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Abstract

The next generation of WLANs will be, for the most part, ubiquitous in
urban areas, densely deployed, and implementing the latest amendment of
IEEE 802.11 standard, namely 802.11ax also known as Wi-Fi 6. Among the
main purposes of 802.11ax is the improvement of the spatial reuse of radio
channels by allowing the dynamical update of the sensitivity threshold and
the transmission power at each node. In this regard, our contributions are
twofold. First, we investigate the performance improvement resulting from
a more efficient spatial reuse of radio channels with 802.11ax. Second, we
introduce a centralized solution based on the Multi-Armed Bandit (MAB)
framework and a sub-sampling technique to quickly discover an appropriate
configuration of the sensitivity threshold and transmission power at each
access point. We evaluate our solution with the network simulator ns-3 on
different network topologies. The simulation results show the ability of our
solution to quickly and robustly adjust these parameters of access points in
order to significantly improve the behavior of WLANs.

Keywords: Spatial Reuse, IEEE 802.11 WLANs, Power Control,
Multi-Armed Bandits

1. Introduction

Wireless Local Area Networks (WLANs) have become ubiquitous in urban
areas. They have overtaken wired networks and mobile networks to become
the primary means of connecting end-users to the Internet. According to
Cisco’s forecasts [1], Wi-Fi hotspots will grow four-fold from 2018 to 2023.
Globally, there will be nearly 628 million public Wi-Fi hotspots by 2023, up
from 169 million hotspots in 2018. The de-facto norm for WLANs is the
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802.11 standard [2] of IEEE, better known under its commercial branding
Wi-Fi. In its simplest form, a WLAN is made of wireless stations (STAs)
and an Access Point (AP) that relays the traffic of STAs back and forth to
the wired network using radio wave communication.
In many urban places where a large number of end-users may be needing
Internet access (e.g., medium or large enterprises, universities, train stations,
airports, shopping centers), WLANs are expanded to involve multiple APs.
APs are typically deployed at a short distance from other APs of the same
WLAN forming a dense WLAN. Network administrators often rely on a
central controller, typically implemented as software, for the remote control
and management of the APs’ fleet. This greatly eases maintenance tasks such
as the deployment of a homogeneous setting over the APs (e.g., for a security
update) or performance optimization routines (e.g., efficient coordination of
the APs).
With a dense mesh of APs, one could expect WLANs to be able to ensure
proper radio coverage, to perform high physical transmission rates between
STAs and APs, and overall to sustain an important traffic load. However,
in practice, WLANs’ performance are sometimes viewed as insufficient with
some STAs struggling at transmitting or receiving their data. This is because
the bottleneck resource is not the number of APs but rather the scarcity of
space on the radio spectrum.
The radio bands used by 802.11 are divided into different channels and each
AP must be assigned to a channel. In general, the network administrators
aim at staggering adjacent APs on different, non-overlapping radio channels
to enable simultaneous transmissions. Unfortunately, the number of radio
channels is limited and any channel assignment strategy will find its limita-
tions when the density of APs is high. However, simultaneous transmissions
of two APs on the same channel may yet be achieved if the distance between
the two is long enough to significantly dampen their mutual interference at
the destinations. In the current WLANs, this latter property, known as the
spatial reuse of the radio channel, is not exploited at its full potential.
The 802.11ax standard, which was approved in 2021 and is marketed as
Wi-Fi 6, introduces a new feature to further improve the spatial reuse of
radio channels. Two key parameters, namely the transmission power and
the sensitivity threshold, referred to as TX PWR and OBSS/PD respectively,
have become tunable and can be set independently for each 802.11ax device.
The setting of these parameters greatly improves the benefits of spatial reuse
and thus the performance of WLANs. However, no algorithms were included
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in the standard and it is up to the manufacturer or to the WLAN controller
to decide how these parameters should be set.
Configuring these two parameters is a difficult problem for three main rea-
sons. First, any efficient configuration of these parameters is tightly linked to
the WLAN topology (i.e., arrangements of APs and STAs) and will likely be
inefficient, if not counterproductive, for another WLAN. Second, the prob-
lem is subject to the so-called curse of dimensionality. Because each AP has
2 parameters, each ranging over 21 different values, the number of possible
network configurations grows in O(2NA) with NA denoting the number of
APs in the WLAN. This exponential growth of the size of the state space
precludes the use of a brute-force approach even for a medium-sized WLAN.
Third, the configuration of these parameters must be found relatively quickly
and without any noticeable disruption of service for the STAs. On the other
hand, the WLAN controller can perform configuration tests, and observe the
resulting WLAN behavior on the STAs performance. This paves the way for
the use of data-driven approaches such as reinforcement learning techniques
to perform the search for an efficient configuration of the WLAN parameters.
In this paper, our objective is to improve the spatial reuse of radio chan-
nels of WLANs by modifying the configuration of the TX PWR and OBSS/PD

parameters of each AP. We cast the search for this parameter setting as a
Multi-Armed Bandit (MAB) problem to which we propose a fast and effi-
cient solution. The current paper extends a preliminary solution presented
in [3] in several ways. It contains a more detailed comparison of our proposed
strategy with the existing solutions as well as a robustness study to deter-
mine if the parameter configurations found by our solution remain relevant if
the WLAN’s workload changes drastically. Through them, we demonstrate
that our solution can significantly improve the behavior of WLANs, leading
in particular to a fairer share of the radio channel among the STAs, even if
the WLAN’s workload is prone to significant variations. More precisely, our
contributions are as follows:

• The efficiency of any reinforcement solution heavily relies on the defini-
tion of its reward function. We devised a reward function that accounts
for the potential issues of WLANs (unfairness, starvations) and reflects
the overall goodness of a network configuration from the standpoint of
a network administrator.

• While a uniform sampling may initially appear a natural choice to
explore the space of network configurations, we opt for a Gaussian
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mixture approach. This choice leverages a certain degree of smoothness
in the rewards of similar network configurations and contributes to
ensuring seamless and uninterrupted connectivity to the STAs.

