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Abstract

Large applications executing on Grid or cluster architectures consisting of hundreds or thousands
of computational nodes create problems with respect to reliability. The source of the problems are
node failures and the need for dynamic configuration over extensive run-time. This paper presents
two fault-tolerance mechanisms called Theft Induced Checkpointing and Systematic Event Logging.
These are transparent protocols capable of overcoming problems associated with both, benign faults,
i.e., crash faults, and node or subnet volatility. Specifically, the protocols base the state of the execution
on a dataflow graph, allowing for efficient recovery in dynamic heterogeneous systems as well as multi-
threaded applications. By allowing recovery even under different numbers of processors, the approaches
are especially suitable for applications with need for adaptive or reactionary configuration control. The
low-cost protocols offer the capability of controlling or bounding the overhead. A formal cost model is
presented, followed by an experimental evaluation. It is shown that the overhead of the protocol is very
small and the maximum work lost by a crashed process is small and bounded.

1. Introduction and Motivation

Grid and cluster architectures have gained popularity for computationally intensive parallel applica-

tions. However, the complexity of the infrastructure, consisting of computational nodes, mass storage

and interconnection networks, poses great challenges with respect to overall system reliability. Simple

tools of reliability analysis show that as the complexity of the system increases, its reliability, and thus

Mean Time to Failure (MTTF), decreases. If one models the system as a series reliability block dia-

gram [30], the reliability of the entire system is computed as the product of the reliabilities of all system

components. For applications executing on large clusters or a Grid, e.g., Grid5000 [13], the long execu-

tion times may exceed the MTTF of the infrastructure and thus render the execution infeasible. As an

example let us consider an execution lasting 10 days in a system that does not consider fault-tolerance.

Under the optimistic assumption that the MTTF of a single node is 2000 days, the probability of failure

of this long execution using 100, 200, or 500 nodes is 0.39, 0.63 or 0.91 respectively, approaching fast

certain failure. The high failure probabilities are due to the fact that, in the absence of fault-tolerance

mechanisms, the failure of a single node will cause the entire execution to fail. Note that this simple

example does not even consider network failures, which are typically more likely than computer fail-

ure. Fault-tolerance is thus a necessity to avoid failure in large applications, such as found in scientific



computing, executing on a Grid or large cluster.

The fault-tolerance mechanisms also have to be capable of dealing with the specific characteristics of a

heterogeneous and dynamic environment. Even if individual clusters are homogeneous, heterogeneity in

a Grid is mostly unavoidable, since different participating clusters often use diverse hardware or software

architectures [13]. One possible solution to address heterogeneity is to use platform-independent ab-

stractions such as the Java Virtual Machine. However, this does not solve the problem in general. There

is a large base of existing applications that have been developed in other languages. Re-engineering may

not be feasible due to performance or cost reasons. Environments like Microsoft .Net address portability

but only few scientific applications on Grids or clusters exist. Whereas Grids and clusters are dominated

by unix operating systems, e.g. Linux or Solaris, Microsoft .Net is Windows-centric with only recent or

partial unix support.

Besides heterogeneity one has to address the dynamic nature of the Grid. Volatility is not only an

intra-cluster issue, i.e., configuration changes within a cluster, but also an inter-cluster reality. Intra-

cluster volatility may be the result of node failures, whereas inter-cluster volatility is caused by network

disruptions between clusters. From an administrative viewpoint the reality of Grid operation, such as

cluster/node reservations or maintenance, may restrict long executions on fixed topologies due to the fact

that operation at different sites may be hard to coordinat. It is usually difficult to reserve a large cluster for

long executions, let alone scheduling extensive uninterrupted time on multiple, perhaps geographically

dispersed, sites. Lastly, configuration changes may be induced by the application as the result of changes

of run-time observable Quality of Service (QoS) parameters.

To overcome the aforementioned problems and challenges, we present mechanisms that tolerate faults

and operation-induced disruption of parts or the entire execution of the application. We introduce flexible

rollback recovery mechanisms that impose no artificial restrictions on the execution. They do not depend

on the pre-failure configuration and consider (1) node and cluster failures as well as operation-induced

unavailability of resources and (2) dynamic topology reconfiguration in heterogeneous systems.

The reminder of the paper is organized as follows: In Section 2 we present the necessary background



information and related work. Next, in Section 3 we describe the execution model considered. Two

rollback-recovery protocols are introduced in Section 4 and Section 5. A theoretical performance and

cost analysis of these protocols is presented in Section 6, followed by an experimental validation of the

theoretical results in Section 7. Finally, we conclude the paper in Section 8.

2. Background

Several fault-tolerance mechanisms exist to overcome the problems described in Section 1. Each fault

in a system, may it be centralized or largely distributed, has the potential for loss of information, which

then has to be re-established. Recovery is thus based on redundancy. Several redundancy principles exit,

i.e., time, spatial and information redundancy. Time redundancy relies on multiple executions skewed in

time on the same node. Spatial redundancy, on the other hand, uses physically redundant nodes for the

same computations. The final result is derived by voting on the results of the redundant computations.

However, there are two disadvantages associated with redundancy:

1. Only a fixed number of faults can be tolerated depending on the type of fault. This number

of redundant computations depends on the fault model, which defines the degree of replication

needed to tolerate the faults assumed [18, 29]. The exact types of faults considered, e.g. crash

fault or omission fault, and their behavior will be described later in Subsection 3.4.

2. The necessary degree of redundancy may introduce unacceptable cost associated with the redun-

dant parallel computations and its impact on the infrastructure [24]. This is especially true for

intensive Grid computations [2].

As a result, solutions based on replication, i.e., time and spatial redundancy, are, in general, not suitable

for Grid computing where resources are preferably used for the application itself.

In information redundancy, on the other hand, redundant information is added that can be used during

recovery to reconstruct the original data or computation. This method is based on the existence of

the concept of stable storage [10]. One has to note that stable storage is only an abstraction whose

implementation depends on the fault model assumed. Implementations of stable storage range from



simple local disks, e.g., to deal with the loss of information due to transient faults, to complicated hybrid-

redundancy management schemes, e.g., configurations based on RAID technology [21] or survivable

storage [32].

We consider two methods based on stable storage, i.e., logging and checkpointing.

2.1 Logging-based Approaches

Logging [1] can be classified as pessimistic, optimistic or causal. It is based on the fact that the

execution of a process can be modeled as a sequence of state intervals. The execution during a state

interval is deterministic. However, each state interval is initiated by a nondeterministic event [27]. Now

assume that the system can capture and log sufficient information about the nondeterministic events

that initiated the state interval. This is called the piecewise deterministic assumption [27] (PWD). Then

a crashed process can be recovered by (1) restoring it to the initial state and (2) replaying the logged

events to it in the same order they appeared in the execution before the crash. To avoid a rollback to

the initial state of a process and to limit the amount of nondeterministic events that need to be replayed,

each process periodically saves its local state. Log-based mechanisms in which the only nondeterministic

events in a system are the reception of messages is usually referred to as message logging.

Examples of systems based on message logging include MPICH-V2 [7], and FTL-Charm++ [8]. A

disadvantage of log-based protocols for applications with extensive inter-process communication is the

potential for large overhead with respect to space and time, due to the logging of messages.

