
Re-scheduling invocations of

services on RPC-Grid 1

Thierry GAUTIER and Hamid-Reza HAMIDI

Projet APACHE Laboratoire ID-IMAG,
51 av Jean Kuntzmann, 38330 Montbonnot Saint Martin, France 2

Abstract

RPC-based Grid infrastructures emphasize on the composition of services on a large
number of computing resources. The key issue to reach high performance is to enable
exploitation of parallelism on services invocations and communications. Moreover,
this process should be transparent to reuse legacy codes. In this paper we present
Homa, an IDL compiler and a run-time support for automatic detection of the
parallelism of invocations and their data dependencies on a set of CORBA objects.
On homogeneous architecture, Homa is accompanied by a predictable cost model.
In the case of an application with a small critical path, among p processors the
speed up of Homa versus CORBA is asymptotically O(p). The illustrations on a
case study in computational chemistry validate our cost model.

Key words:

1 Introduction

Multi-scale and multi-physics simulations are emerging as solutions to achieve
high fidelity in complex physical system simulations. Applicability of different
physics, computational techniques, and programming models demands that
these programs be developed as a largely independent collection of software
components. For instance, [27] reports that simulation of the next genera-
tion of aircraft will require several hundreds of software components and
will consume a lot of CPU time. Therefore, these simulations have to ex-
ploit the aggregate power of resources scattered from available clusters: such
component-based programs have to exploit a computational grid [18]. Several

Email addresses: Thierry.Gautier@inrialpes.fr,
Hamid-reza.Hamidi@imag.fr (Thierry GAUTIER and Hamid-Reza HAMIDI).
1 This research is supported by the French government (ACI-Grid / GRID2 project
2 The project was supported by C.N.R.S.-I.N.P.G.- I.N.R.I.A.-U.J.F.

environments have been proposed to build applications for a computational
grid by providing services to encapsulate (server) components. A Network
Enabled Server system (NES) [29] is a Metacomputing environment where a
client requests the services of the servers using Remote Procedure Call (RPC).
There are many research projects that adopt this basic model of computation
Netsolve [11], Ninf [38], DIET [10]. High performance scheduling (for single
or multiple requests), automatic extraction of parallelism between several re-
quests and optimization of data movement are some of the main challenges of
such systems.

This paper presents the Homa environment [20–22] to schedule invocations
of method onto a large scale distributed memory architecture. Homa was
motivated by multi-physics numerical simulations building by code coupling
technics. Iterative and dynamic nature of coupling algorithms for numeri-
cal simulations orients Homa toward dynamic composition of invocations to
method with data dependencies. Homa focus on the applications based on the
standard CORBA from OMG, which have been successfully used in several
projects for numerical simulation [4,10,27]. Moreover some high performance
implementations are available [39,15] making CORBA well suited for building
high performance distributed application on computational grid. For instance,
some recent projects have proposed to facilitate access to core Grid services
(CoG kits) [32] for CORBA based application. DIET [10] presents a NES sys-
tem which relies on CORBA. CAPE-OPEN [4] is an European project that
aimed to propose CORBA interface of components for high performance sim-
ulation environments in computer aided process engineering.

While our target environment is CORBA, the challenge addressed into this
paper is to overcome some lacks of RPC-based environment for building easily
high performance applications.

• The first main difficulty comes from the semantic of the invocation of
method between a client and a server. An invocation is mostly a block-
ing instruction: the caller waits until the server returns values. CORBA
limits non-blocking invocations to the methods which do not have output
values. Therefore, in order to generate parallel flows of control, a program-
mer should mix blocking invocations with multi-thread computation, or he
should mix non-blocking invocation with an other way to handle return
values from server (callback, event driven model of execution, concept of
future [25], ...). Whatever is a concrete choice, the natural way a client
should invokes methods has to be forbidden. Using a specific compiler and
runtime support, Homa keeps the natural semantics of CORBA invocation
to efficiently exploit parallel computation.

• The second limitation is due to the semantic of the communication of effec-
tive parameters during the RPC: all effective parameters of an input formal
parameter of a method (in in CORBA) are communicated from the client to

2

the server; all output parameters (out in CORBA) are communicated back
to the client. The direction of a parameter defined in the COBRA Interface
Description Language (IDL) allows optimization of communication for one
invocation between one client and one server. This local optimization does
not imply a global optimization when a client invokes several methods on
a set of servers to run a complex simulation: all parameters are moved be-
tween servers by passing through the client even if it does not need them; the
client becomes the bottleneck for the scalability of using many components.
The problem is exacerbated in the case of iterative simulation. Thus, the
communication should be optimized by considering the whole invocations.
In this paper we present our idea to keep standard CORBA semantics of
invocation while generating only communications on the demand, i.e. if and
only if a data is required on a component for an operation.