• Using several WLAN scenarios run on a realistic network simulator,
namely ns-3, we show the superiority of our approach at addressing the
spatial reuse problem over traditional ways of performing the sampling
and optimization steps within the MAB framework.

• Through ns-3 simulations, we verify the robustness of the configuration
found by our solution by evaluating its performance when facing other
levels of WLAN’s workload and comparing them with those attained
under the 802.11 default configuration.

2. IEEE 802.11ax and spatial reuse

2.1. Overview of 802.11ax

The IEEE 802.11ax amendment builds on the strengths of 802.11ac and
gave birth to the sixth generation of Wi-Fi, aka Wi-Fi 6. Unlike 802.11ac,
802.11ax is a dual-band operating on 2.4 and 5 GHz and pushes towards
more flexibility, predictability, and scalability.

2.1.1. Flexibility

802.11ax introduces a new power-saving mechanism called Target-Wakeup
Time (TWT) [4]. With TWT, the sleep time of STAs is no longer synced
by the APs’ beacons. Instead, STAs negotiate with their associated AP
to schedule recurrent Service Periods (SPs) in which they will wake up for
their transmissions. This scheme outperforms previous mechanisms such
as TIM (e.g., [5]) and segmentation TIM (e.g., [6]) and enables significant
power savings gains for battery-powered STAs such as Internet-of-Things
(IoT) devices.

2.1.2. Predictability

The performance of Wi-Fi are often perceived as uncertain and this can be
troublesome for applications such as videoconferencing and IoT. To address
this issue, 802.11ax introduces the use of OFDMA which redefines the way
STAs and APs access the shared medium (radio channel) (e.g., [4, 7]). With
OFDMA, 802.11ax may implement and reserve contention-free periods for
STAs that need precise control (determinism) over their performance.
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2.1.3. Scalability

Last but not least, 802.11ax pushes the boundaries of Wi-Fi when operat-
ing in dense environments. First, 802.11ax introduces denser modulations,
an increased number of spatial streams, and reduced per-symbol overhead.
Second, 802.11ax enables improved spatial reuse of the radio channels by dy-
namically selecting appropriate levels for the sensitivity threshold OBSS/PD

and the transmission power TX PWR. For instance, in current WLANs where
these parameters are static, some STAs may transmit with too much power
given their proximity to their associated AP, thereby generating unnecessary
interference.

2.2. State of the art on spatial reuse

The literature related to the spatial reuse of radio channel can be classi-
fied into four major categories based on whether papers address the issue
of channel allocation or the tuning of the TX PWR and OBSS/PD parameters,
and on whether the proposed solutions are based on analytical modeling, or
conversely, mostly data-driven approaches. In this section, we review the
literature associated with each group.

2.3. Allocating the radio channels

The first and foremost way of improving the spatial reuse of radio channels in
an 802.11-based WLAN is obviously to allocate the same channel to multiple
of its APs. Indeed, provided that two APs do not sense each other, they can
then transmit at the same time without any risk of interfering, nor any need
to share the communication resource materialized by the radio channel. The
search for optimized solutions when multiple radio channel allocations exist
is known as the channel allocation (CA) problem. Existing solutions to this
problem are either model-based algorithms where an analytical model of the
WLAN helps evaluate the quality of an allocation, or data-driven solutions
where allocations are appraised through real measurements.
In model-based solutions, the CA problem can be tackled as a coloring prob-
lem with specific constraints. In the first generations of the 802.11 standard,
channels had a fixed size of 20 MHz. For example, a centralized algorithm
has been proposed in [8]. Conflicts between APs are represented by a graph,
and the solution aims to allocate different channels/colors to APs that are
adjacent in this graph. The algorithm was evaluated using a real testbed.
With the recent amendments to the 802.11 standard, several 20MHz channels
can be aggregated into a 40, 80, or 160MHz channel. This technique known
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as channel bonding (CB) hardens the CA problem as the number of possible
allocations increases significantly. In [9], a distributed algorithm named SA
(Spectrum Assignment for WLAN) is formulated as an optimization prob-
lem. For a given topology, the algorithm aims at minimizing interference
between APs while taking into account the preferences of APs for certain
channel width. Another model-based approach is investigated in [10] where
the analytical model accounts for both collisions and interference. In the case
of an 802.11ac-based WLAN where the objective is to maximize the through-
put for a given traffic demand, the authors approached the CB problem as an
optimization problem whose solution is found through a genetic algorithm.
To be effective, model-based approaches require vast pieces of knowledge on
the WLAN (topology, traffic, radio propagation, parameter setting, etc.),
accurate analytical estimates of the network performance, and a relatively
simple derivation. Unfortunately, it is often hard to meet these requirements
and modeling approaches may be regarded as too inaccurate to handle the CA
problem. On the other hand, data-driven approaches based on measurements
collected from different WLAN configurations are intrinsically free of these
constraints and thus appear promising. Some rely on heuristics (e.g., [11, 12])
while others make use of machine learning techniques (e.g., [13]). In [11], the
authors propose a set of decentralized algorithms to allocate 20MHz channels
to APs in order to efficiently reuse radio channel thereby increasing the overall
network capacity. These algorithms are based on local measurements where,
iteratively, each AP selects a channel with a certain probability, measures the
channel performance for a certain period, and then adapts the probabilities
for this channel accordingly. In [12], the proposed algorithm is based on the
activity of the channels. When an AP tests a new channel, it associates a
satisfaction score based on what it has been able to send on this channel
during a certain period. If the score is satisfactory, the AP remains on this
channel. Otherwise, it resumes its exploration efforts on other channels.
In [13], the authors resort to a reinforcement learning algorithm to explore
in real-time new configurations and to exploit the ones that offer better
performance. The authors use a MAB approach with the Thompson sampling
algorithm to select the new configurations to evaluate.

