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Abstract. In this paper we consider a multi-server queue with a near
general arrival process (represented as an arbitrary state-dependent Cox-
ian distribution), a near general state-dependent Coxian service time
distribution and a possibly finite queueing room. In addition to the de-
pendence on the current number of customers in the system, the rate of
arrivals and the progress of the service may depend on each other. We
propose a semi-numerical method based on the use of conditional prob-
abilities to compute the steady-state queue length distribution in such
a queueing system. Our approach is conceptually simple, easy to imple-
ment and can be applied to both infinite and finite Cm/Ck/c-like queues.
The proposed method uses a simple fixed-point iteration. In the case of
infinite queues, it avoids the need for arbitrary truncation through the
use of asymptotic conditional probabilities.
This preliminary study examines the computational behavior of the pro-
posed method with a Cox-2 service distribution. Our results indicate
that it is robust and performs well even when the number of servers and
the coefficient of variation of the service times are relatively high. The
number of iterations to attain convergence varies from low tens to several
thousand. For example, we are able to solve queues with 1024 servers and
the coefficients of variation of the service time and of the time between
arrivals set to 4 within 1100 iterations.

Key words: multi-server queue, general arrivals, general service times,
steady-state queue length distribution, simple efficient semi-numerical
solution

1 Introduction

The use of multiple processing elements or servers to provide an overall high
processing capacity is a frequently applied technique in many areas including
multi-core processors, distributed systems, storage processors with multiple in-
ternal “engines” , virtualization in operating systems, where multiple logical
CPUs are defined, as well as the Internet where most popular Web sites use
multiple“mirror” sites. The numbers of servers in these applications can read-
ily exceed 16 and appears to be growing. Due to intrinsic characteristics of
the service demands or the way service is provided, it is possible for the service
times and/or inter-arrival times to exhibit high variability. In particular, modern
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CPUs, storage processors, as well as Web sites make extensive use of internal
caches to reduce the expected service time for most requests. The mixture of
cache hits and much less frequent cache misses naturally leads to service time
distributions characterized by high variability. The potentially high variability
of service times is not limited to computer applications [32].

At a high level, the applications described can be viewed as instances of
the G/G/c queueing system with a possibly high coefficient of variation of the
service time, as well as of the time between arrivals. In real life, the maximum
queue depth or buffer capacity is finite. Additionally, in many systems, the rate
of service may depend on the current number of customers in the system, e.g.
if system overheads increase as the number of customers increases in computer
applications. State-dependent arrival rate allows us to represent, for instance,
a queue subject to requests generated by a finite set of memoryless sources. In
load balancing applications, it is also possible to have arrivals of requests that
depend on the progress of service.

We consider a G/G/c-like system in which the distribution of the times be-
tween arrivals is represented by a Coxian [10] series of memoryless stages. The
parameters of this Coxian distribution may depend on the number of customers
in the system. The service times are represented by a Coxian distribution gener-
alized to include state-dependent service rates and routing probabilities. Addi-
tionally, the rate of arrivals and the progress of the service may depend on each
other. A number of authors have studied algorithms for matching an arbitrary
distribution by a Coxian, e.g. [7, 25, 12, 19].

We base our method on conditional probabilities, which allows us to derive
a computationally efficient semi-numerical approach to the evaluation of the
steady-state queue length distribution. The proposed approach, applicable to
both finite and infinite Cm/Ck/c-like queues, does not rely explicitly on matrix-
geometric techniques [20, 22]. It is conceptually simple and appears numerically
stable in practice even for large numbers of servers. Unlike certain other ap-
proaches (e.g. [23]), our method requires minimal mathematical sophistication
and is easy to implement in a standard programming language, which should
make it of interest to every-day performance analysts. Results obtained from
our method have been verified using discrete-event simulation.

As it is well known (e.g. [30]), in the case of an infinite, state-independent
G/G/c-like queue, the form of the queue length distribution is asymptotically
geometric. Our method exploits this fact to avoid arbitrary truncation present
in other methods [29, 27, 22]. For the Cm/Ck/c queue, the coefficient of the
asymptotic geometric distribution can be independently obtained from a simple
set of equations.

In this paper we present preliminary experimental results on the computa-
tional behavior of the proposed approach in the particular case when the service
time distribution comprises two stages (generalized Cox-2). It is well known that
a standard state-independent two-stage Coxian can be used to match the first
two moments of any distribution whose coefficient of variation is greater than
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2, and a Coxian distribution with an unlimited number of stages (used for
the inter-arrival times) can approximate arbitrarily closely any distribution [1].

