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Abstract. Queueing delays experienced by packets buffered at a node are among the 
most difficult to predict when considering the performance of a flow in a network.   
The arrivals of packets at a node tend to be highly variable so that a finite-buffer 
single-server queue with general arrivals and service emerges as a natural model of a 
network link.  In this paper we propose an approach to the solution of such a queue 
when the times between arrivals and service times are represented as acyclic phase-
type distributions.  The proposed solution approach, based on the use of conditional 
probabilities, is conceptually simple, easy to implement in a standard computer 
language, numerically robust and reasonably fast. In addition to standard steady-
state probabilities and queue size averages, the proposed approach produces the 
probabilities of the state of the queue found by an arriving packet, in particular, the 
packet loss probability, directly linked to the QoS perceived by the user. 

Keywords: Capacity planning; buffer sizing; quality of service; modeling; single-
server queue; Ph/Ph/1/N queue. 

1   Introduction and state of the art 

When considering the performance of a flow at a network node, queueing delays 
experienced by packets (or frames) buffered at the node are among the most difficult to 
predict [23].  Given that a network interface can only transmit one packet at a time, a 
single-server queue seems a natural model of a network link.  There is general agreement 
that the arrivals of packets at a node are highly variable and a Poisson process is not a 
valid representation [17, 10, 30].  With variable size packets, the transmission time 
(service time) is also variable and, generally, not exponentially distributed.  Additionally, 
buffers have finite capacity, sometimes quite small [40], so that the buffer overflow 
probability and resulting packet loss are of major interest (e.g., because of its effect on 
TCP congestion window [3]).  Hence, the underlying queueing model is a so-called 
G/G/1/N queue [2]. 



While the equilibrium solution of the M/M/1/N queue (with Poisson arrivals and 
exponential service) is straightforward [2], there are no readily usable analytical results 
for the more realistic G/G/1/N queue. Thus, there are essentially three possible approaches 
to the solution of such a queue.   

The first one is to solve the state equations of the queueing system numerically.  A 
commonly adopted approach is to represent the times between arrivals, as well as the 
service times, as phase-type distributions [28, 27], and then attempt to solve the resulting 
balance equations.  Here, besides general methods for systems of linear equations (e.g., 
[35, 12]), which include direct iterative methods (e.g., Gauss-Seidel, over-relaxation [33]), 
specific approaches for Quasi Birth and Death processes could be used (e.g., Matrix 
Geometric [27, 26, 24], Spectral Expansion [25]).  The latter methods may require a non-
trivial degree of mathematical sophistication [15]. 

The second possible approach is to use discrete-event simulation.  While simple in 
principle, this solution turns out to be fraught with problems.  To achieve a reasonable 
accuracy, serious problems appear when simulating heavy-tailed distributions (such as the 
Pareto distribution for the time between arrivals) involving rare but important events (cf. 
[4, 13, 5]).  Additionally, the simulation times tend to elongate considerably when the link 
utilization approaches saturation. As a result, simulation times may become long, making 
difficult the systematic exploration of a large number of parameter values. 

When there is no easy exact solution and the simulation becomes exceedingly long, a 
natural alternative is to look for simple approximations that would be accurate enough to 
provide meaningful estimates for delays and loss probabilities.  There are several bounds 
and approximations for the G/G/1 queue with an infinite buffer [21, 22, 34, 37, 2, 19, 9, 
31], which may be used to estimate delays for lightly loaded links but not to assess loss 
probabilities or dimension buffers.  There are fewer results for the G/G/1/N queue [20, 38, 
39], either limited to the first two moments of the inter-arrival and service times 
distributions or based on heavy-traffic assumption, which may not be applicable in a 
realistic network with moderate levels of losses.  To the best of our knowledge there are 
no readily applicable good approximate results for the loss probability. 

This paper falls into the first category of approaches.  Within the framework of acyclic 
phase-type representation of general distributions, we propose to use conditional 
probabilities to obtain a conceptually simple numerical solution that is easy to implement, 
generally fast, and stable in practice.  Our approach allows us to obtain the state 
probabilities at instants of packet arrival, and hence, the packet loss probability, as well as 
such customary measures as the expected time in the queue.   We have implemented our 
method in standard C language, and, in the very many test we ran, it performed well, 
including with phase representations of heavy-tailed distributions. 

Our paper is organized as follows.  In Section 2 we describe our model and the 
proposed solution method.  Section 3 discusses the practical performance of the method.  
We use two non-trivial examples to compare the performance of the proposed approach 
with that of a discrete-event simulation.  Section 4 concludes this paper. 
 