2.4. Tuning the TX PWR and OBSS/PD parameters

Tuning the TX PWR and OBSS/PD parameters (related to the transmission
power and to the sensitivity threshold of nodes, respectively) is a secondary
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means (beyond CA) to improve the spatial reuse of a radio channel. Pio-
neering efforts were made in 2004 with [14] in which the authors present an
analytical model for deriving the optimal sensitivity threshold in a Wi-Fi
mesh network. The physical carrier sensing threshold is tuned dynamically
on each node as a function of the channel conditions. In [15], it is the trans-
mission power that is tuned to increase the throughput and minimize the
communication energy consumption. However, it is only in 2021 with the
802.11ax amendment that IEEE officially introduced the adaptation of the
TX PWR and OBSS/PD parameters thereby setting the technological context
and constraints. In practice, the large number of parameters and the com-
plexity of the physical layer in a radio environment hinders the use of such
analytical model-based solutions. Instead, measurement-based techniques
appear as natural candidates to this adaptation problem.
Practical approaches have been proposed in [16] and [17] to adapt the values
of TX PWR and OBSS/PD. In [16], the authors present a relatively simple way of
dynamically tuning these two parameters. Using the Expected Transmission
Count (ETX) value, their algorithm estimates a new value for TX PWR as well
as for OBSS/PD. In [17], a distributed solution aims to adapt dynamically
the OBSS/PD as a function of the received signal strength. More precisely,
the difference of signal strength between the frames in reception and the
interfering frames (from other APs) is used to set a new value for OBSS/PD.
The authors can control the likeliness of concurrent transmissions and thereby
the level of “aggressiveness” in the selected configuration using an internal
parameter of the algorithm.
More recently, some works have proposed methods inspired by machine learn-
ing techniques to address the issue of tuning the TX PWR and OBSS/PD param-
eters. In [18, 19], the authors formalize the problem of allocating the radio
channel of APs and setting their TX PWR and OBSS/PD parameters as a MAB
problem. In both cases, the MAB algorithm is applied at each AP in a
distributed way. The two solutions mostly differ in terms of their reward
definition. In the first solution, the reward at each AP corresponds to its
throughput, which can be described as a “selfish” solution since each AP tries
to optimize its own reward independently of the other nodes. Conversely, the
second reward revolves around a max-min function of the throughputs of the
current AP and of its direct neighbors (set of nodes for which the current AP
senses traffic). Using a home-made simulator, the authors show that their so-
lution significantly outperforms the default configuration of the WLAN and
that the selfish reward may lead to unfair situations between APs or STAs.
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Eventually, in [20], the authors propose an offline federated learning solu-
tion using simple feed-forward neural networks to predict the performance
of 802.11ax-based WLANs. Although some promising results have been ob-
tained against vanilla solutions, the model was trained offline on synthetic
data obtained from a home-made simulator. The ability of the solution to
handle other WLANs remains open.
To summarize, only a limited number of studies have tackled the issue of set-
ting the TX PWR and OBSS/PD parameter in an attempt to increase the spatial
reuse of radio channel for WLANs. Data-driven approaches such as machine
learning techniques appear well suited to deal with the intrinsic complexities
of this issue. Unlike a couple of previous works that proposed distributed ap-
proaches wherein each AP sets its parameters based on its knowledge [18, 19],
we introduce a centralized solution in which the WLAN controller configures
the parameters of the APs composing its fleet. We propose a novel defi-
nition for the reward function specifically tailored to WLAN performance.
Additionally, we devise a Gaussian mixture-based approach to explore the
high dimensional state space of configurations. Finally, to the best of our
knowledge, we are the first to use the popular open source network simulator
ns-3, which includes a realistic representation of the physical, link, network,
transport and application layers, to show the efficiency of our solution at
setting the TX PWR and OBSS/PD parameters. We believe that the use of this
well-established simulator strengthens the validation of our solution.

3. WLAN under study

We consider a WLAN comprising multiple APs and stationary STAs as well
as a controller that configures and manages the WLAN. STAs are associated
to the AP with the strongest signal strength. To access the radio channel,
APs and STAs use a listen-before-talk scheme referred to as carrier-sense
multiple access with congestion avoidance (CSMA/CA) and accomplished by
the distributed coordination function (DCF) in the 802.11 standards. DCF
requires each node (AP and STA) willing to transmit to first sense the radio
channel state for a short period of time. If the channel is sensed busy, the
node will defer its transmission for a random period of time called backoff.
If the channel is sensed idle (or after the backoff timer has come to zero),
the node is allowed to transmit its frame. For more details, we refer the
interested reader to [21].
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The 802.11 standards rely on a clear channel assessment (CCA) function to
indicate if the radio channel is perceived as busy or idle. Although other
options are made possible, CCA is most often performed by comparing the
power of the received signal (in dBm) to a given ceiling threshold often
referred to as sensitivity and denoted by OBSS/PD. If the former exceeds the
latter, the radio channel is considered busy. Otherwise, it is detected as idle.
Until the recent release of 802.11ax, the OBSS/PD was set to a constant value
(e.g., -82dBm for 802.11n). Analogously, the transmission power denoted by
TX PWR, which deviates from the received signal power due to the path loss
and shadowing effects, was also constant and often set to 20dBm [22]. The
latest amendment of 802.11, namely 802.11ax, enables the values of TX PWR

and OBSS/PD to be dynamically changed within certain ranges (e.g., [4]).
While TX PWR can take all values in between 1 and 21dBm, OBSS/PD can vary
from -82 to -62dBm provided the two parameters meet relation (1), given
by [23]. In our case, we assume that the WLAN controller is able to set the
TX PWR and OBSS/PD values for each AP.