2.2 Checkpointing-based Approaches

Rather than logging events, checkpointing relies on periodically saving the state of the computation

to stable storage [9]. If a fault occurs, the computation is restarted from one of the previously saved

states. Since the computation is distributed, one has to consider the tradeoff space of local and global

checkpointing strategies and their resulting recovery cost. Thus, checkpointing-based methods differ

in the way processes are coordinated and in the derivation of a consistent global state. The consistent



global state can be achieved either at the time of checkpointing or at the time of rollback recovery. The

two approaches are called coordinated and uncoordinated checkpointing respectively.

Coordinated checkpointing requires that all processes coordinate the construction of a consistent

global state before they write the individual checkpoints to stable storage. The disadvantage is the

large latency and overhead associated with coordination. Its advantage is the simplified recovery with-

out rollback propagation and minimal storage overhead, since each process only needs to keep the last

checkpoint of the global “recovery line”. This kind of protocol is used e.g, in [26, 33].

Uncoordinated checkpointing on the other hand assumes that each process independently saves its

state and a consistent global state is achieved in the recovery phase [10]. The advantage of this method

is that each process can make a checkpoint when its state is small. However, there are two main disad-

vantages. First, there is a possibility of rollback propagation which can result in the domino effect [23],

i.e., a cascading rollback to the beginning of the computation. Second, due to the cascading effect the

storage requirement is much higher, i.e., each process needs to store multiple checkpoints.

A compromise between coordinated and uncoordinated checkpointing is communication-induced check-

pointing. To avoid the domino effect that can result from independent checkpoints of different processes,

a consistent global state is achieved by forcing each process to take additional checkpoints based on some

information piggybacked on the application messages [3]. There are two main disadvantages with this

approach. First it requires global rollback. Second, it can result in the creation, and thus storage, of a

large number of unused checkpoints, i.e., checkpoints that will never be used in the construction of a

consistent global state. An example of a system using this approach is ProActive [4].

The essential issue in checkpointing and logging methods is to determine what information should be

stored in the checkpoint or log. This information will determine the properties and suitable environment

of the rollback, e.g., homogeneous versus heterogeneous system architecture or static versus dynamic

system configuration. A popular checkpointing library used in systems like CoCheck [26], MPICH-

V2 [7] and MPICH-CL [7] is the Condor checkpoint library [19]. In Condor the information constituting

the checkpoint is the execution state of the process and thus depends on the specific architecture of the



platform which executes the process. As a consequence, rollback is feasible only on an identical platform

and it requires the creation of a replacement process. We will present below an approach that overcomes

both of these limitations, using an abstract state of the execution represented by a dataflow graph. This

generalizes the approach used in the Satin parallel programming environment [31], which will be further

discussed in Subsection 7.5.

3. Execution Model

The general execution model of large Grid applications can be viewed as having two levels, as shown

in Figure 1. Level 0 only creates the “abstraction of the execution state” of the application. This abstrac-

tion is then used by Level 1 to actually schedule and thus execute the workload.

Scheduling 
Algorithms

Description of 
Parallelism

Language L1

Language L0

VM1

VM0

Application
Program

Program
Inputs

Program
Outputs

Abstraction of
execution state

Level 1

Level 0

Figure 1. Execution Model

In Level 0 the program to be executed is viewed as an abstraction that represents the state symbolizing

the future of an execution. By “future” we mean the execution that has not unfolded yet. Specifically,

the input to the virtual machine VM0 is the sequential input program supplemented by instructions

for the run-time system that describe the parallelism of the application. This is accomplished by two

primitives called Task Creation and Data Creation. Whereas the first creates (but does not execute) an



executable task, the latter creates a shared data object. The sequential program language, together with

these primitives, constitutes language L0. Note that L0 is now a language supporting parallelism.

Level 1 takes the abstraction of Level 0 and schedules tasks using the primitives Task Export, Task Im-

port and Task Execution. The sequential program language, together with these primitives, constitutes

the language L1. This language encompasses the scheduling algorithm. Consequently, Level 1 imple-

ments the dispatcher, whose decisions (which will affect the future of the execution) will be executed

at Level 0. In the figure this is indicated with the arrow from the virtual machine VM1 to VM0. Note

that both levels represent the run-time system, however, whereas the state of the execution is derived at

Level 0, the decisions about the future are made at Level 1.

The justification of the general execution model in Figure 1 is that it is independent of the operating

system and the hardware architecture. Furthermore, it does not depend on the number of resources, e.g.,

processors. As such, the execution model is suitable for heterogeneous and dynamic target systems, e.g.,

large clusters, Grid or peer-to-peer systems. We will now explain the aforementioned abstraction of the

execution state.

3.1. Dataflow representation

The representation of the state of an execution is based on the principle of dataflow [25]. Dataflow

allows for a natural representation of a parallel execution and can be exploited for fault-tolerance [20].

In a dataflow model, tasks, which are the smallest units of execution, become ready for execution upon

availability of all their input data. The dependencies among tasks are modeled in a dataflow graph,

which is defined as a directed graph G = (V , E), where V is a finite set of vertices and E is a set of

edges representing precedence relations between vertices. A vertex vi ∈ V is either a computational

task or a shared data object. An edge eij ∈ E represents the dependencies between vi and vj . Within

the context of this research G is a dynamic graph, i.e., it changes during runtime as the result of task

creations/terminations as well as shared data object creations/deletions.

The dynamic dataflow graph should not be confused with the static precedence graphs often used in



scheduling theory. Here, as tasks, data objects and their dependencies are created/deleted, the graph

changes. Within the context of the general execution model, graph G is the representation of the global

system state, i.e., the “abstraction of the execution state” shown in Figure 1.

Whereas graph G is viewed as a single virtual dataflow graph, its implementation is in fact distributed.

Specifically, each process Pi contains and executes a subgraph Gi of G. Thus the state of the entire

application is defined by G =
⋃

Gi over all processes Pi. Note that this also includes the information

associated with dependencies between Gi and Gj , i 6= j. This is due to the fact that Gi, by the definition

of the principle of dataflow, contains all information necessary to identify exactly which data is missing.

3.2. Work-stealing

The run-time environment and primary mechanism for load distribution is based on a scheduling

algorithm called work-stealing [11, 12]. The principle is simple: when a process becomes idle it tries to

steal work from another process called victim. The initiating process is called thief.

Work-stealing is the only mechanism for distributing the workload constituting the application, i.e.,

an idle process seeks to steal work from another process. From a practical point of view the application

starts with the process executing main(), which creates tasks. Typically some of these tasks are then

stolen by idle processes, which are either local or on other processors. Thus the principal mechanism

for dispatching tasks in the distributed environment is task-stealing. The communication due to the theft

is the only communication between processes. Realizing that task theft creates the only dependencies

between processes is crucial to understand the checkpointing protocol to be introduced later.

With respect to Figure 1, work-stealing will be the scheduling algorithm of preference at Level 1.

3.3. The KAAPI environment

The target environment for multithreaded computations with dataflow synchronization between threads

is the Kernel for Adaptive, Asynchronous Parallel Interface (KAAPI), implemented as a C++ library. The

library is able to schedule programs at fine or medium granularity in a distributed environment.
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Figure 2 shows the general relationship between processors and processes in KAAPI. A processor

contains one or more processes. Each process maintains its own stack.

The life-cycle of a task in the KAAPI execution model is depicted in Figure 3 and will be described

first from a local process’ and then from a thief’s point of view in the context of task stealing.