 

2   Model and its Solution 

We focus our attention on a single node viewed as a G/G/1/N queue with a FIFO 
discipline.  We adopt the acyclic phase-type representation of the time between arrivals of 
packets and of their service times. We use the terms requests and packets (or frames) 
interchangeably.  As is well known, any distribution can be approximated arbitrarily 
closely by a finite number of exponential phases [28, 27], and algorithms exist to 
represent a given distribution by a phase-type distribution (e.g., [16, 6, 29, 18, 36, 11]).  
Several authors address more specifically the representation of heavy-tailed distributions 
(for instance, [16, 18, 11]). Thus, our G/G/1/N model becomes what is known as the 
Ph/Ph/1/N queue.  The advantage of the phase-type representation is that we are able to 
easily obtain the state equations for our model in the form of the regular balance 
equations. 

We denote by  the number of phases in the arrival process, and by  the number of 
phases in the service process (see Fig. 1).  We let  be the rate (intensity) of phase 

 

Fig. 1.   Modeling a network link or an output interface as a Ph/Ph/1/N queue 

 



,  the probability that phase  is followed by phase  ( ),  the 
probability that the arrival process ends after phase , and  the probability that the 
arrival process starts in phase .  Similarly, for the service process, we denote by  the 
rate (intensity) of phase ,  the probability that phase  is followed by phase 

 ( ),  the probability that the service process end after phase , and  the 
probability that the service process starts in phase .  As an example, with a 
hyper-exponential service time distribution, we have  for all values of  and , and 

 for all phases .  Clearly, for any distribution, we must have , 

, and, similarly, , . 

A possible state description for the Ph/Ph/1/N queue is  which is the 
probability that the arrival process is in its phase , the service process is in its 
phase , and there is a total of  requests in the system (queued and 
in service).   The state probabilities are subject to the normalizing condition 

.  The balance equations together with this normalizing condition 

define a system of linear equations for the probabilities , and classical numerical 
solution methods for this type of queueing system seek to solve this system of linear 
equations (e.g.,Chapter 3 [7], Chapter 8 [14]) as discussed in the Introduction. 

We adopt the same basic state description but we use the fact that, from the definition 
of conditional probability, we have 

               (1) 

where  is the probability that there are  requests in the system, and 
 is the conditional probability of the current phases of arrival and service given 

the number of requests.  Note that, for , the index of the current phase of the service 
process becomes meaningless, and we write simply  to denote the state of the 
arrival process given that the system is idle. 

It is not difficult to show that the probability  can be expressed as 

,           (2) 

where 

        (3) 

is the conditional rate of request arrivals with  requests in the system, and 



                     (4) 

denotes the conditional rate of request service given .  is a normalizing constant 

chosen so that . 

The probability of a lost request (packet loss probability) can be obtained as 

,                       (5) 

the probability that there is no wait is given by 

.                       (6) 

More generally, we have for the probability that an arriving request finds  requests 
already present in the system 

,        (7) 

Thus, to obtain the quantities of interest (such as the loss probability), it suffices to 
obtain the conditional rates  and , i.e., to solve for the conditional probabilities 

.  Using the basic identity (1) in the balance equations, we obtain the following 
system of equations for the conditional probabilities : 

for  

        (8) 

for  

         (9) 

for  

           (10) 

for  
          (11) 



Note that we have  for  and , i.e., we have a 

separate normalizing condition for each value of the number of requests in the system. 
We propose a simple iteration akin to a recent iterative method for Cm/Ck/c-like queues 

[8] to solve this system of non-linear equations.  Details of this easy-to-implement 
iteration are given in the Appendix.  In the next section, we apply our approach to study 
the effect of buffer size on loss probability in a network node.  Additionally, we compare 
the performance of our method with discrete-event simulation when the times between 
arrivals are represented by a Pareto-like distribution. 

3   Performance of the Proposed Approach 

In our first example, we study the performance of our approach using a model of a node 
with a finite buffer of 50 requests.  The request arrival process is represented by a Pareto-
like distribution.  The latter was obtained using the PhFit package [16], and has a total of 
16 exponential phases, 10 of which are used for the heavy-tailed part of the distribution.  
The parameters of this phase distribution are given in Table 1 in the Appendix.  The 
service times in our Ph/Ph/1/50 model are represented by a three-phase distribution 
chosen so as to match the first three moments of a reported packet mix in real networks 
[1] on a link operating at about 2.5 Gb/s.  We used the method proposed by Bobbio et al. 
[6] to perform the matching of the first three moments.  We give in Table 2 in the 
Appendix the parameters of the resulting phase distribution. 

Fig. 2 and Fig. 3 illustrate the results obtained.  In all examples we set the convergence 
stringency of our algorithm at  (increasing the convergence stringency does not 
change our results).  In Fig. 2 we show the number of iterations in our method needed to 
solve the Ph/Ph/1/50 model for server utilization ranging from 0.1 to 0.9.  Fig. 3 displays 
the execution times of a C implementation on an Intel processor running at 2.2 GHz.  For 
comparison, we include the execution times of a discrete-event simulation of the same 
model on a processor of the same speed.  The simulation has been run long enough to 
attain a confidence interval of no more than 5% around the exact value of the average 
number of requests in the queue at 95% confidence level.  We used 7 independent 
replications in our runs. 