OBSS/PD ≤ max(−82,min(−62,−82 + (20− TX PWR))). (1)

A node is said to be in conflict with another if the former is made unable
to transmit (due to the outcome of its CCA function) when the latter is
currently transmitting. Conflicts between APs heavily influences the per-
formance of a WLAN. They reduce channel interference and the probability
of colliding frames but they also tend to limit the number of simultaneous
transmissions in a WLAN and hence the spatial reuse of a radio channel.
Due to the importance of conflicts in the understanding of a WLAN behav-
ior, it is a common practice to represent WLANs by their conflict graph
between APs (e.g., [8, 24, 25]). Note that conflicts of STAs are typically
not represented in conflict graphs as the vast majority of traffic in WLANs
is downstream (STAs typically generate at least an order of magnitude less
traffic than APs). Figure 1 shows two conflict graphs associated with the
same WLAN but with different settings of their AP’s TX PWR and OBSS/PD

parameters. We can see the corresponding conflicts between APs when all
APs have the same setting (default value). Conversely, when APs have dif-
ferent settings for their TX PWR and OBSS/PD parameters, we observe that,
with this particular setting, the number of conflicts between APs, which are
no more symmetrical, has significantly decreased.
Several performance metrics are worth of interest to evaluate the efficiency
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Figure 1: Example of two conflict graphs resulting from different settings of TX PWR and
OBSS/PD for a same WLAN. Red dots represent APs and blue dots represent STAs while
the numbers are only here to ease the identification of nodes. Left: default configuration
(TX PWR, OBSS/PD) = (20,-82) dBm for all APs. Right: (TX PWR, OBSS/PD) = (15,-81),
(18,-80), (17,-79), (19,-82), (20,-82), (19,-82) dBm.

of a WLAN at providing wireless access to its STAs. First, the aggregate
throughput (also known as system throughput) represents the sum of the
throughputs of all individual STAs in the WLAN. Second, the fairness in
the distribution of access to the radio channel among STAs is another criti-
cal factor. Measures of fairness such as Jain’s index or proportional fairness
(PF), based on the individual throughputs of all STAs, are common means
to determine whether certain STAs are receiving a disproportionate share
of the radio resource at the expense of other STAs. Indeed, certain STAs
may struggle to access the radio channel due to an unfavorable location in
the conflict graph. These STAs are said to be in starvation of throughput
and they represent a major issue for network administrators. In this paper,
a STA is considered to be starving if it cannot obtain at least a given per-
centage α, say 10%, of the throughput they would have in the absence of
other STAs. Third, the frame error rate (FER) of each STA, which indicates
the percentage of frames lost due to collisions and poor channel condition,
can also be worth of interest to network administrators. As discussed earlier
in this section, the setting of TX PWR and OBSS/PD on each AP can signifi-
cantly change these performance metrics. For instance, Figure 1 shows the
conflict graph associated with a WLAN for two different parameter settings.
While the default setting (see Figure 1) leads to an aggregate throughput of
600Mbps, a Jain’s index of 0.42, and a number of starving STAs at 8, a more
appropriate setting of these parameters (illustrated again by Figure 1) can
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shift these values to 900Mbps, 0.55, and 2, respectively.

4. Proposed solution

In our solution, we search for a correct network configuration using an agent
located in the network controller. We assume that regular reports on the in-
dividual throughputs of STAs are forwarded to the WLAN controller, which
implements a MAB approach. In this framework, each network configura-
tion ci (i > 1) represents an arm that the agent can pull (thus performing a
trial) to obtain a reward rki with k designating the trial index. Note that the
rewards of an arm i are drawn from a probability distribution D(θi) whose
parameters θi are unknown from the agent but invariant in time since the
network under study is assumed to be stationary. In this section, we present
an efficient strategy π(k), which determines which arm to pull (WLAN con-
figuration to test) at each trial (time step) k.
Given the exponential growth of the cardinality of the configuration space
C with the number NA of APs (bounded by 212NA since an AP has two
tunable parameters of 21 values each), our problem is more precisely framed
as an Infinitely Many-Armed Bandit (IMAB). Thus, in practice, the network
controller cannot explore the whole set of arms in a reasonable amount of
time and must instead work on a subset of C, referred to as the reservoir. In
fact, the optimal arm is likely to not even be considered during the search
process.
Table 1 summarizes the principal notation used in our proposed solution
together with their numerical values chosen empirically for our simulations.

4.1. Reward function

In a Reinforcement Learning (RL) problem, the choice of the reward function
is a critical step and its definition can deeply influence the outcome of the
optimization process. In the case of a WLAN, the reward function aims at
quantifying the quality of a network configuration. However, as discussed
in Section 3, there are several performance metrics to assess the quality of
a WLAN, and thus different ways of combining them. From the standpoint
of a network administrator, a WLAN configuration is considered favorable
if it ensures a fair share of throughput among the APs and STAs. More
precisely, we enumerate, by order of importance, three criteria to take into
account: (i) the number of STAs that are starving for throughput should
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Table 1: Principal notation for the proposed method and their corresponding values in
the simulations.

Parameter Value Description
C Relative to topology Configuration space
NA Relative to topology Number of APs
NS Relative to topology Number of STAs
Ti Relative to topology Throughput of STA i
TA
i Relative to topology Attainable throughput of STA i

T− Relative to topology STAs in starvation situation
T+ Relative to topology STAs not in starvation situation
α 0.1 Starvation threshold parameter
ϵ 0.1 Exploration rate for strategies
n 2 Sample size in Algorithm 1
K 6 Number of Gaussians in Algo-

rithm 2
δ 1

1+Ns
Hypothesis parameter in Algo-
rithm 2

be minimized, (ii) the fairness between STAs should be maximized, (iii) the
aggregate throughput of the network should be maximized.
Satisfying both criteria (ii) and (iii) at the same time is challenging. Indeed,
in most topologies, increasing fairness between throughputs of STAs is made
at the expense of a lower aggregate throughput. Conversely, increasing the
network aggregate throughput often implies a decrease in fairness. In order
to reach a natural trade-off between those two metrics, we build our reward
function on a normalized version of the proportional fairness (PF) of the sta-
tion throughputs as given by Equation 2. Note that in Equation 2, the STAs’
throughputs Ti, i ∈ [1, NS] are normalized by their attainable throughputs
TA
i , i ∈ [1, NS]. T

A
i is simply defined as the throughput that the STA i would

obtain in the absence of all other stations. Hence, TA
i can be seen as an upper

bound for Ti. Then, the normalized throughputs are multiplied with each
other to obtain a ratio belonging to [0, 1] that represents the quality of the
compromise found between criteria (ii) and (iii).

