization at large values of Ap. Here, A6 = 1.
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Generic homogeneous distribution
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fO (97 p) — ¢;§f)

P (€) 1 fd9/¢0(\/2(HC059’+€))(Hc030’—}—e)—1/2
€) =
QSS 2T fdQ/(HCOS Y _|_€)_1/2

Formally expanding around H = 0

Pss(0.p) = 20— B0 g1y oz

qbg cos? 0

27p

b0 (p)

27

H = /d@dpPQSS(G,p) cos@z/d@dp cos@—/d@dp H + O(H?)

which gives

o

1 ¢ (p)
1—|—§/dp Op =0
J
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Relaxation time scales

Response to external perturbations in systems with long-range interactions — p.22/3.



Perturbed hamiltonian

-

N
H(t) = Ho + Hext = Ho — K(t) > b(qs)
i=1
Vlasov equation as a Liouville equation for f
of
— — L t =0
5~ Ll )f1f
o  0®(q,t)[f] O ob 0
L(g,p,t)[f] =— — K(t)— —
(¢, t)[f] Poe T " oq o ()8q8p

Stationary state of the unperturbed Hamiltonian Hy

Lo(q,p)[folfo =0

Lo(g,p)[fo] = —p 38(1 + acb(gc)][fo] 3(1

A Patelli, S. CGupta, C Nardini

.
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Linearized Vlasov equation

flg,p,t) = folg,p) + Af(q,p,t)

Af(q,p,0)=0

I f

ke Lo(q, p)[Jo]Af = Lext (g, p, t)[Af]fo(g, p)

aveff(Qa t) [Af] 0
d0q Op

Vet (¢, 1) [Af] = ®(q,t)[Af] — K(t)b(q)

Lext(Qapv t)[Af] —




Evolution of an observable

Formal solution of the linearized equation

with

t
Af(g,p,t) = /dT et=mLolap)lfol (g, p, ) AF]folq, p)
0

(Da(@))(t) = (a(@) () — (alg)) ¢, = / dadp a(g)Af(q,pst)

t

Ba(@)©) == [ ar [ gty (D EHEDER)

op oq
0

(a(@)) s = / / dadp a(q) fo(q,p), a(t — 1) = e~ (t="E0@P) ol g(g)
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Solution in Laplace-Fourier

- .

Af(k,p,w / dt/dq exp(—ikq + iwt)Af(q,p,t)

For homogeneous stationary states fo = P(p), since we are interested in observables that
depend only on ¢

K (w)b(k) [e(k,w) - 1}
2mv(k) e(k,w)

where v (k) is the Fourier transform of the two-body potential

/dp Af(k,p,w) =

dp 9OP(p)
kp—w Op

ek, w) = 1 — 2k (k) /

is the so-called plasma response dielectric function and K (w) is the Laplace transform of
K(t).
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Applicationto HMF
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Homogeneous water bag
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Per manent oscillations N-body
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Per manent oscillations Vlasov
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<?n':xr> Ensemble average ( { )

0.014

0.01

0.006 |

0.002 |

-0.002

Fermi-Dirac

-

‘Simulations
Theory ——

2(a)
i Simulations (€=0.69) ------ 0.0075
1 Simulations (e=0.9) -~ "g‘ 0007 |
i Theor. value (e=0.69) ——
1L, Theor. value (€=09) 1 0.0065 |
(14t [ ~ 0006}
A A & 0.0055 |
Y s S oo0s |
LY < 0.0045 |
2 0.004 |
Z
..rﬂ 0.0035
E" 0.003
~  0.0025
50 100 1.2
Time ¢
A 1

1.4

1.6

1.8
H

2.4

-

Response to external perturbations in systems with long-range interactions — p.32/3.



<r'rn' :r.'} Enscimble avera J'{:( { j

Gaussian

0.013 . . . — - .
Simulations
0.002 4o S —— 5 ———— "g 0.012 Theory —— -
: e 0.011 |
| T 0.01 t
é % 0.009 t
..... = 0.008 |
0.001 | W ] i
| Z 0.006 |
| _ﬂ? 0.005 |
! Simulations (e=2.0) ------
! Simulations $E=3.D} ? 0.004
| Theor. value fezz.ﬁﬂ —_— = 0.003 t
P Theor. value (e=3.0) - , . . . . .
-0.0001 1 0.002
0 50 100 1 1.1 1.2 1.3 1.4 1.5 1.6
Time ¢ Energy e

-

Response to external perturbations in systems with long-range interactions — p.33/3.



Relaxation to equilibrium
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