The outline of the paper is the following. Next section presents the Homa
project. We introduce the abstract interpretation of CORBA client invocations
which allows to build at runtime the data flow graph between all invocations.
This graph represents the future of the execution. Section 3.2 presents theoret-
ical results about expected execution time of any CORBA client using Homa
versus a classical implementation: the gain could be linear with respect to the
number of processors if the application exhibits enough parallelism. Efficient
use of the data parallel CORBA object is described in section 3.3. Section 4
reports some experiments which fit our theoretical analysis. Then we conclude
this paper.
This paper extends previous published results on the theoretical scheduling
with respect of the memory and on the experiments [22,21,20].

2 A motivating example

This example comes from the project SIMBIO [6] in computational chem-
istry 3 . The goal of SIMBIO is to build a distributed application to compute
complex simulation of molecular structure (a protein) surrounded by solvent.

2.1 SIMBIO application

Figure 1 shows the coupling algorithm of SIMBIO application as a multi step
integration scheme. The molecular dynamics (md object) and the continuum
method (cm object) are connected by a special task (coupling object) that
implements the computation of the coupling terms of the physical models. All
objects are parallel: the ’atoms’ P and ’surface’ S data as well as CORBA
objects are in fact distributed vectors. These data and objects are aggregate

3 SIMBIO was an project funding by INRIA, 1997-1999.

3

CORBA objects distributed among the processors. They are called data paral-
lel object extension to CORBA sequential object [25,36,31]: the object state is
distributed among the processors and can be accessed using an interface such
as standard CORBA object, the implementation manages locality of data and
automatically scatters and gathers data during invocation.

1. for(int k=0; k <MaxTimeStep; k++) {

2. md->computeFF(P in, Fmdout);

3. if (cmstep(k)) { //true iff CM step

4. md->computeRhs(P in, bout);

5. cm->computeA(Sin,P in);

6. cm->computePolarization(bin,Fcmout);

7. }

8. // Coupling sited on "md".

9. coupling->mix(Fcmin,Fgout,Fmdinout);

10. md->integrate(V inout,Fmdin,P inout);

11. if (cmstep(k)) {

12. cm->integrate(Sinout,Fgin);

13. }

14.} // End of main loop.

MD −> computeFF

P

Fmd

S

b

MD −> computeRhs

CM −> computePol

Fcm

FmdFg

MD −> integrateCM −> integrate

CM −> computeA

V

coupling −> mix

S P V

Fig. 1. Left: Client code of SIMBIO with superscripts to present the mode of param-
eter passing. Right: Data flow graph for one iteration if cmstep condition is true.
Solid arcs represent inter-objects data communications.

The description of the data flow for one iteration depends on the current step
and was given by a CORBA based client program sketched in the left part of
figure 1. The right part represents the data flow graph between the invocations
of the methods. Box node represents data, and ellipse node represents task.
An edge from a task to a data means that the data is written by the task.
An edge from a data to a task means that the data is read by the task. Each
task in the data flow graph corresponds to invocation of method on CORBA
object (at lines 4, 5, 6, 9, 10, 12).

On the top of standard CORBA implementation, the client program makes
invocations to the servers. It is involved into each communications: the asso-
ciated process receives and forwards all data requested by the servers. The
client is the bottleneck for the communication. It is inherent from the seman-
tic of method invocations in CORBA which requires explicit communication
of effective parameters. Homa implements less strict semantic of method in-
vocations which allows to uncoupled the control flow and the data flow of the
execution. The client always describes the invocations but does not participate
into the communication of effective parameters between the servers.

4

3 Homa

Homa is a research action to provide an environment which allows to reuse
software components and assemble them in order to build high performance
and scalable distributed application for numerical simulation. It is based on
CORBA component technology [30]. The assumption implicitly made in Homa
is that application involves many components distributed onto several com-
puters. First we present Homa’s features and then its architecture.

3.1 Features for high performances

This section describes three main features required to reach high performances.
The first is the ability to predict the future of the execution by capturing
all invocations in order to unfold the data flow graph. The second allows an
efficient non preemptive execution in order to control the usage of resources at
runtime. The later is a lazy scheme of communication of effective parameters.
All of them are transparent to the final user and embedded into our IDL
compiler overviews in section 3.4.