There is a large body of literature devoted to queues with multiple servers.
The computation of the stationary queue length distribution of the M/M/c or
the M/M/c/K queue is easy and well known [1]. However, no simple derivation
seems to exist, even for the first moment of the queue length, when the ser-
vice times are not exponentially distributed. For the M/D/c queue, Saaty [24]
presents a method to obtain the queue length distribution in steady state, and
Cosmetatos [9] proposes an approximate formula to compute the mean waiting
time in such a queue. Shapiro [28] considers the M/E2/c queue, and uses an
original state description that leads to a set of differential equations for which
he proposes a general solution framework. Mayhugh and McCormick [18], and
Heffer [13] expand Shapiro’s approach to the M/Ek/c queue for arbitrary values
of k. As pointed out by Tijms et al. [31], the solution of the resulting set of differ-
ential equations quickly becomes intractable as the value of k or the number of
servers increases. Thus, Tijms et al. [31] propose an algorithm to approximately
compute the steady-state queue length distribution for the M/G/c queue with
variation coefficients up to 3. Hokstad [15] attempts to use the method of sup-
plementary variables to study the M/K2/c queue, and is able to obtain partial
results for up to three servers. The method of supplementary variables is also
used by Hokstad [14] and Cohen [8] to derive the stationary queue length dis-
tribution for the M/G/2 queue. Extensions of this method to a higher number
of servers do not appear practical.

Results are even more difficult to obtain when the interarrival time distribu-
tion is also general. Ishikawa [16] uses the method of supplementary variables
to derive the solution for the G/E3/3 queue. De Smit [11] studies the G/H/c
queue but is not able to prove the existence of a solution in the general case,
and reports experimental results limited to the G/H2/c queue. Ramaswami and
Lucantoni [21] use the embedded Markov chain approach under the assumption
of a phase-type distribution of service times. Their method requires the solution
of a non-linear matrix equation. The high order of the matrices involved makes
the solution impractical for a higher number of servers. Bertsimas [3] considers
the Ck/Cm/c queue and proposes a general method to solve the resulting infinite
system of partial differential equations using generating functions. Asmussen and
Moller [2] propose a technique to evaluate the distribution of the waiting time in
a multi-server queue with phase-type service distributions. The latter two tech-
niques do not appear easy to implement in practice. Several authors consider
purely numerical approaches. Takahashi and Takami [29] and Seelen [27] present
numerical methods for the Ph/Ph/c queue. Their approach involves an iterative
solution of the balance equations using successive aggregation/disaggregation
steps. Seelen improves on the initial method proposed by Takashi and Takami
by introducing an over-relaxation parameter to speed up convergence. As is of-
ten the case, the optimal value of this parameter is not known in advance and
a poor choice may interfere with the convergence of the method. Additionally,
both methods [29, 27] require arbitrary truncation for a queue with unlimited
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queueing room, which can introduce errors. Seelen et al. [26] provide a large
number of numerical studies with many different distributions for both the in-
terarrival and service times, the number of servers not exceeding 50. Rhee and
Pearce [23] cast this type of queues as a quasi birth and death process [17], and
propose a solution but provide no data on its numerical behavior. Some of the
approaches proposed in the past even for simpler problems turned out to exhibit
computational stability issues (e.g. [35]).

In the next section we describe the queue under study, and we outline our
computational approach. We consider first the general case of state-dependent
arrival and service rates. We also consider the specific case of an infinite queue
where the arrival and service become independent of the number of customers
as the latter increases, and the asymptotic queue length distribution for such
a system. Section 3 is devoted to numerical results that illustrate the behavior
of our method. Although we do not have a theoretical proof of convergence or
numerical stability, our preliminary results indicate that the proposed method is
computationally stable even with large numbers of servers. Section 4 concludes
this paper.