PF(T, TA) =

NS∏
i=1

Ti

TA
i

(2)
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We account for criterion (i) by ensuring that any network configuration with
a higher number of stations in starvation situations than another configu-
ration obtains a lower reward value. In our case, we consider that STA i
is starving for throughput whenever its throughput Ti is less than a given
fraction, denoted by α ∈ [0, 1], of its attainable throughput TA

i . The value of
α reflects the desired level of service for the WLAN and its STAs. Given the
high expectation of end-users on WLANs performance, a network adminis-
trator should probably select α somewhere in the range [0.05 to 0.25]. For
our numerical results, we choose α = 0.1 but, for the sake of completeness,
we study the impact of the value of α on the quality of the optimization
at the end of Section 5. With α = 0.1, a station having a throughput less
than 10% of its attainable throughput is said to be in starvation. Having
defined the notion of starvation, we regroup STAs in starvation (those whose
Ti < αTA

i ) in a set T− while the others are placed in a set T+. Then, we
compute the PF for each subset T+ and T−, we normalize them using their
upper bounds (αTA

j for T− and TA
j for T+), and we combine them using

Equation 3 to obtain our reward function. A centralized entity having access
to the throughput of each of the NS STAs can easily compute Equation 3 in
O(NS) operations. Note that this definition forces our reward to evolve in
disjoint intervals in [0, 1], the selected one depending on the number of STAs
in starvation, as depicted by Figure 2.

rki =
|T−|

∏
j∈|T−|

T−
j

αTA
j
+ |T+|

(
NS +

∏
j∈|T+|

T+
j

TA
j

)
NS(NS + 1)

(3)

To measure the quality of a given strategy π(k), we use the cumulative regret,
which is the standard metric used in MAB problems. With µ∗ denoting the
best expected reward (i.e., µ∗ = maxc E[r|c]), the cumulative regret Rn(π)
on strategy π after n actions (or trials) taken by the agent, is defined by
Equation 4.

Rn(π) = nµ∗ −
n∑

k=1

rkπ(k) (4)

A common practice to circumvent the infinite number of arms in an IMAB
problem consists of restricting the exploration to a limited subset of solu-
tions composed of random arms that constitute the reservoir. Typically, the
selected arms are drawn uniformly from the whole set of arms (e.g., [26],

13



Figure 2: On the left, a simple topology composed of 3 APs and 3 STAs. On the right,
the corresponding reward intervals, containing increasing values as the number of STAs in
starvation decreases.

[27], [28]). In our case, this approach is not suitable as the vast majority
of network configurations lead to poor solutions so that the reservoir would
therefore consist most likely only of unsuitable solutions. However, unlike a
typical IMAB problem, in which no hypothesis can be made on the relation-
ship between the arms and their rewards, in our case, two neighbor network
configurations are likely to have similar rewards. To exploit this similarity
between neighbor configurations, we consider our configuration space as a
normed space with || · || the L1-norm and we assume that the property given
by Equation 5, which relates the spaces of arms and rewards, is verified. Al-
though not always true, this property enables us to leverage the information
collected on former trials to guide the sampling of new configurations, mostly
in the neighborhood of already good configurations.

∀ci, cj ∈ C, ∃δ > 0, ||ci − cj|| = 1 =⇒ |r·i − r·j| < δ (5)

Therefore, our problem breaks down into two subproblems that must be
solved concurrently: (i) sampling promising configurations, and (ii) identify-
ing the best arm among those sampled and pulling it as much as possible.
An agent called the sampler is in charge of the first task while another agent
known as the optimizer accounts for the second task. Figure 3 summarizes
the main principles of our solution. The remainder this section is devoted to
the definition of the optimizer and the sampler agents.
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Figure 3: Outline of our solution: The optimizer requests a new configuration to the sam-
pler, which selects and returns it to the optimizer. The optimizer tests this configuration
on the real environment, obtains a reward in return, and forwards this reward to the sam-
pler so that both agents can update their internal state.

4.2. Optimizer

The role of the optimizer is to quickly identify the best network configuration
(namely argmaxc E[r|c]) among the current reservoir of network configura-
tions and to use it most often. In our case, the reservoir is initialized with
the default configuration of APs and progressively filled with new configu-
rations proposed by the sampler. Algorithm 1 describes the behavior of the
optimizer agent. The algorithm has two main parameters: the exploration
rate ϵ, which decides how often configurations out of the reservoir are tested,
and the sample size n, which determines how often reward estimates of a
given configuration are updated.
Algorithm 1 is based on Thompson Sampling (TS) [29], which achieves an
optimal regret bound [30, 31] and derives from Bayesian principles. In the
previous works [18, 19] wherein TS was used for the sake of spatial reuse of
WLANs, the authors assume that (ri|ci) ∼ N (µi, 1), with a Gaussian prior
for µi initialized at N (0, 1). Then, the prior of µi at step k is given by

N
(
µ̂k
i ,

1
nk
i +1

)
, where µ̂k

i =
∑k−1

w=1:i(w)=i
rki

nk
i +1

([19]) and nk
i denotes the number of

times the configuration ci has been tested after k steps. In our solution, we
make no assumptions regarding the actual value of the variance of ri. Simi-
larly to the mean value, the variance is progressively estimated. We assume
(ri|ci) ∼ N (µi, σ

2
i ) and choose normal-gamma priors for both the mean µi

and the precision σ−2
i :

(
µi, σ

−2
i

)
∼ NormalGamma

(
µ̂k
i , λ̂

k
i , α̂

k
i , β̂

k
i

)
. Note

that a normal-gamma distribution implies that the precision (inverse to the
variance) has a Gamma distribution and that the mean, once the precision is
known, has a Normal distribution. Therefore, the priors at step k for µi are
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Algorithm 1 Optimizer algorithm