3.1.1 Abstract Interpretation

In order to achieve efficient execution on parallel architecture, the knowledge
of the data dependencies related to the application appears as the key point for
computing good schedule. Homa handles at runtime the ”abstract interpre-
tation” to gain information about the parameters required for the invocations.
At compile time and from an IDL definition, Homa generates new client stubs
and server skeletons which allow to capture the type and direction mode for
each parameter involved in each invocation. At runtime, the control of the pro-
gram is interpreted in the standard way while all invocations are intercepted
to unfold the data flow graph of theirs executions. This graph is bipartite:
the nodes form two sets; the ”tasks” and the ”data”. A node of type ”task”
represents an invocation to a method on a server object. Input arcs are input
parameters (in in IDL), output arcs are output (out) parameters. A node
of type ”data” represents a version of a variable. The right side of figure 1
represents the associated data flow graph of our motivating example in the
case where cmstep(k) is true. Each node of the graph has attributes: the site
of execution of the task (the site where the server object is instantiated) and
the size of the data. Moreover, each node has a state (ready/ not ready) that
represents the flow of data with respect of the dependencies. A data is ready
if it is written by a task, and a task is ready if all of its input data are ready.

The generation of client stubs and server skeletons embeds all parameters of
invocations into global references as provided by the runtime support Atha-
pascan (see section 3.4). Such object acts as kind of future for results of
methods that are not yet executed. The abstract interpretation detects read

5

operations at runtime and it blocks the control flow until the availability of
the data. This concept comes from functional language community and it is
used in PARDIS [25] to explicitly generate parallelism between invocations.

3.1.2 Efficient Non-preemptive Execution

After computation of a schedule of the data flow graph (section 3.2), the
runtime evaluates all tasks accordingly the order induced by the data flow
constraints. Remote synchronous method invocation delays execution of the
caller until the end of the remote execution and the communication of pa-
rameters. This semantic limits the potential parallelism between invocations
and requires preemptive scheduling at runtime. With Homa, blocking invo-
cation is decomposed in two non blocking invocations. This transformation
is done into client stub and server skeleton generated from the IDL by our
compiler. We call this transformation the ”invocation by continuation” [22] as
the adapted version of the ”wait by necessity” [9] principle. In invocation by
continuation, a task invoking a blocking method is transformed in two tasks
which invoke non-blocking methods. The execution of the former task initiates
the invocation on the server and creates a task that represents the continu-
ation of the invocation. This task will became ready only when the server
invokes a method to put back the parameters.

The most import fact is that this transformation allows a non preemptive
execution [19] of the tasks with efficient execution: because all tasks are never
waiting for results, all processors remain active while there exist ready tasks
(in the graph). For instance, it is possible to execute the data flow graph using
one and only one thread of control to invoke in parallel methods on several
servers.

3.1.3 Automatic Data Movement

Due to the knowledge of the data flow of the (futur) execution of a sequence
of invocations, Homa is able to generate only the required communications to
realize one invocation onto a server. As presented above, the data flow graph
is automatically unfold thanks to IDL compilation and generation of new
client stubs and server skeletons. The IDL compiler translates each parameter
involved in invocations to a unique global reference. A reference is composed
by a name and a version number. If a server which produces a parameter
(out and inout) knows in advance all the servers that will consume it, the
skeleton is able to send the data to the consumers just after its production.
A receiver will store it until consumption. This mode of communication is
called the put mode. Thanks to the knowledge of the data flow graph, data
are broadcast to servers using a parallel algorithm. If a sever skeleton requires
a data which was not yet received, it sends a request to the process that has

6

produced it; this is the get mode of communication. In both methods, the
client that generates the sequence of invocations is never involved into the
communications, except if it requires to read data. The advantage of put mode
is to avoid extra communication. But, because it requires the storage of data
on some servers, the put mode should be used carefully with big data in order
to avoid memory consumption.

3.2 Theoretical Scheduling Results

Homa relies on the macro data flow execution kernel of Athapascan [19,23,37],
a runtime environment to manage parallel execution on heterogeneous dis-
tributed memory architecture.

3.2.1 Notations and background results

Let us recall the notations used in [19] defined on data flow graph: Sequential
time T1 denotes the sequential time that is defined from a serial execution
of the program. Parallel time T∞ is the arithmetic depth of graph taking
into account the weights (computation costs) of task nodes. T∞ is then a
lower bound of the minimal time required by any non-preemptive schedule on
an unbounded number of processors ignoring communications times (PRAM
model [17]). Communication volume C1 and delay C∞ are evaluated from
graph similarly to T1 and T∞ but taking into account only the weights (sizes) of
data version nodes. C1 is the sum of the weights over all data nodes; assuming
that the shared memory is emulated in an auxiliary file, C1 is then an upper
bound on the total number of accesses performed in this file during a serial
execution. C∞ is the length of the critical communication path.

3.2.2 Execution time with Homa

Let us assume that the communication cost for a message of size L is hL. The
size of the data flow graph is noted by σ.

Proposition 1 The time to execute a CORBA client on a p processors ma-
chine using Homa is: T homa

p = O(T1

p
+ T∞ + h(C1

p
+ C∞)) + O(σ).

