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In this paper we consider issues that may arise in the I/O workload characterization for 
Parallel Access Volumes. Limiting the characterization of I/O device service time to the 
mean and the standard deviation is sufficient to correctly predict the average I/O time in a 
realistic model of a single-exposure device. Things are less simple, however, when one 
considers devices with multiple parallel servers. We use two examples to illustrate the 
need for a more detailed workload characterization with multiple servers. We also briefly 
consider methods for matching real-life workload distributions to phase-type distributions, 
used to enable numerical solutions of queues with multiple servers, and we point out 
potential issues related to their use in modeling the performance of Parallel 
Access Volumes.  

 
 
 

1 Introduction 
In the area of mainframe I/O, the Parallel Access Volume (PAV) feature [IBM1999] allows a heavily used logical 
device (or volume) to be replaced by a set of volumes serving a queue of I/O requests. We refer to such a set of 
parallel volumes as multiple exposures. The goal of multiple exposures is to reduce the expected queueing time 
of I/O requests directed to a heavily used device. 
 
In the case of a device with a single exposure, using common simple assumptions on the arrivals of requests, we 
need to know only the mean and the standard deviation of the I/O service time to predict the average queueing 
(IOSQ) time. Indeed, the Pollaczek-Khintchine formula [ALL1990] involves only the first two moments of the 
service time distribution. With multiple exposures, such a limited knowledge of the I/O service time is not 
sufficient. This has potential implications on the workload characterization for Capacity Planning with Parallel 
Access Volumes. 
 
Our main goal of this paper is to bring this issue to the attention of performance specialists working in the area of 
I/O subsystem performance.  
 
In the next section, we present two examples to illustrate the potential inadequacy of a workload characterization 
limited to the mean and the standard deviation. In Section 3, we point out the limitations of two approaches that 
have been proposed in the literature to represent the workload in models used to evaluate the performance of 
systems with multiple exposures. We also point the shortcomings of most approximations one might be tempted 
to use in the context of PAVs. Section 4 concludes this paper.  

2 Examples of IOSQ time with multiple exposures 
Under simple assumptions on the arrival process of I/O requests, the average IOSQ time at a single-exposure I/O 
device can be obtained using the M/G/1 queueing model e.g. [BRA1983]. The well-known Pollaczek-Khintchine 
formula [ALL1990] shows that the average queueing time in an M/G/1 queue depends only on the mean and the 
standard deviation of the service time. Thus, with a single-exposure device, it is sufficient to characterize the first 
two moments of the I/O workload. When one deals with Parallel Access Volumes, one might be tempted to keep 
this simple characterization of the I/O service time. Unfortunately, the underlying queueing model then becomes 
the so-called M/G/c queue, and in such a system the average queueing time depends on more than just the mean 
and the standard deviation of the service time.  
 



A couple of simple examples illustrate the fact that one cannot rely on the first two moments of the service time to 
correctly predict the average IOSQ time in the case of multiple exposures. Our numerical results have been 
obtained using discrete-event simulation at 95% confidence level.  
 
2.1 A high-level description of a cached I/O with PAVs 
As our first example, we consider a high-level abstraction of the read performance of a cached storage controller 
with PAVs. For a cache hit, assuming a fixed record size, we view the service time as constant, and for a cache 
miss the information must be read from the underlying physical devices. We consider two sets of parameters with 
different distributions for the miss service time: uniform and truncated exponential [JAW2004]. Both resulting 
overall I/O service time distributions have the same mean and coefficient of variation, shown in Table 1, but 
different higher order properties. Since the coefficient of variation is the ratio of the standard deviation to the 
mean, the two distributions have the same mean and standard deviation.  
 

Table 1. I/O service time parameters in two storage subsystems. 