Input: sample size n, exploration rate ϵ

1: Init reservoir E with ∅
2: Init step counter k with 0
3: loop
4: if E = ∅ or rand() < ϵ then
5: Get a new configuration ci using the sampler
6: Test ci n times on the environment and collect rewards in Xi

7: k ← k + n

8:
(
µk
i , λ

k
i , α

k
i , β

k
i

)
←

(
X̄i, n,

n
2
, nV ar(Xi)

2

)
9: Xi ← ∅

10: Add ci to reservoir E
11: else
12: for ci in E do
13: Sample gi from Γ

(
αk
i , β

k
i

)
14: Sample µi from N

(
µk
i ,
(
λk
i gi

)−1
)

15: end for
16: j ← argmaxi µi

17: Test cj on the environment and add reward to Xj

18: k ← k + 1
19: if |Xj| = n then
20: Update prior parameters

(
µk
j , λ

k
j , α

k
j , β

k
j

)
according to Equation 6

21: Xj ← ∅
22: end if
23: end if
24: Send tests and rewards to the sampler algorithm
25: end loop
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given by (µi|G) ∼ N
(
µ̂k
i ,
(
λ̂k
iG

)−1
)
, where G ∼ Γ

(
α̂k
i , β̂

k
i

)
. For a sample

Xi of size n, mean x̄i, and variance si, standard calculations demonstrate that

the posterior distribution is
(
µi, σ

−2
i |Xi

)
∼ NormalGamma

(
µ̂k+1
i , λ̂k+1

i , α̂k+1
i , β̂k+1

i

)
,

with Equation 6 describing how to update our parameters. These updates
enable our optimizer to incorporate new measures on the network configura-
tion into its reward estimations.


µ̂k+1
i

λ̂k+1
i

α̂k+1
i

β̂k+1
i

 =


λ̂k
i µ̂

k
i +nx̄i

λ̂k
i +n

λ̂k
i + n

α̂k
i +

n
2

β̂k
i +

1
2

(
nsi +

λ̂k
i n(x̄i−µ̂k

i )
2

λ̂k
i +n

)
 (6)

Algorithm 1 has a complexity growing linearly with the number of configu-
rations in the reservoir E. As a matter of fact, for each configuration in the
reservoir, the agent must sample a Normal-Gamma distribution to find the
configuration to test. Since the number of configurations in the reservoir is
proportional to the current optimization step k, its computational complexity
is O(k).

4.3. Sampler

The role of the sampler is to explore the configuration space C, and to yield
promising configurations when requested to by the optimizer. The explo-
ration process is given by Algorithm 2.
To efficiently sample new configurations in this high-dimensional space, we
build our sample distribution as a normalized sum of Gaussian distributions,
which is known as a Gaussian Mixture (GM). Algorithm 2 constructs and
updates this GM. Unlike uniform sampling, a GM-based sampling whose
Gaussians are centered on the best-known configurations ensures that most
of the new sampled configurations are located in the vicinity of the currently
best-known configurations.
We allow a total of K Gaussian distributions in the mixture and we pro-
pose to define their centers as the K best configurations discovered so far,
whose associated rewards are denoted by r1 ≥ · · · ≥ rK . To sample in ev-
ery direction without distinction, their covariance matrices will be scalar:
Σi = λiI, λi ∈ R+. In order to find an adequate value of λi, we consider the
hypothesis made on Equation 5. If Equation 5 is true, then ∀ci, cj ∈ C, ∃δ >
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Algorithm 2 Sampler algorithm

Input: K number of Gaussians, δ target parameter

1: if first call then
2: Init G with

{(
(−82, 20, · · · ,−82, 20) ,

(
1

dimC

)2
I
)}

3: Init weights W with {1}
4: Init history H with ∅
5: Init tests counter k with 0
6: else
7: Retrieve previously built G, W , H and k
8: Add pairs (conf, rew) transmitted by the optimizer
9: end if

10: Sample a new configuration c from mixture (G, W )
11: Transmit c to the optimizer
12: k ← k + 1
13: if k =

∑
(µi,λiI)∈G λi dimµi then

14: Reset G and W
15: Find K (ci, ri) pairs in H with largest rewards
16: target← δ +maxj rj
17: for i← 0 to K do
18: Add

{(
ci,

(
target−ri
δ dimC

)2
I
)}

to G

19: Add ri to W
20: end for
21: end if
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0, ||ci − cj|| = x =⇒ |r·i − r·j| < xδ. Targeting a new configuration with
a reward of r1 + δ for the next sample, and considering the i-th Gaussian
centered on ci with an average reward of ri, we need to sample a new con-
figuration c so that ||ci − c|| ≥ r1+δ−ri

δ
. One way to sample configurations

which are, on average, away from ci by this distance is to set λi =
(
r1+δ−ri
dimC∗δ

)2
.

Thus, parameterized by K and δ, our sampling strategy defines a mixture
of K Gaussians centered on the K best configurations discovered so far; the

i-th Gaussian being defined by N
(
ci,

(
r1+δ−ri
dimC∗δ

)2
I
)
.

The complexity of Algorithm 2 depends on the number of Gaussian distri-
butions in the mixture K and the number of dimensions D of the WLAN
configurations. Since the agent needs to chose which one of the K Gaus-
sian distributions it will sample in a D-dimensional space, the complexity is
O(K+D). Note that D = 2NA since an AP is configured by two independent
parameters.
Figure 4 illustrates a possible execution of Algorithm 2. For visualization
purposes, we limited the configuration space to only two dimensions, which
correspond to TX PWR and OBSS PD in a case of a WLAN made of a single AP.
In practice, the algorithm is executed in a search space with many more di-
mensions. With the first snapshot, we can note that the mixture is initialized
at the default configuration of 802.11, namely TX PWR = 20 dBm and OBSS PD

= -82 dBm for all APs. With the two next snapshots, we remark that after
a few iterations of Algorithm 2, the mixture has moved in the configuration
space, sampling promising configurations along its way. Eventually, in the
last snapshot, we can see that the whole sampling density is concentrated
in the rectangle [−80,−75]× [4, 8], where sampled configurations reach large
reward values.