At task creation the task enters state created. At this time it is pushed onto the stack. When all input

data is available the task enters state ready. A ready-task which is on the top of the stack can be executed,

i.e., it can be popped off the stack, thereby entering state executing. A task in the ready state can also be

stolen, in which case it enters the stolen state on the local process, which now becomes a victim. When

the task is finished, either on the local process or a thief, it enters state finished and proceeds to state

deleted.

If a task has been stolen, the newly created thief process utilizes the same model. In Figure 2, the

theft of task Ts on Process 2 by Process i is shown, as indicated by the arrow. Whereas this example

shows task stealing on the same processor, the concept applies also to stealing across processors. On the

victim the stolen task is in state stolen. Upon theft, the stolen task enters state created on the thief. At

this instant of time, the stolen task Ts and a task Tr charged with returning the result are the only tasks in

the thief’s stack, as shown in the figure. Since a stolen task by the definition of work-stealing is ready, it

immediately enters state ready. It is popped from the stack, thereby entering state executing, and upon

finishing, it enters state finished. It should be noted that the task enters this state on the thief and the

victim. For the latter this is after receiving a corresponding message from the thief. On both processes



the task proceeds to state deleted.

3.4 Fault Model

We will now describe the fault model that the execution model is subjected to. The hybrid fault model

described in [29], which defines benign, symmetric and asymmetric faults, will serve as a basis. Whereas

benign faults are globally diagnosable and thus self-evident, symmetric and asymmetric faults represent

malicious faults which are either consistent or possibly non-consistent. In general, any fault that can be

detected with certainty can be dealt with by our mechanisms. On one side this includes any benign fault,

such as a crash fault. On the other hand, this considers node volatility [5], e.g., transient and intermittent

faults of nodes. It should be noted that results of computation of volatile nodes, which re-join the system,

will be ignored.

In order to deal with symmetric or asymmetric faults it is necessary that detection mechanisms are

available. Such approaches have been shown in [17, 16] and can be theoretically incorporated in this

work.

4 Theft Induced Checkpointing

As seen in the previous section, the dataflow graph constitutes a global state of the system. In order

to use its abstraction for recovery, it is necessary that this global state also represents a consistent global

state.

With respect to Figure 1, we can capture the abstraction of the execution state at two extremes. At

Level 0 one assumes the representation derived from the construction of the dataflow graph, whereas at

Level 1 the interpretation is derived as the result of its evaluation, which occurs at the time of scheduling.

In this section we will introduce a Level 1 protocol capable of deriving a fault-tolerant coherent system

state from the interpretation of the execution state. Specifically, we will define a checkpointing protocol

called Theft Induced Checkpointing, (TIC).



4.1. Definition of a checkpoint

As indicated before, a copy of the dataflow graph G represents a global checkpoint of the application.

In this research, checkpoints are with respect to a process, and consist of a copy of its local Gi, repre-

senting the process’ stack. The checkpointing protocol must ensure that checkpoints are created in such

a way that G is always a consistent global application state, even if only a single process is rolled back.

The latter indicates the powerful feature of individual rollbacks.

The checkpoint of Gi itself consists of the entries of the process’ state, e.g., its stack. As such,

it constitutes its tasks and their associated inputs, and not the task execution state on the processor

itself. Understanding this difference between the two concepts is crucial. Checkpointing the tasks

and their inputs simply requires to store the tasks and their input data as a dataflow graph. On the

other hand, checkpointing the execution of a task usually consists of storing the execution state of the

processor as defined by the processor context, i.e., the processor registers such as program counters and

stack pointers as well as data. In the first case, it is possible to move a task and its inputs, assuming

that both are represented in a platform-independent fashion. In the latter case the fact that the process

context is platform-dependent requires a homogeneous system in order to perform a restore operation or

a virtualization of this state [28].

The jth checkpoint of process Pi will be denoted by CP j
i . Thus the subscript denotes the process and

the superscript the instance of the checkpoint.

4.2. Checkpoint protocol definition

The creation of checkpoints can be initiated by (1) work-stealing or (2) at specific checkpointing

periods. We will first describe the protocol with respect to work-stealing, since it is the cause of the only

communication (and thus dependencies) between processes. Checkpoints resulting from work-stealing

are called forced checkpoints. Then we will consider the periodic checkpoints, called local checkpoints,

which are stored periodically, after expiration of pre-defined periods τ .



4.2.1 Forced checkpoints

The TIC protocol with respect to forced checkpoints is defined in Figure 4, showing events A through
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Figure 3. TIC protocol.

points. Then we will consider the periodic checkpoints,
called local checkpoints, which are stored periodically, after
expiration of the pre-defined periods τ .

3.2.1 Forced checkpoints

The TIC protocol is defined in Figure 3 with respect
to events A through G for two processes P0 and P1. Ini-
tially P0 is executing a task from its stack. The following
sequence of events takes place:

1. A process P1 is created on an idle resource. If it finds a
process P0 that has a potential task to be stolen, it cre-
ates a “theft” task Tt charged with stealing a task from
process P0. Before executing Tt, process P1 check-
points its state in CP 0

1 . Event A is the execution of Tt

which sends a theft request to P0.

2. Event B is the receipt of the theft request by P0. Be-
tween event B and C it identifies a task Ts and flags it
as “stolen by P1”. Between events B and C victim P0

is in a critical section.

3. Between event C and D it forces a checkpoint to reflect
the theft. At this time P0 becomes a victim. Event D
constitutes sending Ts to P1.

4. Event E is the receipt of the stolen task from P0. Thief
P1 creates entries for two tasks, Ts and Tr, in its stack.
Task Tr is charged with returning the results of the ex-
ecution of Ts to P0 and becomes ready when Ts fin-
ishes.

5. When P1 finishes the execution of Ts it takes a check-
point and executes Tr, which returns the result of Ts to
P0 in event F.

6. Event G is the receipt of the result by P0.

3.2.2 Local checkpoints

Local checkpoints of each process i, i.e. Gi, are stored
periodically, after the expiration of the pre-defined period
τ . Specifically, after the expiration of τ a process receives

a signal to checkpoint. The process can now take a check-
point. However, there are two exceptions. First, if the pro-
cess has a task in state executing it must wait until execution
is finished. Second, if a process is in the critical section be-
tween events B and C in Figure 3, checkpointing must be
delayed until exiting the critical section. A local checkpoint
is shown in Figure 3 for process P0 before event B.

3.2.3 TIC rollback

The objective of TIC is to allow rollback of only crashed
processes. A process can be rolled back to its last check-
point. In fact, for each process only the last checkpoint is
kept. To show that one can roll back one process, while
guaranteeing a consistent global state of execution, one has
to consider the following two questions.

Q1 What does a process do that needs to send a message
to a crashed process?

Q2 How can a process that is rolled back receive messages
that it received after the last checkpoint and before the
crash?

With respect to Q1, the KAAPI environment contains a
process manager implemented on a reliable resource. The
manager has a global view of all processes and directs the
rollback of crashed processes by identifying the new pro-
cess P ′

i replacing the crashed Pi. An attempt to communi-
cate with a crashed process will result in failure, indicated
by an error code. The sender thus sends a message to the
manager to enquire the identifier of replacement process P ′

i

which it uses to resend the message.
With respect to Q2, the only messages received by a pro-

cess are (1) the theft request (event B), (2) the receipt of
a stolen task (event E) and (3) the result of the stolen task
(event G). We will use the events of Figure 3 in the treat-
ment of each of the three cases.