2 Model and its solution

We consider the queueing system shown in Figure 1. We denote by n the current
number of customers and by c the number of servers in this system. The times
between arrivals of customers are represented by a series of m memoryless stages.
We use the index j (j = 1, . . . ,m) to refer to the current stage of the arrival
process. The c servers are assumed to be homogeneous and the service times are
represented as a Coxian-like distribution with k memoryless stages. We use the
index i (i = 1, . . . , k) to refer to the current stage of the service process when
there are customers in the system.. We describe the state of this system in steady
state by the triple (j,

−→
l , n) where j (j = 1, . . . ,m) is the current stage of the

arrival process,
−→
l = (l1, . . . , lk) is the vector giving the numbers of customers in

stages 1 through k of their service, and n is the current number of customers in
the system. Note that n refers to customers having completed the arrival process
but not yet departed from the system. Note also that it is sufficient to consider
stages 2 through k in the vector

−→
l since we have

∑k
i=1 li = min (n, c).

For the service time distribution, the completion rates of the stages and
the probability of exiting after each expect the last stage may depend on the
current number of users in the system as well as on the current stage of the
arrival process. We denote by µi(n, j) the service rate of stage i (i = 1, . . . , k)
and by qi(n, j) the probability that the customer completes its service following
stage i when there are n customers in the system and the arrival process is in
stage j. We let q̂i(n, j) = 1 − qi(n, j) denote the probability that the customer
proceeds to stage i + 1 upon completion of stage i. We assume that µi(n, j) > 0
for i = 1, . . . , k, 0 < q̂i(n, j) ≤ 1 for i = 1, . . . , k − 1 and q̂k(n, j) = 0. For
the interarrival time distribution, we denote by λj(n,

−→
l ) the completion rate of

stage j (j = 1, . . . ,m) when the current number of customers in the system is
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n, the state of the servers is given by
−→
l , and by pj(n,

−→
l ) the probability to

complete the arrival process following stage j. p̂j(n,
−→
l ) = 1− pj(n,

−→
l ) denotes

the probability that the customer arrival process proceeds to stage j + 1 upon
completion of the preceding stage. We have 0 < p̂j(n,

−→
l ) ≤ 1 for j = 1, . . . ,m−1,

and p̂m(n,
−→
l ) = 0 for all values of n. Note that, in the case when there is

no state dependency, the arrival process considered can be viewed as simply
a renewal process with a Coxian interrenewal distribution. Note also that the
stages described may correspond to actual stages of processing and service, or
may be just a device to represent non-exponential distributions.

Fig. 1. Cm/Ck/c-like queue considered.

We let p(j,
−→
l , n) be the stationary probability that the system is in the

state described by (j,
−→
l , n). Denote by p(j,

−→
l |n) the corresponding conditional

probability that the stage of arrival process is j and that the state of the servers
is described by

−→
l given that the current number of customers in the system is

n. Denote also by p(n) the steady-state probability that there are n customers
in the system. Clearly, assuming that p(n) > 0, we must have

p(j,
−→
l , n) = p(j,

−→
l |n)p(n). (1)

For each value of n, we must also have
m∑

j=1

∑
−→
l

p(j,
−→
l |n) = 1. (2)

It is a straightforward matter to derive the balance equations for the probabilities
p(j,

−→
l , n) both in the case of a finite and infinite queueing room. It is not difficult

to see that the rate of customer arrivals given n can be expressed as

α(n) =
m∑

j=1

∑
−→
l

p(j,
−→
l |n)λj(n,

−→
l )pj(n,

−→
l ), for n ≥ 0. (3)

Similarly, the rate of service completion given that there are n customers in the
system can be expressed as

ν(n) =
m∑

j=1

∑
−→
l

p(j,
−→
l |n)

k∑
i=1

liµi(n, j)qi(n, j), for n > 0. (4)
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Hence, p(n), the steady-state probability that there are n customers in the sys-
tem, is given by

p(n) =
1
G

n∏
k=1

α(k − 1)/ν(k), for n ≥ 0. (5)

In formula (5), G is a normalizing constant chosen so that
∑

n≥0 p(n) = 1.
In other words, the probability p(n) in our Cm/Ck/c-like system is the same
as the steady-state probability of the number of customers in a simple birth
and death process with birth (arrival) rate α(n) and death (service) rate ν(n).
This result can be derived by summing the balance equations for the steady-
state probabilities p(j,

−→
l , n) over all values of j and

−→
l , and using the fact that

p(j,
−→
l , n) = p(j,

−→
l |n)p(n) [cf. [6]]. Thus we have (implicit in formula (5))

p(n− 1)/p(n) = ν(n)/α(n− 1)
p(n + 1)/p(n) = α(n)/ν(n + 1).

(6)

To obtain the equations for these conditional probabilities p(j,
−→
l |n), it suf-

fices to use formula (1) together with (6) in the balance equations for p(j,
−→
l , n).