The proposition is deduced from the results on parallel execution of any Atha-
pascan program [19]. This time includes the overhead to compute the sched-
ule of the program. The result is valid on a homogeneous parallel architecture
(processors must have the same speed). The authors [5] propose a work stealing
algorithm to the case of heterogeneous systems with similar bounds but that
does not take into account the communication. The execution cost model of
Homa is inherited from Athapascan [19], because Homa translates remote
blocking invocation into non-blocking invocations (see section 3.1.2) and it en-
ables direct communication between servers (section 3.1.3). Such techniques

7

add the overhead of creating an extra task for the continuation and an extra
communication in the case of get mode. But it does not increases asymp-
totically neither the work of the program nor the volume of communication.
The above features of Homa IDL compiler and runtime allow to execute any
CORBA program as an Athapascan program.

Note that if standard CORBA environment is used and because of limitations
explained in the introduction, the execution is sequential and data transit
through the client. Because of non-direct communication, the cost of data
transfer between servers is about double but remains in O(h). Therefore, the
complexity of any execution is: T corba

p = O(T1+T∞+h(C1+C∞))+O(σ). If the
program is highly parallel (T∞ << T1) and involves large data (C∞ << C1),
then the gain of using Homa versus CORBA is nearly linear with respect to

the number of processors (
T corba

p

T homa
p

= Θ(p)).

3.2.3 Memory space with Homa

Without any care, some schedules may not guarantee any bound concerning
the space required. However, Athapascan [19] is based on scheduling algo-
rithm which bound the memory space for executing program on a p-processors
machine. Using notation of [8,19], let us note by S1 the memory space required
for the serial execution on 1 processor. Sp is the memory space required for the
execution on p processors. For fully strict computation, [8] bounds the memory
space by Sp = O(pS1) while preserving good execution time.

The assumptions in [7] about the structure of the computation may be applied
for Athapascan to bound memory space required for execution. Thus any
Athapascan program has memory space bounded by S1 +O(pT∞ log(pT∞))
and the time bounded by O(T1/p + T∞ log p) on a p-processors machine [7].
Note that the running time is slightly increased with comparison to the bound
given in the previous section. This leads to the following proposition showing
that Homa program have bounded memory space requirement during execu-
tion.

Proposition 2 For any Homa program which required S1 memory space for
serial execution, it exists a scheduling with parallel time O(T1/p + T∞ log p)
and memory space S1 + O(pT∞ log(pT∞)).

3.3 Efficient Data Parallel Exploitation

There are several attempts to integrate data parallel applications in the CORBA
object model [31,34,25]. Parallel CORBA object (PACO) [36,34] concept aims
at providing an efficient technique to encapsulate parallel codes based on the
use of message passing libraries (i.e. MPI). It defines the data parallel object
as a collection of identical CORBA objects. Data Parallel CORBA Specifica-

8

Client

Stub Stub

Stub
Homa

Stub
Homa

model
execution

SPMD
codecode

Extended

Skeleton

POA

Server

POA

Object Request Broker (ORB)

Stub

Homa Proxy

Skeleton
(Athapascan)

Server

POA

Skeleton

Extended

Skeleton

Object Object Object

Macro Data−Flow Middleware

Fig. 2. Homa’s architecture.

tion [31] has been approved by OMG. It defines an additional approach for
the implementation and use of CORBA objects that enables the object imple-
menters to take advantage of parallel computing resources to achieve scalable,
high performance. Parallel ORBs [31] exploit these advantages just only for
one client-to-server invocation.

It is interesting to note that even if data parallel CORBA components [31,34]
are used, the semantic of communication implies that parameters transit
through the client, thus even if the work is parallelized by (T1/p+T∞) the com-
munication bottleneck due to the client remains in order of h(C1+C∞). Hence
even a parallel client could not overcome the lack of direct communication be-
tween individual parts of the parallel objects. Thanks to the communication
on the demand approach, Homa enables the parts of parallel objects to com-
municate in parallel (see section 3.1.3). The extended skeleton contains the
extra methods which are the extensions of the user defined object methods.
Homa consider the same data partitioning and request distribution of origi-
nal parallel objects for its proxy. Using Parallel ORBs, Homa’s data parallel
proxies are able to communicate directly, so the communication remains in
order of h(C1/p + C∞).

3.4 Implementation

The Homa IDL compiler generates stub and skeleton in order support the
abstract interpretation, the efficient non-preemptive execution and the auto-
matic data movement described in section 3.1. The source code of the client
and server does not change but it needs to be recompiled. The generated stub
and skeleton relies on stubs and skeletons generated from a standard CORBA
implementation. Figure 2 shows the interaction between the Homa extended
stub and skeleton and the native CORBA stub and skeleton. Homa stub in-
tercepts method invocations to generate the needed information for data flow
graph unfolding and automatic data movement. This concerns the transfor-
mation of parameters to global references and the management of data into

9

caches. The cache is distributed among all the processus of the application and
stores data as value of CORBA type any. The graph is managed and unfold at
runtime using the kernel of Athapascan [19]. The whole compilation process
is detailed in [22].

