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Abstract—Systems with multiserver jobs, inspired by modern
datacenters, present a challenge in terms of the analysis of
their performance and, in particular, the determination of their
processing capacity as some servers may remain idle even though
there are jobs queued for service. We consider a generalization
of the multiserver jobs model to a resource of not necessarily
integer quantity and jobs of different classes requiring arbitrary
fractions of that resource. We present a simple approach to
the analysis of such a system in steady state. Our approach
relies on a suitably chosen state description and the use of
conditional probabilities. The limiting values of these conditional
probabilities allow us to determine the asymptotic maximum job
processing capacity without having to obtain the full solution for
the system.

Index Terms—Maximum processing capacity, Multiserver
queue, Multiserver jobs, Cloud datacenters.

I. INTRODUCTION

In a recent paper devoted to important open problems in
queueing models inspired by modern datacenters, Mar Harchol
Balter [3] lists the multiserver jobs. While in traditional
queueing models (e.g., [5], [2], [4]) a single job (request,
customer) occupies a single server in a multiserver center, with
modern applications, jobs of different classes, sharing the same
First Come First Served (FCFS) queue, may require different
numbers of servers to start service. Thus, it is possible for
some servers to be idle while there is a queue of requests
blocked behind a job needing more servers than currently
available. Hence, it is not easy in general to determine the
processing capacity of such a system. We present a simple
approach to analyzing a system with multiserver jobs and to
determining its maximum processing capacity. We refer the
reader to Harchol Balter [3] for a recent state of the art. The
next section outlines the model considered and our approach.

II. MODEL AND APPROACH TO ITS SOLUTION

Consider the system depicted in Figure 1. It consists of a
total resource of size B shared by L classes of jobs. Each
class of jobs is characterized by the amount of resource it
needs to proceed and the mean time the resource is used by
the job, denoted by b, and t; = 1/u,, respectively, for jobs
of class ¢ (¢ =1,...,L). The jobs arrive to the system from
a Poisson source with overall rate A and are served in the
order of their arrivals (FCFS). We denote by p, the probability

that an arriving job is of class /. Note that our model is a
generalization of the multiserver jobs model and it maps onto
the latter if the values B and by for £ = 1,...,L are all
integers.
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Fig. 1: Resource of size B shared by L classes of jobs.

To describe such a system in steady state, when it exists,
we use the numbers of jobs of each class currently in service
(denoted by my, £ = 1,..., L), the class of the job at the head
of the queue (if any), (denoted by %), and the total number of
jobs in the system (denoted by n). Let p(myq,...,mr,i,n) be
the corresponding steady-state probability, assuming it exists.
We let m = ,__, m, denote the total current number of jobs
in service. For clarity, we use the value ¢+ = 0 when there are
no jobs in the queue, i.e., when n = m.

To enumerate system states, we note that we must have
my = 0, ceay [B/bl], mo = O, ceey [(B — mlbl)/bg], and
so on for increasing class numbers. Feasible states must
satisfy the condition that 25:1 myby < B. Additionally, when
there are jobs queued, i.e., when n > m, we must have
B—Zle myeby < b; where i = 1,..., L is the class of the job
at the head of the queue. With these points in mind, and assum-
ing exponentially distributed service times for all job classes,
it is a straightforward matter to generate the balance equations
for the steady-state probabilities p(my, ..., mg,i,n).

Although, with jobs waiting in the queue in the system
considered, a single job departure can trigger the start of
service for a variable number of jobs (depending on their
resource requirements and the residual amount of resource
left by the departure), the steady-state probability for the
total number of jobs in the system, denoted by p(n), can be
expressed simply as



p(n) = !

Q

oo
jl;[lm, n=0,1,... (1)

In formula (1), G is normalizing constant such that
>-,.p(n) = 1, empty products are equal to 1, and u(n) is
the conditional rate of job completions given n, which can be
written as

’LL(’I’L) = Z(mlﬂl + -+ mL/J“L)p(mla s amL7i|n) (2)
S(n)

where S(n) denotes the set of states feasible for a given
value of n jobs in the system.

Formula (2) involves the rates of job completion for each
class and the conditional probability that the system is in the
state (my,...,mp,%) given the value of the total number of
jobs in the system, p(mi,...,mp,in). Note that, from the
definition of conditional probability, we have

p(ma,...,mp,i,n) =pn)p(my,...,mg,in) 3)

Using (1) and (3) in the balance equations for our system,
we readily obtain the set of equations for the conditional
probabilities p(m, ..., mr,i|n). We can solve the latter using
a fixed-point iteration together with formula (2) and the
normalizing condition 3¢, p(m1,...,mr,in) = 1.