In the case of a finite queueing room of size N , there are several possible assump-
tions regarding the behavior of the arrival process at the high limit resulting in
special boundary equations for n = N (and possibly n = N − 1).

We now focus on the case of an unrestricted queueing room. One possible
approach is to simply truncate the equations at some arbitrary high value for
n. A more elegant approach is possible if the parameters of the arrival process
λj(n,

−→
l ), pj(n,

−→
l ), as well as those of the service process µi(n, j), qi(n, j) become

independent of the number of users starting with some value of n = n0 so that
we have λj(n,

−→
l ) = λ̃j(

−→
l ), pj(n,

−→
l ) = p̃j(

−→
l ), µi(n, j) = µ̃i(j), qi(n, j) = q̃i(j)

for n ≥ n0. Under these conditions, and assuming that the system under con-
sideration is ergodic, one can expect that the conditional probabilities p(j,

−→
l |n)

tend to a limit as n increases: lim
n→∞

p(j,
−→
l |n) = p̃(j,

−→
l ).

As a result, starting with a sufficiently high value of n, say n ≥ ñ (clearly,
ñ > n), we have for ||p(j,

−→
l |n) − p̃(j,

−→
l )|| < δ for δ > 0, and the arrival and

departure rates α(n) and ν(n) become sufficiently close to their limiting values,
which we denote by α̃ and β̃

α̃ =
m∑

j=1

∑
−→
l :l1+...+lk=c

p̃(j,
−→
l )λ̃j(

−→
l )p̃j(

−→
l ) (7)

ν̃ =
m∑

j=1

∑
−→
l :l1+...+lk=c

p̃(j,
−→
l )

k∑
i=1

liµ̃i(j)q̃i(j). (8)
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Thus, we can express the steady-state distribution p(n) as

p(n) ≈ 1
G

{∏n
k=1 α(k − 1)/ν(k), n ≤ ñ∏ñ
k=1 α(k − 1)/ν(k)(α̃/ν̃)n−ñ, n > ñ

(9)

Following a common convention, empty products are set to one. The normalizing
constant G can be written as

G ≈ 1 +
ñ−1∑
n=1

n∏
k=1

α(k − 1)/ν(k) +
[ ñ∏

k=1

α(k − 1)/ν(k)
]

1
1− (α̃/ν̃)

, (10)

and the expected number of customers in the system can be expressed as

n ≈ 1
G

{ ñ∑
n=1

np(n) +
[

ñ

1− (α̃/ν̃)
+

(α̃/ν̃)
[1− (α̃/ν̃)]2

] ñ∏
k=1

α(k − 1)/ν(k)
}

. (11)

We note that the form of the solution for p(n) given in formula (9) clearly
shows that the steady-state distribution is asymptotically geometric with “traffic
intensity” α̃/ν̃.

Thus, we solve the set of equations for the conditional probabilities p(j,
−→
l |n)

for all values of n, subject to the normalizing condition given by (2). In the case
of an infinite queue, the values to consider are n = 0, . . . , ñ, and in the case of
a finite queueing room, all values of n = 0, . . . , N . Because the equations for
p(j,

−→
l |n) involve in general the conditionals for n−1 and n+1, it does not seem

possible to solve these equations as a simple recurrence, as would be the case for
an M/G/1-like queue (cf. [5]).

However, a simple-minded and simple to implement fixed-point iteration can
be used to solve these equations as follows. We use a superscript to denote
the iteration number. We start with some set of initial values p0(j,

−→
l |n) for

n = 0, . . . , nmax (where nmax = N in the case of a finite queueing room, and
nmax = ñ0, an initial estimate of ñ, in the case of an infinite queue), and we
consider the possible states in the order of increasing n, enumerating all server
states

−→
l compatible with the value of n, and j, the latter varying the fastest.

We compute new values for the conditional probabilities directly from the cor-
responding equations. For each value of n, we normalize the newly computed
values so that

∑m
j=1

∑
−→
l

pi(j,
−→
l |n) = 1 once we have updated all the values

for all (j,
−→
l ), but in the iteration we use the latest (not necessarily normalized)

values as soon as they become available. Following the normalization, we can
compute new values for the conditional rate of request arrivals αi(n) and the
rate of completions νi(n).