 Service time distribution with mean of 3.5 and coefficient of variation of 2.48 

 Hit ratio 
(probability) Hit service time Miss service time 

Dist. A 0.999 3.34 Truncated exponential mean: 300, max: 1000 

Dist. B 0.9 1 Uniform [2,50] 

 
 
 

  
Fig 1a. Results for 4 PAVs. Fig 1b. Results for 8 PAVs. 

 

  
Fig 1c. Results for 16 PAVs. Fig 1d. Results for 32 PAVs. 

 
Fig. 1. Average IOSQ time for a multi-exposure volume for service time distributions from Table 1. 

 
Fig. 1 shows the average IOSQ time for different numbers of PAVs and volume utilization levels of 0.6, 0.8, and 
0.9. We observe that the influence of higher properties of the service time distribution can be important. It has 
been our experience that, as the number of servers increases, this influence tends to become more visible for 
higher levels of server utilization. Also, higher order properties tend to be more important for service time 
distribution with higher coefficients of variation. It is interesting to note that, in this example, the relative difference 



in the average IOSQ time can be over 100% while the coefficient of variation of the I/O service time is quite 
moderate (2.48).  
 
We observe that the influence on the average IOSQ time of properties of the service time distribution beyond its 
mean and standard deviation peaks for some value of the number of PAVs, and then decreases as the number of 
PAVs increases. Since we see markedly different IOSQ times for two service time distributions with the same 
means and the same coefficients of variation, it is clear that a PAV model that accounts only for the mean (such 
as the M/M/c queue) cannot be expected to consistently produce correct results.  
 
2.2 A more specific description of a cached I/O with PAVs 

As our second example, we consider a cached I/O device with 8 Parallel Access Volumes, and we assume again 
that all accesses are read requests. The service time for a hit consists of an overhead followed by the record 
transfer time. Both times are taken to be constants in our example. The service time for a miss comprises an 
overhead, device orientation (seek plus rotational latency), followed by transfer of data to the cache and to the 
host. Our goal is to show that differences in higher order properties lead to visible difference in performance even 
when the distributions are structurally similar. 
 
We present two possible workloads, referred to as Dist. 1 and Dist. 2 (see Table 2 in the Appendix), with different 
hit ratios, device orientation times, as well as different transfer times, chosen so as to have the same overall 
average I/O service time and the same standard deviation. As illustrated in Fig. 2a, the resulting average IOSQ 
times can be quite different even though the first two moments of the I/O service time are identical (mean I/O 
service time of 1.195 and standard deviation of 2.324). Similarly, the effect of different service time distributions 
can be observed if one is interested in more detailed I/O performance metric, such as, e.g., the probability that 
there are 2 or more requests waiting in the queue, as shown in Fig. 2b.  
 

  
Fig 2a. Average IOSQ time Fig 2b. Steady-state probability of having two 

or more requests in queue 
 

Fig. 2. Performance of a multi-exposure volume for service time distributions from Table 2. 
 
In the next section, we look at some practical implications of our observations. 

3 Practical implications 
To the best of our knowledge, there is no simple closed-form solution for the M/G/c queue and no equivalent to 
the Pollaczek-Khintchine formula. Hence, a good approximation to evaluate the average queueing time would 
certainly be most useful. A number of approximations have been proposed for the M/G/c queue [KIM1983, 
KIM1986, KIM1995, KIM1996, BOX1979, BJO1964, TIJ1981, MIY1986, NOZ1978, WOL1989, SCH1978, 
SMI2003, MA1995]. Unfortunately, virtually none of them attempts to account for the fact that the average 
queueing time may depend on more than just the mean and the standard deviation of the service time. Therefore, 
one must approach the results of such approximations with a fair dose of caution. 
 
Since there is no closed-form solution for the M/G/c queueing system, such queues must be solved using 
discrete-event simulation or numerical approaches, e.g., [NEU1981, LAT1999, SEE1986, BRA2009]. The latter 
methods use a phase representation of service time distributions [OSO2006, COX1961, ALL1990]. Indeed, any 
distribution can be represented arbitrarily closely by a distribution of this type. There is an abundant literature on 
matching real-life distributions using phase-type distributions [BOB2005, OSO2006, ASM1996]. For a good 
bibliography on this subject, the reader can refer to the work of Osogami and Harchol-Balter [OSO2006].  
 