Let p(my,...,mp,t) = lim, o0 p(M1,...,mr,iln) and,
correspondingly, @ = lim,,_,o, u(n). It is clear from (1), that,
for the steady state to exist, these limits must exist and we
must have A\ < @ since p(n) is asymptotically geometric (cf.
Takahashi [6] for a related discussion). By taking the limit
for n — oo in the equations for the conditional probabilities
p(mi,...,mp,in), we easily obtain a set of equations for
the limiting probabilities p(my,...,m,4). To determine the
maximum job processing rate of the system, it then suffices
to solve this set of equations for a value of arrival rate A = .
This is easily accomplished using a fixed-point iteration with

o= Z (mipr +---+mppr)p(ma, ..., mp,i)  (4)
S(o00)

and

> b(ma, ... omp,i) =1. (5)

S(o00)

All feasible states S(co) here are states (mq,...,mp,1)
such that ZeL:1 myeby < B and B — Zngl myby < b;, where 1
is the class of the job at the head of the queue (z: = 1,...,L).
Thus, we can determine the processing capacity of the system
without having to obtain its steady-state solution.

If we wish to analyze the system beyond its processing
capacity, the solution of the set of equations for the
conditional probabilities p(m1,...,my,in) together with
formula (2), allows us to determine p(n), the steady-state
probability that there are n jobs in the system, from formula

(1). Hence, it is straightforward to obtain the expected
sojourn time for a job, E[W] using Little’s law [7] as
E[W] = E[N]/A, where E[N] = }° np(n) is the mean
number of jobs in the system. Clearly, in the context of
datacenter performance, it is important to assess not only
the mean response time but also its higher order properties
(cf. [3]). Extensions of Little’s law relating higher moments
of the number in a system to higher moments of sojourn
time cannot be used directly for the whole system because
job overtaking is possible during service. However, they
can be used for the FCFS queue of jobs waiting for service
to start. Denote by ng(mi,...,mp,i,n) the number of
jobs waiting for service given that the system state is
(m1,...,mp,i,n). Denote by E[N}] the k-th moment
of the number of jobs in the queue. We have E[N}] =
> p(n) Zs(n) ng(mi,...,me,i,n)p(my,...,mp,in).

Let E[W/}] be the k-th moment of the time a job spends
queued waiting for service. Looking specifically at the second
moments, we get from a generalization of Little’s law [7]

E[N7] — E[N]
A2 '
Denote by E[S¥] the k-th moment of the service time for
jobs of class £. Then the k-th moment of the overall service
time is given by E[S*] = Zle peE[SF]. We assume that the
time a job has to wait for service and the job’s actual service
time are independent (this seems to be true for each job class
considered separately). This allows us to readily obtain the
second moment of the sojourn time in system as

EW;] = (6)

EW?] = E[W}] + E[S?] + 2E[W,]E[S]. (7)

In our case, [SF] = k!t§, and we have E[W,] = E[N,]/A
from Little’s formula. The variance of the sojourn time for
a job is given by Var[W] = E[W?] — (E[W])2. Hence, we
can use the one-sided inequality [1] to obtain an upper bound
on the probability that the sojourn time exceeds some value
t,t > E[W]

Var[WV]
Var[W] + (t — E[W])?’

How useful this bound may be depends on the specific
values of the quantities involved, but, in any case, we have
the variance of the job sojourn time. This gives us crucial
information about the variability of the job response time.
Higher moments of the latter can be obtained in an analogous
manner.

A simple example in the next section illustrates this ap-
proach.

Prob{W >t} <

®)

III. SIMPLE EXAMPLE

Consider a system with a total resource of size B = 6 and
two job classes with respective resource requirements by = 2
and by = 3. Feasible states with jobs waiting in the queue
(n > m) can be generated from m; = 0,...,[B/b;] and
ma = [(B—m1b1)/b2]: (0,2,1), (0,2,2), (1,1,1), (1,1,2), (2,0,2),



(3,0,1), (3,0,2). State (2,0,1) is not feasible since B—2b; > b;.
As an example, for the states (2,0,2) and (3,0,2), from the
corresponding balance equations together with formulas (1)
and (3), we obtain the following equations for the conditional
probabilities.

p(2,0,2[n)(2u1 + A) = p(2,0,2|n — 1)u(n)
+ [p(1, 1, 1n 4+ 1)peps + p(3,0,2|n + 1)3u1]A/u(n + 1)

p(3,0,2[n)(3p1 + A) = p(3,0,2|n — 1)u(n)
+[p(1, 1, 1n+1)pop1p2+p(3,0, 1n+1)3u1p2] A /u(n+1)

Taking the limit for n — oo, we obtain

+ [ﬁ(lv ]-7 1)/12]?2 +[~)(37 07 2)3/~L1]>‘/a

and

$(3,0,2)(3p1 + A) = p(3,0,2)a
+ [(1,1,1)popip2 + B(3,0,1)3p1p2] A /@

Similar equation can be obtained for the remaining limit-
ing probabilities. Their solution using a fixed point iteration
together with (4) and (5) yields a value for the limiting job
processing rate @ that depends on the rate of arrivals . The
asymptotic maximum value for the job processing rate is
obtained when the arrival rate becomes equal to the processing
rate, i.e., for A\ = u. This latter relationship can be injected
into the fixed-point iteration.