Case (1): The loss of a theft request (event B) has no
consequences. The thief will simply time out waiting for a
response and make another request.

Case (2): If the thief crashes after receiving the stolen
task (event E), but before it was able to checkpoint, it is sim-
ply rolled back as P ′

1 to the initial checkpoint CP 0
1 where

it will re-request a task from P0 (event A). Victim P0, rec-
ognizing the redundant request, will change the state of Ts

from stolen to ready, thus nullifying the theft, and treats the
theft request as a new request.

Case (3): A crash of the victim after it has received the
result (event G) but before it could checkpoint would stall
the victim after rollback on P ′

0 to a state where the task is
still flagged as stolen. Therefore, the manager takes the last
checkpoint of the crashed P0 and inspects it for thefts, as
part of the rollback procedure. If it contains references to
a thief P1 that is already terminated, it rolls back P0 on P ′

0

CP
0
1

Figure 4. TIC protocol: forced checkpoints.

G for two processes P0 and P1. Initially P0 is executing a task from its stack. The following sequence

of events takes place:

1. A process P1 is created on an idle resource. If it finds a process P0 that has a potential task to be

stolen, it creates a “theft” task Tt charged with stealing a task from process P0. Before executing

Tt, process P1 checkpoints its state in CP 0
1 . Event A is the execution of Tt which sends a theft

request to P0.

2. Event B is the receipt of the theft request by P0. Between event B and C it identifies a task Ts and

flags it as “stolen by P1”. Between events B and C victim P0 is in a critical section with respect to

theft operations.

3. Between event C and D it forces a checkpoint to reflect the theft. At this time P0 becomes a victim.

Event D constitutes sending Ts to P1.

4. Event E is the receipt of the stolen task Ts from P0. Thief P1 creates entries for two tasks, Ts and

Tr, in its stack, as shown in Figure 2. Task Tr is charged with returning the results of the execution

of Ts to P0 and becomes ready when Ts finishes.



5. When P1 finishes the execution of Ts it takes a checkpoint and executes Tr, which returns the

result of Ts to P0 in event F.

6. Event G is the receipt of the result by P0.

4.2.2 Local checkpoints

Local checkpoints of each process Pi are stored periodically, after the expiration of the pre-defined

period τ . Specifically, after the expiration of τ a process receives a signal to checkpoint. The process

can now take a checkpoint. However, there are two exceptions. First, if the process has a task in state

executing it must wait until execution is finished. Second, if a process is in the critical section between

events B and C, checkpointing must be delayed until exiting the critical section. A checkpointing sce-

nario comprising local and forced checkpoints is shown in Figure 5 where local and forced checkpoints

are shown unshaded and shaded respectively. Note that the temporal spacing of the two local (unshaded)

checkpoints on process P0 is at least τ .
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Figure 3. TIC protocol.

points. Then we will consider the periodic checkpoints,
called local checkpoints, which are stored periodically, after
expiration of the pre-defined periods τ .

3.2.1 Forced checkpoints

The TIC protocol is defined in Figure 3 with respect
to events A through G for two processes P0 and P1. Ini-
tially P0 is executing a task from its stack. The following
sequence of events takes place:

1. A process P1 is created on an idle resource. If it finds a
process P0 that has a potential task to be stolen, it cre-
ates a “theft” task Tt charged with stealing a task from
process P0. Before executing Tt, process P1 check-
points its state in CP 0

1 . Event A is the execution of Tt

which sends a theft request to P0.

2. Event B is the receipt of the theft request by P0. Be-
tween event B and C it identifies a task Ts and flags it
as “stolen by P1”. Between events B and C victim P0

is in a critical section.

3. Between event C and D it forces a checkpoint to reflect
the theft. At this time P0 becomes a victim. Event D
constitutes sending Ts to P1.

4. Event E is the receipt of the stolen task from P0. Thief
P1 creates entries for two tasks, Ts and Tr, in its stack.
Task Tr is charged with returning the results of the ex-
ecution of Ts to P0 and becomes ready when Ts fin-
ishes.

5. When P1 finishes the execution of Ts it takes a check-
point and executes Tr, which returns the result of Ts to
P0 in event F.

6. Event G is the receipt of the result by P0.

3.2.2 Local checkpoints

Local checkpoints of each process i, i.e. Gi, are stored
periodically, after the expiration of the pre-defined period
τ . Specifically, after the expiration of τ a process receives

a signal to checkpoint. The process can now take a check-
point. However, there are two exceptions. First, if the pro-
cess has a task in state executing it must wait until execution
is finished. Second, if a process is in the critical section be-
tween events B and C in Figure 3, checkpointing must be
delayed until exiting the critical section. A local checkpoint
is shown in Figure 3 for process P0 before event B.

3.2.3 TIC rollback

The objective of TIC is to allow rollback of only crashed
processes. A process can be rolled back to its last check-
point. In fact, for each process only the last checkpoint is
kept. To show that one can roll back one process, while
guaranteeing a consistent global state of execution, one has
to consider the following two questions.

Q1 What does a process do that needs to send a message
to a crashed process?

Q2 How can a process that is rolled back receive messages
that it received after the last checkpoint and before the
crash?

With respect to Q1, the KAAPI environment contains a
process manager implemented on a reliable resource. The
manager has a global view of all processes and directs the
rollback of crashed processes by identifying the new pro-
cess P ′

i replacing the crashed Pi. An attempt to communi-
cate with a crashed process will result in failure, indicated
by an error code. The sender thus sends a message to the
manager to enquire the identifier of replacement process P ′

i

which it uses to resend the message.
With respect to Q2, the only messages received by a pro-

cess are (1) the theft request (event B), (2) the receipt of
a stolen task (event E) and (3) the result of the stolen task
(event G). We will use the events of Figure 3 in the treat-
ment of each of the three cases.

Case (1): The loss of a theft request (event B) has no
consequences. The thief will simply time out waiting for a
response and make another request.

Case (2): If the thief crashes after receiving the stolen
task (event E), but before it was able to checkpoint, it is sim-
ply rolled back as P ′

1 to the initial checkpoint CP 0
1 where

it will re-request a task from P0 (event A). Victim P0, rec-
ognizing the redundant request, will change the state of Ts

from stolen to ready, thus nullifying the theft, and treats the
theft request as a new request.

Case (3): A crash of the victim after it has received the
result (event G) but before it could checkpoint would stall
the victim after rollback on P ′

0 to a state where the task is
still flagged as stolen. Therefore, the manager takes the last
checkpoint of the crashed P0 and inspects it for thefts, as
part of the rollback procedure. If it contains references to
a thief P1 that is already terminated, it rolls back P0 on P ′

0

CP10
CP20

CP30 CP40

CP11 CP21 CP31

Figure 5. TIC protocol: local and forced checkpoints.

4.2.3 TIC rollback

The objective of TIC is to allow rollback of only crashed processes. A process can be rolled back to

its last checkpoint. In fact, for each process only the last checkpoint is kept. We now present a theorem

that proves that under TIC a global consistent state of the execution is maintained.



Theorem 1 Under the TIC protocol the faulty processes can be rolled back, while guaranteeing a

consistent global state of the execution.