In the case of an infinite queue (under the assumptions discussed earlier in
this section) we dynamically determine the “cutoff” value ñi as the value of
n for which |1 − αi(n − 1)/αi(n)| < ε, as well as |1 − νi(n − 1)/νi(n)| < ε,
and we consider that at this point the limiting values have been reached for
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the conditional probabilities at iteration i. Note that by selecting the value of
ε as desired we control the accuracy with which the convergence to limiting
conditional probabilities is determined. Thus our method provides an automatic
limitation for the values of n based on the accuracy of convergence to limiting
values, as opposed to arbitrary truncation used in several other methods. In
practice, in most cases, the convergence to limiting values tends to occur quickly
(i.e., for moderate values of ñi), so that the steady-state distribution can be
determined with high accuracy at a limited computational expense. For a finite
queueing room, the maximum value for n is the size of the queueing room N , and
there is no asymptotic convergence involved. The fixed-point iteration itself stops
when the values of the conditional probabilities at consecutive iterations differ
less than a specified convergence tolerance, e.g.||1−pi−1(j,

−→
l |n)/pi(j,

−→
l |n)|| < δ.

The fact that we use newly computed values for pi(j,
−→
l |n) as soon as they

become available not only reduces the space requirements of our method to a
single set of arrays to hold the values of pi(j,

−→
l |n), αi(n) and νi(n), but also

appears to speed up the convergence. We have not been successful in developing
a theoretical proof of convergence for the proposed approach.

In our initial study of the properties of this approach, we performed a large
number of test runs concentrated on the particular case of a Cox-2 service dis-
tribution, for which p(j,

−→
l |n) can be replaced by p(j, l2|n). In our test runs,

the proposed approach has always converged, typically within a relatively small
number of iterations although the number of iterations tends to increase as the
number of servers and the service time variability increase. The choice of the
initial distribution p0(j, l2|n) seems to have a limited effect. For each value of n,
the computational complexity of every iteration scales linearly with the number
of servers since the latter determines the number of values to consider for the
current number of customers in their second stage of service, l2. As discussed
in the next section, for the unrestricted queue, the value of ñ , and hence the
number of values of n to consider, appears to increase less than linearly as the
number of servers increases. Obviously, in the case of a finite queueing room, we
have n = 0, . . . , N at each iteration.

In the case of an infinite queueing room, it is possible to know indepen-
dently, from the solution of the corresponding equations, the limiting distribu-
tion p̃(j, l2). We find that using this limiting distribution for p0(j, l2|n) (truncated
and normalized for n < c), tends to speed up the iteration. It can be readily
computed from the equations for p̃(j, l2) using a simple fixed-point iteration.

In the next section, we present numerical results to illustrate the behavior of
our method for a number of values of queue parameters, including service times
with high variability (coefficient of variation of over 10) and number of servers
c ranging from 4 to 256.

3 Numerical Results

In this section we present numerical results to illustrate the good convergence
properties of our method, as well as its ability to solve systems both with high
number of servers and high service time variability. In most examples we consider



Lecture Notes in Computer Science: Authors’ Instructions 9

three levels of server utilization: 0.25, 0.5, 0.99, which correspond to 25%, 50%
and 99% of the c servers busy, respectively. The Cox-2 distributions used to rep-
resent the service times in our examples are given in Table 1. Note that skewness
and kurtosis relate to moments of order 3 and 4 of a probability distribution.
Results in the following figures are then labeled by the corresponding coefficient
of variation of the service time distribution. The mean service time is kept at
one in all cases. We used discrete-event simulation to confirm the accuracy of
our results for a selected set of cases.

Table 1. Parameters of selected service time distributions

Dist. Mean Coeff.Var. Skewness Kurtosis µ1 µ2 q̂1
I 1 0.8 1.80 5.05 4.25 1.308 1.000
II 1 2.0 3.06 12.77 1000.0 0.400 0.399
III 1 4.0 6.01 48.28 1000.0 0.118 0.117
IV 1 8.0 12.01 192.43 1000.0 0.031 0.031
V 1 16.0 24.02 769.55 1000.0 0.008 0.008

With infinite queueing room, the “cutoff” point for the determination of ñi

was obtained using ε = 10−11. The overall iteration convergence criterion used
was ||1−νi−1(n)/νi(n)|| < δ and ||1−αi−1(n)/αi(n)|| < δ with δ = 10−5. These
values were used for all examples presented in this paper.