Two approaches are considered to serve legacy codes encapsulated in CORBA
object: By recompilation of the server codes, Homa inserts an extended skele-
ton which intercepts incoming requests (figure 2, left server). Homa is also
able to generate proxy object to intercept invocations to legacy code servers
(figure 2, right server) which introduces extra inter-objects invocation.

4 Experiments

All experiments were made using the OmniORB3 implementation of CORBA.
The programs were carried out on the iCluster of INRIA at Grenoble (PC
733Mhz, 256MByte, network 100Mbit/s). The timings are given using the
current version of the Homa environment, which implements only the get
mode presented above. The scheduling algorithm is a simple greedy list-based
centralized algorithm that executes the first ready task of the list.

4.1 Aggregate Bandwidth

In this experience we run the program of figure 3. N is the number of pairs,
parameters of invocations are the sequences of size K and each of 2N objects
is mapped onto a different processor (p=2N). The invocations produce on the

1. // Call the producters

2. for(int i=0; i < N; i++)

3. // x[i] is output parameter

4. Ps[i] -> produce (x[i]);

5. // Call the consumers

6. for(int i=0; i < N; i++)

7. // x[i] is input parameter

8. Pc[i] -> consume (x[i]);

x[1] x[N]

Ps[1] −> produce Ps[N] −> produce

Cs[N] −> consumeCs[1] −> consume

Fig. 3. Left: Client code. Right: Associated data flow graph.

Ps[i] write sequences of size K while invocations consume on the Cs[i] read
all the entries of the input sequences. This program is characterized by T1 =
O(N) and T∞ = O(1); C1 = O(NK) and C∞ = O(1). The figure 4, reports the
execution time using CORBA and Homa with two sizes of sequence (K =
3.2MBytes and K = 9.6MBytes). The time for CORBA is linear in the
number of processors as well as in K as predicted by T corba

p = O(NK).

With Homa, we observe the time which is nearly constant: results fit our

10

predictive complexity T homa
p = O(K). Nevertheless, a finer analysis shows that

time for Homa is linear in N : this is due to the term O(σ) in our cost model
(see proposition 1 page 7). This term takes into account the time required to
unfold the data flow graph which basically corresponds to sequentially unroll
the loops to create O(N) tasks with dependencies. This time is several orders
of magnitude less than the time required to invoke a method on a remote
object and has no impact when compared to standard CORBA, as shows in
figure 4.

0

5

10

15

20

25

30

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of servers

Tim
e (

sec
)

CORBA 9,6MB Homa 9,6MB

CORBA 3,2MB Homa 3,2MB

Fig. 4. Execution time of code figure 3.

Using Homa, the aggregate bandwidth linearly grows as the number of pairs,
the maximum aggregate bandwidth is about 304MBytes/s ' 3Gbits/s for
32 servers communicating to 32 servers (64 servers). The average point-to-
point bandwidth between two servers is about 4 9.5MBytes/s. In an other
experiment, scalability of Homa up to 120 servers was observed with little
degradation in the average point-to-point bandwidth. So Homa is able to ex-
ploit parallelism between method invocations and to manage parallel commu-
nications. On similar experiments where parallel objects may be applied and
on a same fast ethernet network, published results for PACO [36,34] relates
point-to-point bandwidth which varies from 9.1MBytes/s to 11.3MBytes/s
depending on the version of the implementation, the architecture and the
number of servers. Nevertheless, loops cannot be handle as in figure 3 (see
section 3.3).

4.2 SIMBIO

This experiment measures the ability of Homa to make parallel execution of
invocations with complex dependencies. Figure 1 page 4 sketches the algorithm
and associated data flow graph of SIMBIO application. All parameters of
invocations are sequences of size M (number of atoms).

4 Maximum point-to-point bandwidth with respect to MPI on TCP is about

11

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Number of atoms (*k)

Ti
m

e
(s

ec
)

HOMA N=2 CORBA N=2

HOMA N=4 HOMA N=8

Atoms
p

3 6 12

Speedup

100k 2.72 5.09 7.41

200k 2.98 5.00 9.15

400k 2.99 5.69 9.39

600k 2.98 5.40 9.46

800k 2.98 5.60 10.57

Fig. 5. Left: SIMBIO execution time with several objects/application. Right: Homa
gains versus CORBA.