5. Numerical results

5.1. Experimental settings

To evaluate the efficiency of our solution at improving the spatial reuse of a
WLAN, we implemented it in the realistic discrete-event simulator ns-3 [32]
and explored its performance against those of other existing strategies. The
ns-3 code implementing our solution, the other strategies, as well as the
considered topologies are available for download at [33].
In addition to our solution described in Section 4 and denoted by OURS in
the following, we consider four other strategies that we also implemented
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Figure 4: Four snapshots illustrating a simple execution of the sampler, with the sampling
distribution density shown in colors. The frontier between authorized configurations (i.e.
satisfying Equation 1) and unauthorized configurations is shown with a red-dashed line.
The region above this line is unauthorized by the IEEE 802.11ax amendment.

in the simulator ns-3. First, we include the legacy default configuration of
802.11, which configures each AP with a sensibility threshold (OBSS PD) of
-82 dBm and a transmission power (TX PWR) of 20 dBm. We use DEFAULT to
refer to this strategy. Then, we consider the classical ϵ-greedy strategy [34],
which, at each step, either tests a random configuration with probability ϵ, or
chooses the best configuration so far with probability 1− ϵ. In the remainder
of this section, we use ϵ-GREEDY to denote this simple strategy and we use
ϵ = 0.1. Next, we implement a solution based on Thompson Sampling but
using the priors proposed by [18]. We use TS to refer to this solution. Note
that the authors of [18] proposed the use of TS in a different technological
context than ours (distributed version) nullifying any comparison beyond our
context. Eventually, the fourth strategy is a modified version of TS wherein
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the sampler is replaced with ours based on Gaussian Mixture (Section 4.3).
We refer to this last strategy as GM-TS. Recall that ϵ-GREEDY and TS strate-
gies are using uniform sampling to discover new configurations. Therefore,
comparing TS and GM-TS allows us to quantify the benefits brought by our
sampling algorithm while comparing GM-TS and our solution (including our
sampler and our optimizer and denoted by OURS) highlights the benefits of
our optimizer. Table 1 indicates the parameter values used for all the con-
sidered strategies.
In each of our experiments, the simulation runs last for a total of 120 seconds
of simulated time. For the sake of accuracy, each simulation was replicated
with 25 independent repetitions. The duration of a test, corresponding to
the length of a trial for our solution, was set to 50 msec. Therefore, 2,400
optimization steps can be performed before the simulation ends. Because we
replicate 25 times each simulation, we obtain a matrix of 25x2,400 measures
for each network performance metric. In order to provide a clear visualiza-
tion of this large set of data, we chose to plot the median of the metric at
each optimization step, framed by its first and third quartiles. Finally, we
applied an exponential moving average (EMA) with a parameter of 0.04 to
the three considered quartiles, so we can notice the trends caused by the opti-
mization. This kind of visualization gives us an insight not only into the final
performance of each strategy but also on its performance during the whole
optimization process. The remainder of the ns-3 simulation parameters is
given by Table 2. For the sake of comparison, all strategies are evaluated
using the same simulation parameters as well as the same reward function.

Table 2: ns-3 parameters.

Parameter Value
ns-3 version 3.31
Number of repetitions 25
Simulation duration 120 s
Test duration 50 ms
Packet size 1,464 Bytes
Frequency band 5 GHz
A-MDPU Aggregation 4
Path loss LogDistancePropagationLossModel
MCS Control VhtMcs0
MCS Data VhtMcs4

We present three examples out of the many we investigated corresponding to
the network topologies T1, T2 and T3 depicted in Figure 5. Each of them
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may correspond to a typical dense WLAN deployment. Topologies T1 and
T2 are both composed of 6 APs, each being associated with two or three
STAs. As for the topology T3, it is composed of 10 APs and 25 STAs. T3 is
particularly dense with an average of 5.6 conflicts per AP (when configured
with the default setting of TX PWR and OBSS/PD), and will allow us to test
our solution on a larger, denser WLAN deployment. Note that the number
of APs here refers to APs belonging to the same WLAN and set on the same
radio channel. Given the number of independent channels (3 in 2.4GHz and
23 in 5GHz in many countries), topologies like T1, T2 and T3 could actually
correspond to WLANs comprising dozens of APs.

Figure 5: The three topologies T1, T2 and T3 used in the evaluation of our proposed
method. The APs are shown with red circles while the conflicts between APs can be seen
with black two-headed arrows. The STAs are represented with blue circles.

5.2. Simulation results
We start our performance analysis by studying the evolution of the number
of starving STAs with each strategy. Recall that starving STAs represent
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a major issue for WLANs and an efficient WLAN configuration should be
able to remove as many starving STAs as possible. Figure 6 shows the cor-
responding results delivered by the simulator ns-3. We notice that with
DEFAULT (i.e. with the default setting of TX PWR and OBSS/PD), the number
of STAs in starvation is in average at 8 for T1, 7 for T2 and 15 for T3. All
the other strategies manage to rapidly reduce the number of starving STAs
across the three examples except for TS that consistently obtains worse values
than DEFAULT. The results also show that GM-TS significantly outperforms TS
suggesting the importance of the sampling process in the overall optimiza-
tion. Finally, Figure 6 indicates that our solution, denoted by OURS, leads to
the removal of a proportion of starving STAs, which goes up to 40% when
compared to DEFAULT on T3.

Figure 6: Evolution of the number of STAs starving of throughput for the five considered
strategies on T1, T2 and T3.

