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Gravity
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HMF model
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Self-gravitating ring
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1

2

NX
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p2
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Vε(θi − θj) ,

Vε(θi − θj) = − 1√
2

1p
1 − cos(θi − θj) + ε

where ε is the softening parameter.

T. Tatekawa, F. Bouchet, T. Dauxois
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Quasi-stationary states
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U = 0.69, from left to right N = 102, 103, 2 × 103, 5 × 103, 104, 2 × 104.
Initially ∆θ = π, hence M0 = 0.

Y. Y. Yamaguchi, J. Barre, F. Bouchet, T. Dauxois
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Time scale
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Power law increase of the lifetime, exponent 1.7
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1D self-gravitating

The lifetime increases with N .
M. Joyce and T. Worrakitpoonpon
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Separation of time scales

Initial Condition

Quasistationary state

Boltzmann’s Equilibrium

τv = O(1)

τc = N δ
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Vlasov equation

∂f

∂t
+ p

∂f

∂θ
− dΦ(θ)[f ]

dθ

∂f

∂p
= 0

Φ(θ)[f ] = 1 − Mx[f ] cos(θ) − My [f ] sin(θ) ,

Mx[f ] =

Z
f(θ, p, t) cos θdθdp ,

My [f ] =

Z
f(θ, p, t) sin θdθdp .

Energy

U [f ] =

Z
(p2/2)f(θ, p, t)dθdp + 1/2 − (M2

x + M2
y )/2

and momentum

P [f ] =

Z
pf(θ, p, t)dθdp

are conserved.
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Water bag
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Exact inhomogeneous steady states

Vlasov equation for the HMF model

∂f

∂t
+ p

∂f

∂θ
− ∂V [f ](θ, t)

∂θ

∂f

∂p
= 0

where

V [f ](θ, t) =

ZZ
dθ′dp′f(θ′, p′, t)

`
1 − cos(θ′ − θ)

´

Any function

fS(θ, p) = F (h(θ, p)) with

with

h(θ, p) =
p2

2
+ V [fS ](θ).

and

V (θ)[fS ] = 1 − Mx[fS ] cos(θ) − My[fS ] sin(θ)

is a stationary solution of the Vlasov equation, once we require that it has the correct
properties of a one-particle distribution (Bernstein-Green-Kruskal (BGK) modes).

P. de Buyl, D. Mukamel
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Non interacting particles

Consider the dynamics of an ensemble of uncoupled particles moving in a fixed external field H

ǫ(θ, p) =
p2

2
− H cos θ

For an arbitrary function F (ǫ(θ, p)) to be a steady state of the interacting model, H has to
satisfy the following self-consistency condition

H = mx =

ZZ
dθdpF (ǫ(θ, p)) cos θ ; my = 0

To relate an initial distribution to the steady state to which it evolves, consider an initial
distribution f0(θ, p). The dynamics of the uncoupled model is such that particles in a given
energy shell [ǫ, ǫ + dǫ] keep moving inside that shell, eventually reaching a homogeneous
distribution within it. As a result, the system attains the following steady state distribution

P (θ, p) =

RR
dθ′dp′f0(θ′, p′) δ (ǫ(θ′, p′) − ǫ(θ, p))RR

dθ′dp′ δ (ǫ(θ′, p′) − ǫ(θ, p))
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Initial waterbag

f0(θ, p) =

{

(4∆θ∆p)−1
, for |θ| ≤ ∆θ and |p| ≤ ∆p ,

0 , otherwise.
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Energy distribution

In order to evaluate P (θ, p), it is convenient to first consider the energy distribution Pǫ(ǫ).
For the waterbag initial state it is given by

Pǫ(ǫ) =
1

4∆θ∆p

Z
dθ

Z ∆p

−∆p
dp δ(

p2

2
− H cos θ − ǫ)

Integrating over p

Pǫ(ǫ) =
1

2∆θ∆p

Z
dθ

1p
2(ǫ + H cos θ)

,

for −H ≤ ǫ ≤ ∆p2/2 − H cos ∆θ and zero outside this range.
The integration over θ need to be done in the domain enclosed by the initial waterbag

0 ≤ ǫ + H cos θ ≤ ∆p2

2
.

Thus,

Pǫ(ǫ) =

√
2

2∆θ∆p

Z θ0

θ1

dθ
1p

(ǫ + H cos θ)
(1)

where θ0 and θ1 satisfy the conditions described in the next slide.
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Integration limits
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Steady state distribution

In the steady state, the distribution is such that all the microstates corresponding to a given
energy are equally probable. The boundaries on (θ, p) imposed by the initial waterbag are
no longer valid. Thus, the steady state distribution P (θ, p) may be expressed as

P (θ, p) =
1

4∆θ∆p

Pǫ(ǫ(θ, p))

Qǫ(ǫ(θ, p))
≡ P̄ǫ(ǫ(θ, p)) ,

where Q(ǫ) is given by P (ǫ) with the bounds given by the waterbag removed. Integrating
over p, it is straightforward to express, without any approximation, the marginal in θ as

Pθ(θ, H) =
√

2

Z
∞

−H cos θ
dǫ

1p
(ǫ + H cos θ)

P̄ǫ(ǫ) .