3.1 The M/G/c-like queue
In our first set of results we consider an infinite state-independent queue with
Poisson arrivals, i.e., an M/C2/c queue. Figures 2a through 2h show the number
of iterations needed to achieve convergence as well as the largest values of ñi

observed during the iteration process (thus indicating the number of equations
solved and storage requirements.)

We observe that the number of iterations is generally tame, ranging from
no more than around 200 for coefficients of variation up to 8 and 4 servers, to
below 1000 with 256 servers. In our examples, the number of iterations tends to
increase as the coefficient of variation of the service time increases, although, as
we discuss later in this section, the results can be quite sensitive to higher order
parameters of the service time distribution. When the coefficient of variation of
the service time is equal to 16, the number of iterations ranges from around 700
to below 4000. The convergence of p(j, l2|n) to the limiting distribution p̃(j, l2) as
n increases tends to occur relatively quickly. The maximum values of ñi attained
during the iteration range from low tens to below 1000 in the “worst” case for the
queue considered, viz. for 256 servers and coefficient of variation of the service
set to 16.

3.2 The M/G/c/N/N -like queue
In our second set of results we consider a similar queue subject to state dependent
memoryless arrivals, i.e., the rate of arrivals when there are n requests in the
queue (including the ones in service) is given by λ(n) = (N −n)γ. Such a model
corresponds to a set of N sources of requests as shown in Figure 3. Each source
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(a) Number of iterations with 4

servers.

(b) Maximum value of ñi with 4

servers.

(c) Number of iterations with 32

servers.

(d) Maximum value of ñi with 32

servers.

(e) Number of iterations with 128

servers.

(f) Maximum value of ñi with 128

servers.

(g) Number of iterations with 256

servers.

(h) Maximum value of ñi with 256

servers.

Fig. 2. Behavior of the method for a multi-server queue for service time distributions
from Table 1 as a function of the number of servers c and the server utilization level.

Fig. 3. Multi-server queue with N sources.

generates a new request after an exponentially distributed time 1/γ following
the completion of its previous service period.

The results shown in Figure 4 pertain to a queue with 8 servers and a coeffi-
cient of variation of the service time of 8. Figures 4a, 4b and 4c show the number
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(a) Number of iterations. (b) Mean number of customers. (c) Server utilization levels.

Fig. 4. Behavior of the method for a multi-server queue with c = 8 servers and service
time distribution Dist. IV (cv = 8, cf. Table 1) as a function of the number of sources
N .

of iterations, the expected number of customers in the system (queued and in
service) n̄, as well as the utilization level (fraction of servers busy), respectively,
for numbers of sources ranging from 10 to 500. The value of γ is kept at 0.1. We
observe that the number of iterations to achieve convergence tends to increase
with the number of sources, but remains, in the example considered, below 500
in all cases.

3.3 The G/G/c-like queue
In Figure 5 we have represented results for a C2/C2/c queue with infinite queue-
ing room in which the time between consecutive arrivals is a Cox-2 distribution
with a coefficient of variation of 4. The parameters of the service time distri-
bution are given in Table 1. The generic parameters of the distributions of the
interarrival times used in our examples are given in Table 2. The values given in
this table correspond to a mean time between arrivals of one. For other values
of the mean interarrival time used in our examples, the rates of the stages of the
arrival process change in proportion to the inverse of that mean, while the stage
transition probabilities remain constant.

Table 2. Generic parameters of selected distributions of time between arrivals

Dist. Mean Coeff.Var. Skewness Kurtosis λ1 λ2 p̂1
I 1 0.8 1.80 5.05 4.248 1.308 1.000
II 1 2.0 3.36 15.31 10.00 0.375 0.338
III 1 4.0 6.66 59.30 10.00 0.107 0.096
IV 1 8.0 13.33 236.96 10.00 0.028 0.025
V 1 16.0 26.66 948.05 10.00 0.007 0.006

We give in Tables 1 and 2 the precise parameters of the distributions used
because the results can be sensitive to higher order parameters of both the
interarrival time distribution and the service time distribution [4, 33, 34]. This
sensitivity extends to the performance of our method, as well as the steady-state
probability distribution for the G/G/c queue itself.

The number of iterations ranges typically from 200 with 4 servers to 500 with
256 servers when the coefficient of variation of the service time does not exceed
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(a) Number of iterations with 4

servers.

(b) Maximum value of ñi with 4

servers.

(c) Number of iterations with 32

servers.

(d) Maximum value of ñi with 32

servers.