In the experiments MD object is distributed to N1 and CM to N2 sub-objects of
the same interface: each invocation is dispatched to several invocations on each
sub-objects. Note that the control flow depends on the evaluation of cmstep
which is only known at runtime. In this experiment N1 = 2N2 = N and we
choose cmstep to be true for each two iterations. All objects are mapped onto
different processors.

Let us note by T1 the work of SIMBIO application, T∞ the critical path, C1 =
O(M) the communication volume and by C∞ the communication delay. At
first approximation we can consider that algorithms used in SIMBIO are linear
with respect to the number of atoms, thus T1 = O(M) and T∞ = O(M(1

N1
+

1
N2

)). This assumption leads to T homa
p = O(M

N
(1 + h)) using our predictive

model. Left side of figure 5 reports the time of 10 iterations. As the cost model
analysis expects, there is a linear relation between the execution time using
Homa and object parallelization: the time decreases linearly as the number of
processors increases. Right side of figure 5 presents the gain of Homa versus
CORBA for different number of atoms and processors p = N1 +N2. There are
two reasons for subsidency of efficiency in growth of p. First, different number
of sub-objects (N1 6= N2) causes scatter/gather of messages from/to an object
(in this experiment two sub-objects of MD versus one sub-object of CM)
serialising the communications. As the second reason, increasing of granularity
decreases message size per sub-objects so Homa overhead becomes important.
Our cost model may benefit from finer characterization of the communication
using a machine model such as logP .

11MBytes/s on iCluster.

12

5 Related Works

Lazy Approach and Cache Strategy: In order to achieve the necessary through-
put and latency in CORBA, we observed two groups of research. First, the
attempts to provide an object replication framework specially to used over
Internet like CASCADE [13], ScaFDOCS system [26]. The object replication
approach is not efficient for the methods with large size arguments which is
our target applications, the numerical simulations. Second, the researches for
caching results of method invocations so that the subsequent method invoca-
tions will return locally cached values without invoking the remote operation.
A very limited solution is provided by smart stub mechanism in some ex-
isting CORBA implementations (e.g. Orbix [24] and VisiBroker). But the
burden of maintaining coherency lies entirely on the application programmer.
MinORB [28] is a research ORB that allows caching partial results of read
method invocations at the client side. However, to our knowledge, there is no
attempt to automatically optimize communication on a sequence of invoca-
tions.

In [12] and [3], the concept of future is used in order to generate parallel
flow of control between Java’s remote method invocations. In [12], the main
problem solved is the reduction of communications between a client and one
server by aggregating invocations. Our work targets scalable architecture with
hundreds of processors with predictible performance model. The way the data
are cached onto servers also differs. In [12] aggregate of invocations are cached.
In [3] input or output data are cached as well as in Homa. Nevertheless, the
knowledge of the data flow allows us to anticipate communications and use
parallel algorithm to broadcast or reduce data. Moreover it does not require
a general purpose cache coherent protocol.

Predictive cost model and algorithmic skeleton: Algorithmic skeleton [14,33,35]
was introduced in order to design high performance algorithm by providing
basic building blocks, called skeletons, which can be optimized on various par-
allel or distributed architectures. In [2,1] predictive performance models are
computed by estimating time required to execute basic instruction of Java
virtual machine. Our approach differs in the parameters of the predictive cost
model. We use the work and the critical path of parallel programs to predict
the time of execution on a p processor computers. Moreover, such cost model
may be applied to any parallel algorithm without using skeletons. Neverthe-
less, skeleton approaches seems to reach better performances when potential
parallelism is roughly equivalent to the available parallelism: using our ap-
proaches the cost of computing the schedule may introduce an overhead. This
is the reason why Homa implementation uses a skeleton to scatter data to a
given set of processors (see section 3.1.3).

Aggregate Object for Parallel Codes: In CORBA object model, PARDIS [25]

13

and PACO [34] have studied the integration of data parallel application. OMG
has recently published a specification to handle data parallel application [31].
PARDIS reports to the user the concept of future while our approach makes
it use implicit. Neither PARDIS nor PACO provides an efficient support ro-
bust to the composition without rewriting interface to access to data. These
researches are orthogonal with Homa where the optimization of a general
sequence of invocations is shown to be efficient and scalable. Nevertheless,
Homa makes few assumptions about the distributed nature of the objects or
parameters and such parallel object extension should be easily reused.

Service-based Metacomputing: NetSolve [11], Ninf [38] and DIET [10] are the
RPC-based client/agent/server systems that enable users to solve complex
scientific problems remotely. Netsolve and Ninf developed their own runtime
support for communication but DIET is based on CORBA technology. In
Netsolve and Ninf, Request Sequencing [16] enables programmers to demand
optimization of communication on a sequence of requests. But it is explicit
and not transparent. There is no support to efficiently exploit data parallel
objects.