An alternative is to use A\ = u directly in the equations
for p(mq,mo,i) simplifying them even further down
to p(2,0,2)(2um) = p(1,1,Dusp2 + p(3,0,2)3u; and
5(3,0,2)(3p1) = p(L, 1, pepipz + p(3,0,1)3pu1p2.

For other feasible states we get p(3,0,1)(3u1) =
ﬁ(lalal):u?p% + ﬁ(3’0’ 1)3M1p1, 5(17171)(M1 + /’62) =
ZN)(O’ 2, 1)2#21)1 + f)(la L, l)ﬂlpl + 15(27 0, 2)2H1p1 +
p(1,1,2)popr, p(1,1,2) (1 + p2) = p(0,2,1)2u2p2 +
]5(17171)1“'1]92 + ﬁ(27072)2/~b1p2 + ;5(1’172)/142p2,
ﬁ 072a 1)(2”2) = 25(0’2»2)2/@?1 + ﬁ(L 1a2)/~L1P1 and
]5(0’ 2) 2)(2“2) = ]3(0, 27 2)2N2p2 + ﬁ(la 17 2)M1p2~

The solution of this system of linear equations (subject to
the normalizing condition (5)) yields the asymptotic maximum
job processing rate via formula (4).

In Figure 2 we show the limiting processing rate u as a
function of the arrival rate A for our example system with
p1 = p2 =1 and p; = p2 = 0.5.

We observe that between arrival rate values of A\ = 2
and A = 2.1 the limiting job completion rate approaches its
maximum value for which we still have @ > A. This is the
maximum job processing rate for the given set of parameters.
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Fig. 2: Limiting job completion rate as a function of arrival
rate.
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Fig. 3: Job processing capacity as a function of job mix.

Figure 3 shows the values of the asymptotic maximum job
processing rate as a function of p;, the probability that an
arriving job is of class 1.

Clearly, when all jobs belong to a single class, we can
easily determine the maximum job completion rate. It is
interesting to see that the asymptotic maximum job completion
rate is, in our example, a strongly non-linear function of
the probabilities p; so that even a small proportion of more
resource demanding jobs can have an important effect on the
job processing capacity of a multiserver job queue (and, thus,
a cloud datacenter).

To illustrate the accuracy of the results obtained for the
second moment of the job sojourn time, we consider again a
system with a total resource of size B = 6 and two job classes
with respective resource requirements b; = 2 and by = 3. We
assume that we have p; = po = 0.5 but each job class has a
different mean service time t; = 1/pu1 = 0.4 and to = 1/ =
1.6) so that the overall mean service time is 1.



TABLE I: Example of results for second moments of sojourn
time and queueing time.

Arrival rate, A\ | E[W] [ EW? | EW2] | Prob{W > 10}
1.0 1.438 4.763 1.167 0.036
(1.438) | (4.843) | (1.245) (0.003)
12 1.743 6.758 2.553 0.052
(1.741) | (6.814) | (2.610) (0.006)
14 2271 11.120 5.858 0.091
(2.273) | (11.216) | (5.946) (0.016)
1.6 3341 | 23416 | 16.013 0217
(3.347) | (23.513) | (16.090) (0.056)
I8 6.471 85.707 | 72.044 0.779
(6.467) | (86.367) | (72.702) (0.216)

We show in Table 1 a few values of the first two mo-
ments of the sojourn time, as well as the second moment
of the time in queue obtained using the approach described
in Section II. As a “sanity check”, the values in parenthesis
give the corresponding moments estimated in a discrete-event
simulation of the system considered. The simulation used 7
independent replications of 5,000,000 job completions each.
We notice the generally good agreement between the values
computed from the solution of our model and those estimated
in the simulation.

We also show the upper bound values obtained for the
probability Prob{WW > ¢ = 10} from the one-sided inequality.
The values in parenthesis in this column give the values for the
fraction of sojourn times that exceeded the given target value
in the simulation runs. Clearly, the one-sided inequality leads
to rather conservative bounds in our case, and, for A = 1.8, a
better upper bound for Prob{WW > 10} can be obtained from
the basic Markov’s inequality Prob{W > ¢} < E[W]/t =
0.6471. Clearly, this a very simple example and the number
of feasible states may grow very rapidly with the number of
jobs classes and the size of the resource. A potential approach
to explore in such cases might be class aggregation in which
a few dominant job classes are represented explicitly while
others are aggregated. This the subject of future work.

IV. CONCLUSIONS

We have considered a generalization of the multiserver jobs
model and presented a simple approach to its analysis in
steady state. Of particular interest in such a system is the
determination of its job processing capacity. Our approach is
based on a suitably chosen state description and the use of
conditional probabilities. Studying the limiting values of these
conditional probabilities allows us to determine the asymptotic
maximum job processing capacity without having to obtain the
full solution for the system. Additionally, we show that with
our state description generalized Little’s law can be used in
the systems considered to obtain higher moments of the time
jobs spend in the queue and in the system as a whole.
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