We observe in Fig. 2 that, for the server utilization levels considered, the proposed 
method requires only a few tens of iterations (below 100 in all cases).  The simulation 
performance is displayed in terms of the number of packets generated to achieve the 
desired confidence intervals, and ranges from a total of about 350,000 to 8,000,000 
packets.  In Fig. 3 we compare the CPU times for both approaches.  In the example 
considered, the CPU time for the proposed solution remains below 0.25 s in all cases.  By 
contrast, the CPU time for the simulation tends to increase significantly as the server 
utilization increases, exceeding 3 s even for moderate loads.  Note that we ran the 
simulation only for as long as was needed to achieve the desired accuracy, knowing the 



exact value from our solution method.  In practice, one does not know in advance the 
correct value, so that the simulation needs to be run until the estimated confidence interval 
at the desired confidence level is sufficiently narrow.  This might result in longer 
simulation times. 

 

 

 
In our second example we apply our approach to study the effect of the buffer size on 

the packet loss probability in a hypothetical configuration.  Obviously, the issue of buffer 
sizing is not new and has received considerable attention (e.g., [40, 3]). In our 
hypothetical configuration, the rate of packet arrivals is set to a value such that with 
unrestricted buffer, i.e., with no packets lost, the resulting link utilization would be 0.8.  
We keep the same type of Pareto-like arrival process as in our first example.  For the 

 
Fig. 3.   CPU time for proposed approach and simulation vs. link utilization 

 

 
Fig. 2.   Number of iterations of proposed approach and number of packets generated in 
simulation vs. link utilization 

 



service process, we assume a single packet size of 1500 bytes and a link speed of 2.5 
Gb/s.  We represent the resulting service times as a 10-phase Erlang distribution. 

Fig. 4 shows the loss probability as a function of the buffer size obtained using the 
proposed exact solution of our Ph/Ph/1/N queue.  We observe the rapid decrease of losses 
as the buffer size increases. The ability to predict accurately the loss probability is 
important to properly size buffers, in particular in the context of TCP [40].   

The loss probability estimated by simulation follows the same general pattern.  
However, as shown in Fig. 5 in the Appendix, the relative error versus the exact value for 
the loss probability varies somewhat erratically.  The simulation appears to have trouble 
estimating accurately smaller loss probabilities.  We think that this is due to the heavy-
tailed nature of the Pareto-like arrival process and the general difficulty of estimating the 
probability of rare events in a straightforward simulation (similar issues have been pointed 
out by other authors [4, 13, 5]).  If desired, the simulation accuracy could be improved at 
the expense of non-negligible additional sophistication (e.g., Chapter 5 [32]). 

 

 
We believe that, given its reasonable speed and conceptual simplicity, the proposed 

approach offers an attractive alternative to simulation for buffer sizing under non-Poisson 
assumptions.  In that respect, it is worthwhile noting that, for instance, for a buffer size of 
80 ( ) the proposed solution approach computes some 14000 unknowns (the 
probabilities ) in fewer than 100 iterations. Additionally, unlike simulation, 
analytical or numerical solutions produce directly the desired result and not an estimated 
confidence interval.  

The next section concludes our paper. 

 
Fig. 4.   Predicted loss probability as a function of buffer size  

 
 



4   Conclusion 

In this paper we propose an approach to the solution of a single server queue with a finite 
buffer and general (but independent) arrivals and service represented through phase-type 
distributions.  Such a Ph/Ph/1/N queue can be viewed as a model of a link or a node in a 
network.  The proposed solution approach is based on the use of conditional probabilities.  
It is conceptually simple, easy to implement in a standard computer language, numerically 
robust and reasonably fast. 

To deploy our method in practice, one needs to represent the distribution of the times 
between arrivals and the service time distribution as acyclic phase-type distributions, and 
then apply our iterative procedure.  

In addition to standard steady-state probabilities and queue size averages, the proposed 
approach produces the probabilities of the state of the queue found by an arriving packet, 
in particular, the packet loss probability.  Note that the state of the queue found by an 
arriving packet is directly linked to the QoS perceived by the user. 

We illustrate the performance of the proposed method using an assumed Pareto-like 
distribution of the times between arrivals and non-exponential service time distributions. 
We apply our method to the sizing of a buffer in a hypothetical configuration.  
Additionally, we compare the performance of the proposed approach with that of a 
discrete-event simulation.  Besides being an order of magnitude faster than the simulation, 
our exact solution has the advantage of avoiding non-trivial issues that may appear in 
simulation when dealing with heavy-tailed distribution and rare events. 