6 Conclusion

This paper presents our approach for an efficient and scalable composition
of distributed applications viewed as composition of CORBA method invo-
cations. To fulfill this goal we present how to build the data flow graph of
the execution and how to exploit it to extract parallelism using Athapascan
and to avoid unnecessary communication. Together these features permit to
several servers to communicate in parallel.

Moreover we show that the cost model of Athapascan is inherited in Homa
and we present the theoretical gain over a standard CORBA environment.
Some experiments validate our analysis. The techniques could be automati-
cally used and we have developed an initial prototype. Homa provides a way
to program computational grid with CORBA as a standard from the industry,
using automatic code transformation.

Ongoing works are to study scheduling heuristics in the case where a task in
our graph could be dispatch on any server of a set in order to minimize the
communication (the problem is NP-hard). The target application is numerical
simulation in computer aided process engineering [4]. Moreover, technical work
currently deals with trying to reduce the overhead of our implementation by
an efficient cache; avoiding the extra copy needed for generic cache data type
(CORBA Any data type).

To the knowledge of the authors, Homa’s work is the first attempt to con-

14

sider the efficiency and the scalability of the composition of CORBA method
invocations for high performance applications in numerical simulation.

References

[1] M. Alt, H. Bischof, and S. Gorlatch. Algorithm Design and Performance
Prediction in a Java-Based Grid System with Skeletons. In Burkhard Monien
and Rainer Feldmann, editors, Euro-Par 2002, volume 2400 of LNCS, pages
899–906. Springer-Verlag, August 2002.

[2] M. Alt, H. Bischof, and S. Gorlatch. Program Development for Computational
Grids Using Skeletons and Performance Prediction. Parallel Processing Letters,
12(3):157–174, 2002.

[3] M. Alt, H. Bischof, and S. Gorlatch. Future-Based RMI: Optimizing
Compositions of Remote Method Calls on the Grid. In Euro-Par 2003, volume
2790 of LNCS. Springer-Verlarg, 2003.

[4] J.-P. Belaud, B. Braunschweig, and M. Pons. Open software architecture for
process simulation : The current status of cape-open standard. In European
Symposium on Computer Aided Process Engineering, ESCAPE-12, pages 847–
852, The Hague, The Netherlands, 2002.

[5] M.O. Bender and M. O. Rabin. Online scheduling of parallel programs on
heterogeneous systems with applications to cilk. Theory of Computing Systems,
35(3):289–304, May 2002.

[6] P.E. Bernard and O. Coulaud. Parallel constrained molecular dynamics. INRIA
Lorraine, Project NUMATH, Research report RR-3868, January 2000.

[7] G.E. Blelloch, P.B. Gibbons, G.J. Narlikar, and Y. Matias. Space-efficient
scheduling of parallelism with synchronization variables. In ACM Symposium
on Parallel Algorithms and Architectures, pages 12–23, 1997.

[8] R.D. Blumofe and C.E. Leiserson. Space-efficient scheduling of multithreaded
computations. SIAM Journal on Computing, 1(27):202–229, 1997.

[9] D. Caromel. Towards a method of object-oriented concurrent programming.
Communication of the ACM, 36:90–102, 1993.

[10] E. Caron, F. Desprez, F. Lombard, J.M. Nicod, M. Quinson, and F. Suter. A
Scalable Approach to Network Enabled Servers. In B. Monien and R. Feldmann,
editors, Proceedings of the 8th International EuroPar Conference, volume 2400
of LNCS, pages 907–910, Paderborn, Germany, August 2002. Springer-Verlag.

[11] H. Casanova and J. Dongarra. NetSolve: A network server for solving
computational science problems. In Workshop of Vector and Parallel computing,
Manno, Switzerland, March 1997. SPEEDUP Society.

15

[12] K. Cheung Yeung and P. K. Kelly. Optimising java rmi programs by
communication restructuring. In Middleware 2003: ACM/IFIP/USENIX
International Middleware Conference, volume 2790. ACM, 2003.

[13] G. V. Chockler, D. Dolev, R. Friedman, and R. Vitenberg. Implementing
a caching service for distributed corba objects. In Proc. of IFIP/ACM
International Conf. on Distributed Systems Platforms and Open Distributed
Processing, NY, USA, 2000.

[14] M. Cole. Algorithmic Skeletons: Structured Management of Parallel
Computation. MIT Press, 1989. Available at homepages.inf.ed.ac.uk/mic/Pubs.

[15] A. Denis, C. Pèrez, and T. Priol. PadicoTM: An open integration framework
for communication middleware and runtimes. Future Generation Computer
Systems, 19(4):575–585, May 2003.

[16] C. Arnold Dorian, Bachmann Dieter, and J. Dongarra. Request sequencing:
Optimizing communication for the grid. In Proceedings of 6th International
Euro-Par Conference, volume 1900, pages 1213–1222, Germany, 2000. LNCS,
Springer Verlag.