(e) Number of iterations with 128

servers.

(f) Maximum value of ñi with 128

servers.

(g) Number of iterations with 256

servers.

(h) Maximum value of ñi with 256

servers.

Fig. 5. Behavior of the method for a multi-server queue for inter-arrivals time distri-
butions from Table 2 as a function of the number of servers c and the server utilization
level.

8. With the coefficient on variation of the service time set to 16, the number of
iterations ranges from about 700 with 4 servers to 3500 with 256 servers. The
maximum values of ñi attained during the iteration range from low tens to below
1000 in the “worst” case, which happens to be in this case for 256 servers and
coefficient of variation of the service set to 0.8.

Using a “proof-of-concept” implementation in C running on a 2.99 GHz Intel
processor, for the case of 128 servers at 0.99 server utilization level, we measured
execution times ranging from 3.97 s with cv = 8 to around 0.31 s with a lower
coefficient of variation of 2 (cv = 2). As mentioned before, lower numbers of
servers tend to result in faster execution, so that with 32 servers the correspond-
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ing results range from 0.72 s to 0.16 s. With 4 servers the execution times of our
simple implementation range from about 0.14 s for cv = 8 to 0.03 s for cv = 2.
Note that the vast majority of execution times are below one second.

The convergence stringency used throughout this paper, viz. ε = 10−11 and
δ = 10−5 appears generally sufficient. When focusing on individual state prob-
abilities in our trials, we used more stringent values: ε = 10−15 and δ = 10−8.
There seems to be limited difference in the results obtained.

Overall, our method appears to be computationally robust, reasonably fast
and quite scalable as the number of servers and the variability of service and
interarrival times increase. The next section is devoted to the conclusions of this
paper.

4 Conclusion

We consider a semi-numerical method to compute the steady-state distribution
of the number of users in a Cm/Ck/c-like system where the distributions of the
times between arrivals and the service times are represented by Coxian series
of memoryless stages. The parameters of both Coxian distributions may depend
on the current number of customers in the system. Additionally, arrivals and
the progress of the service may depend on each other. We base our approach
explicitly on conditional probabilities. This allows us to derive a conceptually
simple and computationally efficient semi-numerical approach to the evaluation
of the steady-state queue length distribution.

The proposed method can be used to solve both infinite and finite G/G/c-
like queues of the type considered. In the case of an infinite Cm/Ck/c queue
whose parameters don’t depend on the current number of customers, the form of
the queue length distribution is asymptotically geometric. Our method exploits
this fact to avoid arbitrary truncation of the balance equations. Instead, we
dynamically determine, with as much stringency as desired, the convergence
to asymptotic values, and use the latter in our solution. The coefficient of the
geometric distribution is a by-product of our iterative solution. It can also be
obtained independently, without solving the whole queue, using a simple set of
equations, easily solved via fixed-point iteration.

In this preliminary study, we examined empirically the computational prop-
erties of this method in the case of a Cox-2 service distribution. Our experimental
evidence indicates that the proposed method is numerically stable in practice.
In our numerical examples we have explored the behavior of our approach for
a range of values of the number of servers in the queue (4 to 256), as well as
for several coefficients of variation of the time between arrivals and of the ser-
vice times. Our results indicate that the proposed method performs well even
when the number of servers is relatively high (256 in our examples) and so is
the coefficient of variation (up to 16 in our examples). In the many cases we
considered, the method has never failed to converge within a reasonable number
of iterations. The number of iterations to attain convergence depends on the
parameters of the Cm/C2/c queue considered, and varies, in our examples, from
low tens to several thousand. It tends to increase for queues with high coeffi-
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cients of variation of the service time and high number of servers. In additional
tests, not reported in Section 3, we were able to solve queues with 1024 servers,
the number of iterations not exceeding 1100 for the coefficients of variation of
the service time and of the time between arrivals set to 4.

Our results underscore the potential importance of higher order moments of
the interarrival time and service time distributions in the steady-state probability
distribution for the number of customers in the G/G/c queue. This topic is
discussed in more detail in another paper.

Overall, the proposed method is conceptually simple, easy to implement,
and readily applicable to both finite and infinite systems. It requires minimal
mathematical sophistication. Our preliminary results indicate that it robust,
fast, and scales reasonably well with the number of servers. These qualities should
make the method attractive to performance analysts “in the trenches” when
dealing with systems that can be modeled as mutliserver queues.
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