Proof: In general, to show that a set of checkpoints form a consistent system state, three conditions must

be satisfied [22]: IC1: There is exactly one recovery point for each process. IC2: There is no event for

sending a message in a process P after its recovery point, whose corresponding receive event in another

process Q is before the recovery point of Q. IC3: There is no event of sending a message in a process P

before its recovery point, whose corresponding receive event in another process Q is after the recovery

point of Q. The scenarios representing conditions IC2 and IC3 are depicted in Figure 6.

P

Q

Condition C2
t

P

Q

Condition C3
t

Fault

Fault
x

x

Figure 6. Sources of Inconsistency.

Proving that condition IC1 is met is trivial since TIC stores only the last checkpoint in stable storage.

In the remainder of the proof of TIC we will consider all actions possible with respect to the events and

checkpoints shown in Figure 5. This enumeration of events and checkpoints is exhaustive.

Part I: Let us assume that processes do not communicate. It is well known that under this assumption

a global consistent state of an execution is guaranteed implicitly by using local checkpoints. Thus in the

absence of communication only the local process is affected by the rollback. In the context of TIC this

means that a process that has not participated in any communication since its last checkpoint, neither as

a sender nor receiver, can be rolled back unconditionally to that checkpoint. In Figure 5 this scenario

covers, for each checkpoint, the time interval which starts at the time the checkpoint is established until

the next event or checkpoint. If t(CP j
i ) denotes the time at which checkpoint CP j

i is established and

t(X) denotes the time of event X, then rollback during the following intervals will maintain a consistent



execution state: [t(CP 1
0 ), t(B)), [t(CP 2

0 ), t(D)), [t(CP 3
0 ), t(G)), [t(CP 4

0 ),−) for process P0 and

[t(CP 1
1 ), t(A)), [t(CP 2

1 ), t([CP 3
1 )), and [t(CP 3

1 ), t(F )) for process P1. Note that the intervals are open

to the right, i.e. the right side of an interval is the time before the event. Furthermore, symbol ‘–’ in

[t(CP 4
0 ),−) indicates the time of the next event or checkpoint.

Part II: Now we prove that TIC can deal with rollback that affects or is affected by communication,

i.e. we need to show how TIC effectively avoids inconsistency with respect to conditions IC2 and IC3.

Recall that the only communication in the system is that due to task stealing, i.e. three communications

per theft as shown in Figure 5. An attempt to communicate with a crashed process will result in failure,

indicated by an error code generated by the transport layer, e.g., transport control protocol TCP. This

error code is used to initiate actions with respect to IC2 and IC3.

We now present systematically, for each of the three communications of TIC, the three possible fault

cases as they relate to the treatment of IC2, IC3 and a double fault. The discussion is based on Figure 5.

Communication A to B – the theft request:

1) If thief P1 crashes such that it rolls back past event A, condition IC2 arises. This presents no

problem for the new process P ′
1 (replacing the crashed P1). P ′

1 simply requests a theft from another

process. P0 on the other hand will detect the rollback upon unsuccessfully attempting to communicate

with the crashed P1 (in event D), where it receives an error code. P0 thus voids the theft, i.e., it un-labels

task Ts and takes another checkpoint reflecting its new state. Note that this checkpoint is a new version

of the checkpoint between C and D.

2) If victim P0 crashes after event B but before CP 2
0 , then condition IC3 is introduced. However, this

presents no problem for P1 who simply times out while waiting for event E. P1 makes another request.

3) A double fault implies that upon rollback of P1 as P ′
1 the re-initiation of event A returns an error.

P ′
1 will inquire about replacement P ′

0 for the non-responding process P0. If P ′
0 has not passed event B,

then this constitutes a new theft request. If P ′
0 has been restarted from CP 2

0 then P ′
0 will detect that the



thief has also been rolled back upon an unsuccessful event D and will void the theft. This is exactly the

action the victim took in case 1).

Communication D to E – the actual theft:

1) If P0 fails after event D but before it could checkpoint then condition IC2 arises. The (rolled back)

victim will initiate another event D to the same thief for the same request (indicated by CP 2
0 ). This is

recognized by P1 as a duplicate and is ignored.

2) If the thief crashes after the actual theft (event E), but before it was able to checkpoint, then con-

dition IC3 arises. The thief is simply rolled back as P ′
1 to the initial checkpoint CP 0

1 where it will

re-request a task from P0 (event A). Victim P0, recognizing the redundant request, changes the state of

Ts from stolen to ready, thus nullifying the old theft, and treats the theft request as a new request.

3) The victim is rolled back past event D and finds out the thief does not respond; a double fault. Thus

victim P ′
0 inquires about the replacement process P ′

1. If P ′
1 was initialized with CP 1

1 it will find out about

the new P ′
0 as the result of a communication error at event A. If P ′

1 was rolled back with a checkpoint

taken after event E, then it takes a new CP 2
0 to reflect that P ′

1 is the rolled back thief.

Communication F to G – the return of the result to the victim:

1) If the thief crashes after event F then condition IC2 arises. Upon re-initiating event E the victim

will simply ignore the duplication. Note that this can only occur in the tiny interval after F and before

P1’s termination.

2) A crash of the victim after it has received the result (event G) but before it can checkpoint will

result in condition IC3. This would stall the victim after rollback to a state where the task is still flagged

as stolen, i.e. P ′
0 would never receive the result in event G. Therefore, as part of the rollback procedure,

the victim inspects the last checkpoint for tasks that have been flagged stolen. If the victim’s checkpoint

contains references to a thief P1 that is already terminated, it rolls back P0 on P ′
0 using the checkpoint

of P0 together with the thief’s final checkpoint containing the result. Thus, the rollback uses G0 and G1



(which contains only Tr). On the other hand, if the last checkpoint contains references to thieves that

are still executing, no action is required since the thief, upon attempting to send the results to the old

process P0, will experience an error from the transport layer and will inquire about P ′
0.

3) If the thief is rolled back to CP 3
1 and finds out during event F that the victim has crashed as well,

it inquires about P ′
0. P ′

0 will have either been initiated with CP 2
0 or a checkpoint taken after event D,

say CP 3
0 . In the first case as the result of the error during event D, P ′

0 enquires about the replacement

victim and updates CP 2
0 . In the second case it will be waiting for event G, which is coming from the

replacement thief. The thief found out about P ′
0 as a result of the communication error at event F during

the attempt to reach the old victim.

Part III: So far we have proven that using TIC inconsistencies are avoided. However, it remains to

be established why the three forced checkpoints shown (shaded) in Figure 5 are necessary. Let CP 0
1

and CP f
1 denote the first and final checkpoint of a thief P1 respectively. The initial checkpoint CP 0

1

guarantees that there exists at least one record of a theft request for a thief that crashes. Thus, upon a

crash, the thief is rolled back on the new process P ′
1. Without CP 0

1 any crash before a checkpoint on

the thief would simply erase any reference of the theft (event E), and would stall the victim. The final

checkpoint of the thief, CP f
1 , is needed in case the victim P0 crashes after it has received the results

from the thief, but before it could checkpoint its state reflecting the result. Thus, if the victim crashes

between event G and its first checkpoint after G, then the actions describing Communication F to G will

ensure the victim can receive the result of the stolen task.