[17] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proc.
of the tenth annual ACM symposium on Theory of computing, pages 114–118.
ACM Press, 1978.

[18] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid. Intl J.
Supercomputer Applications, 2001.

[19] F. Galilée, J.L. Roch, G.G.H Cavalheiro, and M. Doreille. Athapascan-1:
On-line building data flow graph in a parallel language. In Proceedings of
the IEEE International Conference on Parallel Architectures and Compilation
Techniques, PACT’98, pages 88–95, Paris, France, October 1998.

[20] T. Gautier and H.R. Hamidi. Automatic re-scheduling of dependencies in a rpc-
based grid. In Proceedings of 18th annual ACM International Conference on
Supercomputing (ICS’04), pages 89–94, Saint-Malo, France, June 2004. ACM
Press.

[21] T. Gautier and H.R. Hamidi. High performance composition of services with
data dependencies on a computational grid. In Proceedings of the International
Conference on Parellel and Distributed Processing Techniques and Applications
(PDPTA’04), pages 809–814, Las Vegas, USA, June 2004. CSREA.

[22] T. Gautier and H.R. Hamidi. Homa: automatic re-scheduling of multiple
invocations in corba. INRIA Rhône-Alpes, projet APACHE, Research report
RR-5191, May 2004.

[23] T. Gautier, R. Revire, and J.-L. Roch. Athapascan: API for Asynchronous
Parallel Programming. Technical Report RR-0276, INRIA Rhône-Alpes, projet
APACHE, February 2003.

[24] IONA. Orbix Programming Guide. IONA Technology Ltd., 1995.

16

[25] K. Keahey and D. Gannon. Pardis: A parallel approach to corba.
In Proceedings of the 6th International Symposium on High Performance
Distributed Computing (HPDC ’97), page 31. IEEE Computer Society, 1997.

[26] R. Kordale, M. Ahamad, and M. Devarkonda. Object caching in a corba
compliant system. USENIX Computing Systems Journal, 9(4), 1996.

[27] I. Lopez, G.J. Follen, R. Gutierrez, I. Foster, B. Ginsburg, O. Larsson, and
S. Tuecke. Using corba and globus to coordinate multidisciplinary aeroscience
applications. In Proc. of the NASA HPCC/CAS Workshop, pages 15–17, 2000.

[28] P. Martin, V. Callaghan, and A. Clark. High performance distributed objects
using caching proxies for large scale applications. In Proceeding of the IEEE
International Symposium on Distributed Objects and Applications (DOA’99),
Edinburgh, Scotland, September 1999.

[29] S. Matsuoka, H. Nakada, M. Sato, and S. Sekiguchi. Design issues of Network
Enabled Server Systems for the Grid. In Grid Computing – GRID 2000, volume
1971 of LNCS, pages 4–17. Springer-Verlag, December 2000.

[30] OMG. Corba component model. Technical report, formal/2002-06-65, 2002.

[31] OMG. Data parallel object. Technical report, formal/2002-06-65, 2002.

[32] M. Parashar, G. von Laszewski, S. Verma, J. Gawor, K. Keahey, and N. Rehn.
A corba commodity grid kit. In Concurrency and Computation: Practice and
Experience, John Wiley and Sons, 2002.

[33] S. Pelagatti. Structured Development of Parallel Programs. Taylor & Francis,
1998.

[34] C. Pèrez, T. Priol, and A. Ribes. A parallel corba component model for
numerical code coupling. In Craig A. Lee, editor, Proceeding of the 3nd
International Workshop on Grid Computing, LNCS, Baltimore, Maryland,
USA, November 2002. Springer-Verlag.

[35] F. A. Rabhi and S. Gorlatch, editors. Patterns and Skeletons for Parallel and
Distributed Computing. Springer, 2003.

[36] C. René and T. Priol. MPI code encapsulating using parallel CORBA object.
Cluster Computing, 3(4):255–263, 2000.

[37] R. Revire, F. Zara, and T. Gautier. Efficient and Easy Parallel Implementation
of Large Numerical Simulations. In Proceedings of EuroPVM/MPI, Parallel
Simulation (ParSim 2003), Venice, Italy, September 2003.

[38] M. Sato, H. Nakada, S. Sekiguchi, S. Matsuoka, U. Nagashima, and H. Takagi.
Ninf: A network based information library for a global world-wide computing
infrastracture. In HPCN’97 (LNCS-1225), pages 491–502, 1997.

[39] D. Schmidt, A. Gokhale, T. Harrison, D. Levine, and C. Cleeland. Tao:
A high-performance endsystem architecture for real-time corba. In IEEE
Communications Magazine feature topic issue on Distributed Object Computing,
February 1997.

17