and then impose the consistency relation

H =

Z +π

−π
dθPθ(θ, H) cos θ .
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Marginals
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Marginals in θ and in p of the steady state distribution for
∆θ = 1 and ∆p = 1.
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Results

Unless ∆θ = π, the r.h.s of the consistency relations is
proportional to

√
H. This implies that there is always a tail

in magnetization at large values of ∆p. Here, ∆θ = 1.
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∆θ = π
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Generic homogeneous distribution

f0(θ, p) =
φ0(p)

2π

PQSS(ǫ) =
1

2π

R
dθ′φ0(

p
2(H cos θ′ + ǫ))(H cos θ′ + ǫ)−1/2

R
dθ′(H cos θ′ + ǫ)−1/2

Formally expanding around H = 0

PQSS(θ, p) =
φ0(p)

2π
− φ

′

0(p) cos θ

2πp
H + O(H2)

H =

Z
dθdpPQSS(θ, p) cos θ =

Z
dθdp

φ0(p)

2π
cos θ −

Z
dθdp

φ
′

0 cos2 θ

2πp
H + O(H2)

which gives

1 +
1

2

Z
dp

φ
′

0(p)

p
= 0
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Relaxation time scales
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Perturbed hamiltonian

H(t) = H0 + Hext = H0 − K(t)

NX

i=1

b(qi)

Vlasov equation as a Liouville equation for f

∂f

∂t
− L(q, p, t)[f ]f = 0

L(q, p, t)[f ] ≡ −p
∂

∂q
+

∂Φ(q, t)[f ]

∂q

∂

∂p
− K(t)

∂b

∂q

∂

∂p

Stationary state of the unperturbed Hamiltonian H0

L0(q, p)[f0]f0 = 0

L0(q, p)[f0] = −p
∂

∂q
+

∂Φ̄(q)[f0]

∂q

∂

∂p

A. Patelli, S. Gupta, C. Nardini
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Linearized Vlasov equation

f(q, p, t) = f0(q, p) + ∆f(q, p, t)

∆f(q, p, 0) = 0

∂∆f

∂t
− L0(q, p)[f0]∆f = Lext(q, p, t)[∆f ]f0(q, p)

Lext(q, p, t)[∆f ] =
∂veff(q, t)[∆f ]

∂q

∂

∂p

veff(q, t)[∆f ] = Φ(q, t)[∆f ] − K(t)b(q)
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Evolution of an observable

Formal solution of the linearized equation

∆f(q, p, t) =

tZ

0

dτ e(t−τ)L0(q,p)[f0]Lext(q, p, τ)[∆f ]f0(q, p)

〈∆a(q)〉(t) ≡ 〈a(q)〉(t) − 〈a(q)〉f0
=

Z
dqdp a(q)∆f(q, p, t)

〈∆a(q)〉(t) = −
tZ

0

dτ

Z
dqdp

D ∂a(t − τ)

∂p

∂veff (q, τ)[∆f ]

∂q

E
f0

with

〈a(q)〉f0
≡

ZZ
dqdp a(q)f0(q, p), a(t − τ) = e−(t−τ)L0(q,p)[f0]a(q)
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Solution in Laplace-Fourier

c∆f(k, p, ω) =
1

2π

Z
∞

0
dt

Z
dq exp(−ikq + iωt)∆f(q, p, t)

For homogeneous stationary states f0 = P (p), since we are interested in observables that
depend only on q

Z
dp c∆f(k, p, ω) =

bK(ω)eb(k)

2πev(k)

h ǫ(k, ω) − 1

ǫ(k, ω)

i

where ev(k) is the Fourier transform of the two-body potential

ǫ(k, ω) = 1 − 2πkev(k)

Z
dp

kp − ω

∂P (p)

∂p

is the so-called plasma response dielectric function and K(ω) is the Laplace transform of
K(t).
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Application to HMF

v(q) = 1 − cos q, ev(k) =

»
δk,0 − δk,−1 + δk,1

2

–

b(q) = cos q, eb(k) =
δk,−1 + δk,1

2

bK(ω) = − h

iω

Z
dp c∆f(±1, p, ω) =

ih

2πω

h 1 − ǫ(±1, ω)

ǫ(±1, ω)

i

Z
dp f∆f(±1, p, t) =

ih

4π2

Z

L
dω

1

ω

h 1

ǫ(±1, ω)
− 1

i
e−iωt

〈mx〉(t) =
ih

2π

Z

L
dω

1

ω

h 1

ǫ(±1, ω)
− 1

i
e−iωt

while 〈my〉(t) = 0 for all times.
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Homogeneous waterbag

P (p) =
1

2π

1

2p0

[

Θ(p + p0) − Θ(p − p0)
]

; p ∈ [−p0, p0]

ǫ(±1, ω) = 1 − 1

2(p2
0
− ω2)

〈mx〉(t) =
2h

2p2
0
− 1

sin2

( t

2

√

p2
0
− 1

2
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Permanent oscillations N-body
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Permanent oscillations Vlasov
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Average over initial conditions

N = 105
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Fermi-Dirac

P (p) =
A

2π

1

1 + exp(β(p2 − µ))
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Gaussian

P (p) =

r
β

2π
exp(−βp2/2)
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Relaxation to equilibrium
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