However, the existing distribution matching techniques do not always produce reliable results when applied to the 
problem at hand. Indeed, assume that we are able to obtain (either through measurements or through analysis) 
the distribution of the I/O service time. To predict the expected queueing time with Parallel Access Volumes using 
a numerical solution method we would first have to represent the I/O service time distribution as a phase-type 
distribution. Distribution matching methods can be broadly divided into two groups: one that concentrates on 
correctly matching the first three moments of the real-life distribution e.g. [BOB2005, OSO2006], and one that 
focuses on approximating the general shape of the distribution e.g. [ASM1996]. It has been our experience that 
both approaches can lead to significant inaccuracies when their results are used to evaluate the performance of 
PAVs. This seems to be particularly true when the underlying service time distribution is multi-modal, as is often 
the case with cached I/O devices. 
 

  
Fig 3a. Average IOSQ time with a distribution 

from Table 1 (miss service uniform) and 
approximations [BOB2005, ASM1996] 

 

Fig 3b. Relative difference in the average 
IOSQ time using approximate phase-type 

distributions [BOB2005, ASM1996] 

Fig. 3. Performance of an I/O device with 8 PAVs using a service time distribution from Table 1 and 
approximations. 

 
This is illustrated in Figure 3 where we show the average IOSQ for a system with 8 PAVs for the high-level 
description of I/O service time considered in Section 2.1. The miss service time is assumed to be uniformly 
distributed with the parameter values given in Table 1. In Figure 3a we compare the average IOSQ time obtained 
using the original I/O service time distribution (labeled “Original”) with that obtained using the phase-type 
distributions produced by the moment matching method of Bobbio et al. [BOB2005], as well as the phase-type 
distribution produced by the shape matching method of Asmussen et al. [ASM1996]. Figure 3b shows the 
corresponding relative difference in the average IOSQ time. We observe that the relative difference can 
exceed 100%.  

4 Conclusions 
We have considered some issues that may arise in the context of Parallel Access Volumes used to relieve I/O 
request queueing. We used two examples to underscore the fact that the I/O workload characterization limited to 
the mean and the standard deviation, frequently thought of as adequate with single-exposure volumes, is in fact 
inadequate when one considers multiple parallel servers. This is even more so if one considers a more realistic 
request arrival process than the Poisson process assumed in the M/G/c queue. 
 
We have also shown that one has to approach with caution existing methods for matching real-life workload 
distributions to phase-type distributions used to enable numerical solutions of queues with multiple servers. For a 
class of distribution matching methods the issue is that they correctly reproduce only a very limited subset of 
moments of the real distribution. While a distribution is known to be totally defined by all its moments (if they exist) 
[ALL1990], we have not been able to determine how many moments, or exactly which characteristics of the real-
life workload distribution, are needed to correctly reproduce the expected performance of Parallel Access 
Volumes or similar systems with parallel servers.  
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6 Appendix 
Table 2. Two service time distributions with the same first two moments (used in our second example) 

 Service time distribution with mean of 1.195 and coefficient of variation of 1.945 

 Hit ratio Hit 
overhead 

Hit 
transfer 

Miss 
overhead 

Miss seek time  Miss rotational 
delay 

Miss transfer 
time 

Dist. 1 0.9 0.1 0.4 0.6 Exponential of 
rate: 2.0 
truncated at: 
4.0 

Uniform [0, 
11.11] (i.e. 
5400 RPM) 

0.8 

Dist. 2 0.9944 0.642 0.4 1.765 Exponential of 
rate: 9.3x10^-3, 
truncated at: 
51.8 

Uniform [0 , 
4.0] (i.e. 
15 000 RPM) 

0.8 

 
 
 