It should be noted that the final checkpoint of the thief cannot be deleted until the victim has taken a

checkpoint after event G, thereby checkpointing the result of the stolen task. Lastly, the forced check-

point of the victim (between events C and D) ensures that a crash after this checkpoint does not result

in the loss of the thief’s computation, i.e., there will be a record that allows the victim’s replacement

process to find the thief. �



The actions described in the proof above constitute a new generation of the protocol, i.e., the concept

of a proactive manager, as described in [14, 15], has been eliminated. It has been replaced with a passive

name server implemented on the same reliable storage system that facilitates the checkpoint server.

5 Systematic Event Logging

Whereas the TIC protocol was defined with respect to Level 1 of Figure 1, we will now intro-

duce a Level 0 protocol called Systematic Event Logging (SEL), which was derived from a log-based

method [1]. The motivation for SEL is to reduce the amount of computation that can be lost, which is

bound by the execution time of a single failed task1. We will later elaborate on the differences between

TIC and SEL in their analysis presented in Section 6.

In SEL only the events relevant for the construction of the dataflow graph are logged. Logging events

for tasks are their additions and deletions. Logging events of shared data objects are their additions, mod-

ifications and deletions. A recovery consists of simply loading and rebuilding subgraph Gi associated

with the failed process Pi from the respective log.

The SEL protocol implies the validity of the PWD hypothesis, which was introduced in Subsec-

tion 2.1. For the hypothesis to be valid the following two conditions must hold:

C1: Once a task starts executing it will continue, without being affected by external events, until its

execution ends.

C2: The execution of a task is deterministic with respect to the tasks and shared data objects that are

created. Note that this implies that the execution will always create the same (isomorphic) dataflow

graph.

At first sight condition C1 may appear rather restrictive. However, this is not the case for our application

domain, i.e., large parallel executions, (see Equation 1 below).

If all tasks of a dataflow graph obey conditions C1 and C2, then all processes executing the graph

will comply with the PWD hypothesis. The idea behind the proof of this theorem is simple. In the
1Recall that the task is the smallest unit of execution in the execution model.



execution model, the execution of tasks is deterministic, whereas the starting time of their execution is

non-deterministic. However, this implies, in turn, that during the execution of a task in the execution

model, it itself will create the same sequence of tasks and data objects.

In case of a fault, task duplication needs to be avoided during rollback. Specifically, in the implemen-

tation one has to guarantee that only one instance of a any given task can exist. In the absence of such

guarantee, it could happen that during rollback a task recreates other tasks or data objects that already

exist from earlier failed executions. Note that, depending on the timing of the fault, this could result

in a significant number of duplicated nodes, since each duplicated task itself may be the initiator of a

significant portion of computation. In our implementation of SEL duplication avoidance is achieved

using a unique and reproducible identification method of all vertices in the graph.

6 Complexity Analysis

In this section we present a cost model for the TIC and SEL protocol. But first we want to introduce

the necessary notation and analyze the general work-stealing model.

Let Tsec be the time of execution of a sequential program on a single processor. Furthermore, let T1

denote the time of the execution of the corresponding parallel program on a single processor and let T∞

be the theoretical execution time of the application as executed on an unbounded number of processors.

Thus T∞ represents the execution time associated with the critical-path. It should be noted that in large

executions suitable for parallel environments we always have

T1 � T∞. (1)

Next, let Tp be the execution time of a program on p identical physical processors. Then the execution

of a parallel program using work-stealing is bound by [11]

Tp ≤
T1

p
+ c∞T∞ (2)

where constant c∞ defines a bound on the overhead associated with the critical-path, including the

scheduling overhead. Furthermore, we have

T1 ≤ c1Tsec (3)



where c1 corresponds to the maximum overhead induced by parallelism, excluding the cost of schedul-

ing. The constants c1 and c∞ depend on the specific implementation of the execution model and are a

measure of the implementation’s efficiency.

To show how little impact the term c∞T∞ of Equation 2 has, one should note that the number of thefts

performed by any process2, denoted by Ntheft, which introduce the scheduling overhead hidden in c∞ is

small [11, 12], since

Ntheft ≤ O(T∞). (4)

Specifically, with T1 � T∞ we can approximate Equation 2 by Tp ≈ T1

p
.

6.1 Analysis of Fault-free Execution

If we add a checkpointing mechanism, it is of special interest to analyze its overhead associated with

fault-free execution, since the occurrence of faults is considered to be the rare exception rather than the

norm.

6.1.1 Analysis of TIC

In TIC, a checkpoint is performed (1) periodically for each process, as dictated by period τ , and (2) as

the result of work-stealing. Let T TIC
P denote the execution of a parallel program on p processors under

TIC. Then,

T TIC
P ≤ Tp + max

i=1,...,p
{OverheadTIC

i }, (5)

where OverheadTIC
i denotes the total TIC checkpointing overhead on processor Pi. This overhead

depends on the total number of checkpoints taken on processor Pi and the overhead of a single check-

point. The maximal number of checkpoints performed by a processor is [T TIC
P /τ + O(Ntheft)], where

T TIC
P /τ indicates the number of checkpoints due to period τ and Ntheft is the maximal number of thefts

performed by any processor. Note that we use O(Ntheft), since with respect to Figure 4 the number of

checkpoints of the thief and the victim are not equal.
2We assume that at any given time at most one process is active on a processor.



The overhead of a single checkpoint in TIC is associated with storing the collection of vertices in

Gi and depends on two parameters. First, it depends on the size of G. Specifically, it depends on the

number of tasks and shared data objects, as well as the size of the latter. Second, it depends on the time

of an elementary access to stable storage, denoted by ts.

The number of vertices in Gi has an upper bound of N∞, which denotes the maximum number of

vertices in a path of G [11]. The checkpoint overhead for processor Pi is thus bound by

OverheadTIC
i = [T TIC

P /τ + O(Ntheft)] fTIC
overhead(N∞, ts). (6)

The function fTIC
overhead() indicates the overhead associated with a single checkpoint and depends only on

G, or more preceisly N∞, as well as ts.

6.1.2 Analysis of SEL

As defined in Section 5, in SEL a log is performed for each of the described events relevant for the

construction of G, i.e., (1) vertex creation, (2) shared data modification and (3) vertex deletion. Recall

that in G = (V , E) a vertex vi ∈ V is either a task or a shared data object.

Let T SEL
P denote the execution of a parallel program on p processors under SEL. Then T SEL

P can be

expressed as

T SEL
P ≤ Tp + max

i=1,...,p
{OverheadSEL

i }. (7)

This overhead depends on the total number of vertices in Gi and the overhead of a single event log. The

maximal number of logs performed by a processor is |Gi|, i.e., the number of vertices in Gi.

The overhead of a single event log in SEL is associated with storing a single vertex vj of Gi and

depends on two parameters. Specifically, it depends on the size of vj and the access time to stable

storage ts. Note that if vj is a task, then the log is potentially very small and of constant size, whereas if

it is a data object, then the log size is equal to that of the object. The logging overhead for processor Pi

is thus bound by

OverheadSEL
i = |Gi|fSEL

overhead(|vj|, ts). (8)

The function fSEL
overhead() indicates the overhead associated with a single log.



6.2 Analysis of Executions Containing Faults

The overhead associated with fault-free execution is the penalty one pays for having a recovery mech-

anism. It remains to be shown how much overhead is associated with recovery as the result of a fault

and how much execution time can be lost under different strategies.

The overhead associated with recovery is due to loading and rebuilding the affected portions of G.