We believe that the proposed iterative solution for a Ph/Ph/1/N queue is simple enough 
to be of practical interest for researchers and practitioners who are not necessarily 
specialists in queueing theory or advanced numerical methods. 
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Appendix  

A. Details of the proposed iterative solution 

Our goal is to solve the system of non-linear equations (8) through (11).  We use a 
superscript to denote the iteration number, and for sake of simplicity we introduce the 
following notation for : 

 

 

 

 

 

 

 

 
Our solution proceeds as follows 



1) Select initial distributions  and  for . We must have 

 for , and . A simple equally likely distribution 

will work just fine (  and  for ). Compute also 
the corresponding values  and .   

2) At iteration  

• Consider consecutive increasing values of the number of requests in the system 
 

• Enumerate phases of the arrival process from j equal 1 to  

• Enumerate phases of the service process from i equal 1 to   

• Compute new non-normalized values of  

 
for  

 

for  

 

• Normalize newly computed values so that  for , and 

 

• Compute new values for the conditional arrival and service rates  

 

 for . 

• If  and  where  is the desired 
convergence stringency (e.g., ), finish the iteration and proceed to Step 3.  
Otherwise, perform another iteration step, i.e., go back to Step 2. 



3) Compute  using formula (2) and any other quantities of interest using formulas (5) 
to (7). 

 

B. Parameters of the Pareto-Like distribution of the time between arrivals  

The Pareto-like distribution used in our examples to represent the times between 
arrivals has the structure shown below in Fig. 6.  The phase rate values given in the 
following table correspond to a mean time between arrivals of 7.797.  For a different time 
between arrivals, these phase rates need to be scaled up or down by multiplying each rate 
by the ratio  where  is the desired mean time between arrivals, i.e., the inverse 
of the desired rate of request arrivals. 

Table 1.     Pareto-like distribution for the time between arrivals used in Section 3. 

Probabilities Phase rate 

 1.39201642e-004  1.49162788e+001 

 1.77752368e-004  1.34254874e+001 

 1.91426701e-005  1.06568964e+001 

 3.45978796e-005  9.00035659e+000 

 4.75808142e-005  7.61426145e+000 

 1.99877132e-005  4.77130864e+000 

 7.26038667e-005  3.75562889e+000 

 1.39327654e-004  2.37959901e+000 

 6.32355379e-002  1.97633786e+000 

 2.83641569e-001  1.76580558e+000 

 

Fig. 6.   Structure of the Pareto-like distribution of the time between arrivals 
 

 



  2.00491113e-006  2.23396046e-005 

 3.08716391e-005  1.69138281e-004 

 4.11347558e-004  9.82050775e-004 

 5.33726475e-003  5.48273618e-003 

 6.52276871e-002  3.01135332e-002 

 5.81463522e-001  1.55607459e-001 

  

C. Parameters of the three-phase distribution of example 1  

The parameters of this distribution (see Fig. 7) have been selected [6] so that its three 
first moments (or, equivalently, its mean, variance and skewness) match those of a mix of 
three packet sizes (50 bytes, 500 bytes and 1500 bytes) transmitted on a 2.5 Gb/s link.  
The resulting distribution has a mean of 1, coefficient of variation of 1.41, and skewness 
of 1.84. 

Table 2.     Distribution for the service time used in Section 3. 

Probabilities Phase rate 

 4.7162e-001  9.8864504e-001 

   9.8864504e-001 

  2.2820616e+001 

 

 

D. Equations for the case of blocked arrivals  

In cases where the source of requests is regulated by acknowledgments from the 
receiver, one can view the source as becoming blocked when the buffer at the receiver is 
at capacity.  In such a case, the state equations given in Section 2 need to be modified for 
the values of  and .  These modified equations lead to the following 
changes in the iterative scheme 

 
 
 

	  
	  

Fig. 7. Structure of the service time distribution in first example 

 



• for  

 

where . Note that  denotes 

the probability of the service process being in its stage  given that the buffer is 
at capacity and the source is blocked. 

• for  

 

For all other values of , the iteration proceeds as outlined in Appendix A. 
Note that, with blocked arrivals, we have , i.e., there are no packets lost.  The 
fraction of time during which the arrivals are blocked is given by . 

E. Accuracy of discrete-event simulation with heavy-tailed distributions  

In Fig. 5 we show the simulation results for 3 different simulation runs whose lengths 
range from 700 thousand to 70 million packets generated.  Interestingly, increasing the 
length of the simulation does not necessarily reduce the relative error.  In our example, for 
a larger buffer size, the latter can exceed 20% with 7 million packets generated.   
 

 

 
Fig. 5.   Relative error for loss probability of simulation vs. exact results as a function of 
buffer size 

 