This can be effectively achieved by regenerating Gi of the affected processes. Thus, the time of recovery

of a single process Pi, denoted by trecovery
i , depends only on the size of its associated subgraph Gi, i.e.,

trecovery
i = O(|Gi|). Note that for a global recovery, as the result of the failure of the entire application,

this translates to max(trecovery
i ) and not to

∑
trecovery
i .

The way Gi is rebuilt for a failed process differs for the two protocols. Under TIC rebuilding Gi

implies simply reading the structure from the checkpoint. For SEL this is somewhat more involved,

since now Gi has to be reconstructed from the individual logs.

Next, we address the amount of work that a process can lose due to a single fault. In TIC this is the

maximal difference in time between two consecutive checkpoints. This time is defined by the check-

pointing period τ and the execution time of a task, since a checkpoint of a process that is executing a task

cannot be made until the task finishes execution. In the worst case, the process receives a checkpointing

signal after τ and has to wait for the end of the execution of its current task before checkpointing. Thus,

the time between checkpoints is bound by τ + max(ci) where ci is the computation time of task Ti. But

how bad can the impact of ci be? In a parallel application it is reasonable to assume T∞ � T1. Since T∞

is the critical path of the application any ci ≤ T∞. As a result one can assume ci to be relatively small.

In SEL, due to its fine granularity of logging, the maximum amount of execution time lost is simply

that of a single task. However, this comes at the cost of higher logging overhead, as was addressed in

Equation 8.



6.3 Discussion

The overhead of the TIC protocol depends on the number of theft operations and period τ . To reduce

the overhead, one needs to increase τ . However, this also increases the maximum amount of computation

that can be lost.

For SEL the overhead depends only on the size of graph G, i.e., its vertices vi which have to be

saved. If one wants to reduce the overhead one has to reduce the size of G. This however reduces the

parallelism of the application.

Comparing the TIC and SEL protocol makes only sense under consideration of the application,

e.g., number of tasks, task size or parallelism. If T∞ � T1, given a reasonable value3 for τ , then the

overhead of TIC is likely to be much lower than that of SEL, i.e., given Equations 6 and 8, [T TIC
P /τ +

O(Ntheft)] is most likely much smaller than |Gi|, thus more than compensating for fSEL
overhead(|vj|, ts) <

fTIC
overhead(N∞, ts), as will be confirmed by the results in Section 7. The reduced overhead has huge

implication on the avoidance of bottlenecks in the checkpointing server(s). For applications with large

data manipulations, TIC, with an appropriate choice of τ , may be the only choice capable of eliminating

storage bottlenecks.

On the other hand, SEL addresses the needs of applications with low tolerance for lost execution time.

However, one has to analyze the bandwidth requirements of logging in order to determine feasibility.

It should be emphasized that the advantage of the TIC and SEL protocols is that they do not require

replacement resources for failed processes, e.g., the failed process can be rolled back on an existing

resource. This is due to the fact that the state of the execution is platform and configuration independent.

Lastly, we want to indicate that, even though the TIC protocol has been motivated by Communication

Induced Checkpointing (CIC) [3], TIC has multiple advantages over CIC. First, unlike CIC, in TIC

only the last checkpoint needs to be kept in the stable storage. This has potentially large implications on

the amount of data that needs to be stored. Thus, the advantage of TIC is the reduction of checkpointing

data as well as the time it takes to recover this data during roll-back. The second significant advantage

3Note that unreasonably small values of τ would result in excessive local checkpointing.



is that in TIC only the failed process needs to be rolled back. Note that in CIC all processes must be

rolled back after a fault.

7 Experimental Results

7.1 Application and platform description

The performance and overhead of the TIC and SEL protocols were experimentally determined for

the Quadratic Assignment Problem (instance4 NUGENT 22) which was parallelized in KAAPI. The

local experiments were conducted on the iCluster25, which consists of 104 nodes interconnected by a

100Mbps Ethernet network, each node featuring two Itanium-2 processors (900 MHz) and 3 GB of local

memory. The inter-cluster experiments were conducted on Grid5000 [13], which consists of clusters

located at nine French institutions.

In order to take advantage of the distributed fashion of the checkpoint, i.e., Gi, each processor has

a dedicated checkpoint server. This configuration has two advantages. First, it reflects the theoretical

assumptions of Section 6 and second, the actual overhead of the checkpointing mechanism is measured,

rather than the overhead associated with a centralized checkpoint server.

7.2 Fault-free Executions

We will now investigate the overhead of the protocols in fault-free executions, followed by executions

containing faults. Then we show the results of a real-world example executing on heterogeneous and

dynamic cluster configurations. We conclude with a comparison of both protocols with the closest

counterpart, i.e., Satin [31].

The impact of the degree of parallelism can be seen in Figure 7, where the number of parallel tasks

generated during execution grows as the size of tasks are reduced. Recall that the number of tasks

directly relates to the size of graph G, which in turn has implication with respect to the overhead of the

4see http://www.opt.math.tu-graz.ac.at/qaplib/
5http://www.inrialpes.fr/sed/i-cluster2



protocols. The degree of parallelism increases drastically for threshold 5 and approaches its maximum

at threshold 10.
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Figure 7. Tasks and Application Granularity.

Figure 8 shows the execution times of the application for different protocols in the absence of faults.

Two observations can be made. First, the application scales with the number of processors for all pro-

tocols. Second, there is very little difference between the execution times of the protocols for the same

number of processors. In fact, the largest difference among the executions was observed in the case of

120 processors and was measured at 7.6%. It is easy to falsely conclude that, based on the small differ-

ences shown in the scenarios of Figure 8, all protocols perform approximately the same. The important

measure of overhead of the mechanism is the total amount of data associated with the protocol that is

sent to stable storage. This overhead is affected by the total size and the number of messages. Due

to the efficient, distributed configuration of the experiment, which may not be realistic for real-world

applications, this overhead was hidden and thus does not show in the figure. Figure 9 addresses this cost,

i.e., the cost of the fault-tolerance mechanism that the infrastructure has to absorb, and shows the total

volume of checkpointing and logging data stored. The advantages of TIC can be seen in the significant
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reduction of data, which is most visible for larger periods τ . Furthermore, the data volume stays rela-

tively constant for different number of processors. This is due to the fact that the number of thefts, and

thus theft-induced overhead, is actually very small, as was explained in Section 6.

7.3 Executions with Faults

To show the overhead of the mechanisms in the presence of faults, we consider executions containing

faults. First, we want to measure the cost induced by the computation lost due to the fault(s) and the

overhead of the protocols. Specifically, for each protocol we show

Twithfault
p − T ′

p

T ′
p

(9)

where Twithfault
p is the time of execution in the presence of faults and roll-back, and T ′

p is the time of a

fault-free execution.

Figure 10 shows the measured cost using Equation 9 for different numbers of faults. The interpretation

of T ′
p is the execution time of the application including the overhead of the checkpointing or logging
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mechanism. One can observe that, as the number of faults increase, the execution time grows linearly.

Note that, since the overhead of the protocols is included in T ′
p, the values displayed are the computation

time lost due to the faults as well as the overhead of roll-back, but do not contain the overhead of

checkpointing or logging. As expected, and discussed in Subsection 6.3, the computation lost using

SEL is lower than that under TIC, since in SEL only the computation of failed tasks are lost. For the

experiment the period in TIC was set at τ = 1s and the mean task execution time was 0.23s.

However, Figure 10, with its interpretation of T ′
p, does not account for the overhead of checkpointing

or logging. This overhead was included in the measurement shown in Figure 11. Now T ′
p in Equation 9

is the execution time of the application without any fault-tolerance protocol, i.e., neither SEL nor TIC.

The measurements reveal that the actual overhead of SEL overshadows its advantages shown in Fig-

ure 10. Specifically, accounting for the overhead of checkpointing (of TIC) and logging (of SEL), the

real advantage of lower checkpointing overhead of TIC surfaces.

7.4 Application Executing on Heterogeneous and Dynamic Grid

Next we show an application of TIC in a heterogeneous Grid. Four clusters of Grid5000 (geograph-

ically dispersed in France) were used, utilizing different hardware architectures. The execution clusters
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used AMD Opteron, Intel Xeon and PowerPC architectures respectively, whereas the stable storage

cluster used Xeons.
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Figure 12. QAP Application on Grid5000.

Figure 12 summarizes several experiments. First, the entire application was executed on each of the

three execution clusters using 30 computational nodes. The respective execution times are shown in the

three bars to the left.

Next, the application was executed on all three execution clusters, using 10 nodes on each cluster.

Thus the total number of processors available to the application was again 30. The fourth bar of Figure 12

shows the time of the fault-free execution (175 seconds) using no fault-tolerance protocol at all. Next,

the same experiment was repeated using the TIC protocol with τ = 5s. The result is shown in the fifth

bar peaked at 185 seconds. The difference in execution times between this and the previous scenario is

entirely due to the overhead of TIC and its remote checkpointing. Finally, an execution with fault in

the PowerPC cluster was considered. Specifically, after 50% of the application had executed a fault was

injected that affected all 10 nodes of the PowerPC cluster, i.e., the cluster was lost. The affected part of

the execution rolled back and finished execution on the remaining 20 processors. One can see (in the



bar to the right indicating 216 seconds) that the execution tolerated the cluster fault exceptionally well,

resulting in an overall execution time which was only 17% larger than that of the fault-free case, even

though one entire cluster was permanently lost. Furthermore, the rollback was across platforms, i.e.,

the computations of the failed cluster was dynamically absorbed by the two remaining clusters using

different hardware architectures.

7.5 Comparison with Satin

A fault-tolerant parallel programming environment similar to the approach presented above is Satin

[31]. In fact, the Satin environment follows the general execution model presented in Figure 1. However,

the abstraction of the execution state is a series-parallel graph, rather than the dataflow graph. As such

Satin only addresses recursive, series-parallel programming applications. In Satin fault-tolerance is

based on redoing the work lost by the crashed processor(s). To avoid redundant computations, partial

results, which are stored in a global replicated table, can later be reused during recovery after a crash.

To compare the performance of TIC with Satin a different application was used, i.e., a recursive

application resembling a generalization of a Fibonacci computation. Figure 13 shows the result of exe-

cutions of both approaches for different fault scenarios. Specifically, for each approach first an execution

without fault is shown. Next a single fault was injected after 25%, 50% and 75% of the execution had

completed. To eliminate the impact of the different implementation languages and execution environ-

ments on the execution times, i.e., C++/KAAPI and Java/Satin, the measurements presented in the figure

are relative to the execution times in their respective environments. As can be seen, the cost in Satin

is significantly higher than that in KAAPI/TIC, which used τ = 1s. The reason is that in Satin all

computations affected by the fault are lost. In fact, the loss is higher the later the fault occurs during the

execution. This is not the case in TIC where the maximum loss is small, i.e., τ +max(ci) as was shown

in Subsection 6.2. Thus TIC overcomes this performance deficiency of Satin.

On the other hand, the TIC protocol is pessimistic in the sense that processes are always checkpointed

to anticipate a future failure. The result is that for fault-free executions the Sating approach has lower



overhead than TIC. However, as was shown in Subsection 7.2, the overhead of TIC is very small.

For applications with small computation times (linear or quasi linear) Satin also tends to perform

better than TIC. The reason is that the time to recompute solutions under Satin may be less than the

overhead associated with writing checkpoints to stable storage. However, such applications are difficult

to parallelize due to the low computation/communication ratio.

To compare the performance of TIC with Satin a different application was used, i.e., a recursive
application resembling a generalization of a Fibonacci computation. Figure 12 shows the result of exe-
cutions of both approaches for different fault scenarios. Specifically, for each approach first an execution
without fault is shown. Next a single fault was injected after 25%, 50% and 75% of the execution had
completed. To eliminate the impact of the different implementation languages and execution environ-
ments on the execution times, i.e., C++/KAAPI and Java/Satin, the measurements presented in the figure
are relative to the execution times in their respective environments. As can be seen, the cost in Satin
is significantly higher than that in KAAPI/TIC, which used τ = 1s. The reason is that in Satin all
computations affected by the fault are lost. In fact, the loss is higher the later the fault occurs during the
execution. This is not the case in TIC where the maximum loss is small, i.e., τ +max(ci) as was shown
in Subsection 6.2. Thus TIC overcomes this performance deficiency of Satin.

1,7%

11,4%

15,5%

18,2%

1,5% 1,6% 1,8% 1,6%

0%

5%

10%

15%

20%

25%

30%

O
v

e
rh

e
a

d
 (

%
)

Satin                                     Kaapi

Comparison KAAPI / Satin for 32 processors

without fault

fault after 25%

fault after 50% 

fault after 75%

Figure 12. Comparison of TIC with Satin using 32 Processors.

8 Conclusions

To overcome the problem of applications executing in large systems where the MTTF approaches or
sinks below the execution time of the application two fault-tolerante protocols, TIC and SEL, were
introduced. The two protocols take under consideration the heterogeneous and dynamic characteristics
of Grid or cluster applications and pose limitations on the effective exploitation of the underlying in-
frastructure. The flexibility of dataflow graphs has been exploited to allow for a platform-independent
description of the execution state. This description resulted in flexible and portable rollback recovery
strategies.

SEL allowed for rollback at lowest level of granularity, with a maximal computational loss of one
task. However, its overhead was sensitive to the size of the associated dataflow graph. TIC experienced
lower overhead, related to work-stealing, which was shown bounded by the critical path of the graph.
By selecting an appropriate application granularity for SEL and period τ for TIC the protocols can be

Figure 13. Comparison of Satin with KAAPI/TIC using 32 Processors.

8 Conclusions

To overcome the problem of applications executing in large systems where the MTTF approaches or

sinks below the execution time of the application, two fault-tolerant protocols, TIC and SEL, were

introduced. The two protocols take under consideration the heterogeneous and dynamic characteristics

of Grid or cluster applications that pose limitations on the effective exploitation of the underlying in-

frastructure. The flexibility of dataflow graphs has been exploited to allow for a platform-independent

description of the execution state. This description resulted in flexible and portable rollback recovery

strategies.

SEL allowed for rollback at the lowest level of granularity, with a maximal computational loss of one

task. However, its overhead was sensitive to the size of the associated dataflow graph. TIC experienced



lower overhead, related to work-stealing, which was shown bounded by the critical path of the graph.

By selecting an appropriate application granularity for SEL and period τ for TIC the protocols can be

tuned to the specific requirements or needs of the application. A cost model was derived, quantifying

the induced overhead of both protocols. The experimental results confirmed the theoretical analysis and

demonstrated the low overhead of both approaches.
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