To further illustrate the gain that a better setting of the TX PWR and OBSS/PD

parameter values can have on the network, we represent in Figure 7 the
throughputs of each STA for both the default configuration of 802.11ax and
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the one found by our solution on T2. Figure 7 shows that all STAs achieve
higher throughputs when using the configuration found by our solution. More
importantly, as pointed by Figure 7, our solution enables most STAs to
operate above the starvation threshold and only 3 of them (STA 4, STA 8 and
STA 9) are occasionally experiencing starvation of throughput. Conversely,
Figure 7 shows that, in the case of the default configuration, most STAs are
at least periodically experiencing starvation of throughput. Similar results
(not presented in this paper) were obtained for T1 and T3.

Figure 7: Throughputs obtained by STAs under the default 802.11ax configuration (left)
and the configuration found by our solution (right) on T2. Each STA throughput distribu-
tion is shown as a boxplot, with a red horizontal bar designating the starvation threshold:
if the throughput is below this bar, the STA is considered as starving.

We now explore the influence of our solution over the fairness that reflects
how uniformly the throughputs are distributed among the STAs. For that
purpose, we use Jain’s index that tends to be negatively correlated to the
number of STAs in starvation in the network. Figure 8 represents the corre-
sponding results for each topology. We observe that our solution leads to a
quick increase of the fairness during the search by 20 to 40 points when com-
pared to DEFAULT and brings a substantial gain from the fairness associated
with ϵ-GREEDY or TS.
For the sake of completeness, we study the influence of all strategies over
the aggregate throughput, defined as the sum of the STAs throughputs (see
Section 3). Figure 9 reports the corresponding results. We observe that
out of the 5 considered strategies, ϵ-GREEDY is the one that leads to the
largest improvement in terms of aggregate throughput. ϵ-GREEDY performs
respectively around 14% and 16% better than our method on the topologies
T2 and T3 while attaining similar values for T1. However, keep in mind
that maximizing the aggregate throughput is only a secondary objective in
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Figure 8: Evolution of fairness between the STAs throughputs for the five considered
strategies on T1, T2 and T3.

a WLAN and that it is often done at the expense of fairness and the number
of starving STAs (see Figures 6 and 8). Figure 9 shows that for topology
T1 our proposed solution maintains the aggregate throughput near its value
obtained with the default setting of TX PWR and OBSS/PD. For topologies
T2 and T3, our solution was able to significantly increase the aggregate
throughput when compared to DEFAULT. Overall, these results indicate that
there is no downside for the aggregate throughput to the significant benefits
brought by our solution.
We use Figure 10 to visualize how each strategy performed, in the sense of
our reward function, at each optimization step. First, as expected, the value
of the reward is negatively correlated with the number of starving STAs
depicted in Figure 6. This results from the prominent role of the number of
starvations in our definition of the reward (see Equation 3). We also observe
that collecting a higher reward generally results in higher levels of fairness
and aggregate throughput (see Figures 8 and 9). Figure 10 also shows that on
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Figure 9: Evolution of the aggregate throughput for the five considered strategies on T1,
T2 and T3.

every topology and for a large majority of optimization steps, our proposed
solution is the one that achieves the best reward value among the considered
strategies. Note that this is always the case at the last optimization step.
Lastly, we assess the performance of our solution with regards to the stan-
dard measure of quality in MAB problems, namely the cumulative regret,
which represents the sum of differences between the maximum reward and
the reward obtained at each trial (as defined by Equation 4). Unlike the
reward, which gives information about the performance of a strategy at a
given time step, the cumulative regret is a measure of quality on the whole
simulation. Figure 11 represents the cumulative regret obtained by each of
the five strategies across the three topologies. This figure clearly shows that
our solution is the one that provides the lowest cumulative regret on each
topology during the whole optimization process. Furthermore, comparing
the strategies TS and GM-TS shows the positive influence that the sampler
can have while the comparison between the results of GM-TS and our solu-
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Figure 10: Evolution of the reward obtained by the five considered strategies on T1, T2
and T3.

tion points out the importance of the optimizer and of the priors in use in a
Thompson Sampling approach.
Within 2,400 iterations, representing 120 seconds of simulated time and a
very limited exploration in large state spaces, our solution was always able
to significantly reduce the number of starving STAs and to increase fairness
between the throughputs of STAs without decreasing the aggregate through-
put of the WLAN. Note that better results may be achieved with longer
simulations. Those improvements are obtained in less than 900 iterations
representing 45 seconds for the smaller topologies T1 and T2. Overall, our
solution consistently brings a significant improvement on every performance
metrics when compared to the legacy default configuration of 802.11. It is
able to remove 14%, 63% and 73% of the conflicts occurring with the de-
fault configuration in topologies T1, T2 and T3 respectively. We believe
that these results demonstrate the capacity of a tailored MAB solution at
improving the spatial reuse of radio channels in WLANs.
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Figure 11: Evolution of the cumulative regrets for the five considered strategies on T1,
T2 and T3.

5.3. Robustness of the solution

5.3.1. Handling workload fluctuations in the WLAN

In the previous section, we showed that our solution was able to increase the
spatial reuse of WLANs by finding an appropriate configuration of TX PWR

and OBSS PD when WLANs are facing a high but constant workload. How-
ever, the workload within a WLAN may undergo variations with some STAs
demanding more or less traffic to be exchanged. Thus, a good configuration
of TX PWR and OBSS PDmust be robust to these potential workload variations,
by consistently bringing positive improvements to key performance metrics,
when compared to the default configuration of 802.11.
To study the robustness of our solution, we considerT3, our densest topology,
and we let its STAs run two different applications with different throughputs:
(i) an application requiring as much throughput as the STA can get and (ii)
an application requiring 1% of the attainable throughput of the STA. In
this section, we designate STAs running application of type (i) as “active”
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STAs. By controlling the proportion p of active STAs, we let the workload
of the WLAN vary. In order to evaluate the robustness of a strategy, we
proceed as follows. First, we deploy the considered strategy on the WLAN
with p = 2

3
for a first run of 90 seconds. At the end of this run, we obtain

the configuration x∗ recommended by the strategy. Recall that x∗ refers to
a set of values for TX PWR and OBSS/PD at each AP. Then, we study the
performance of x∗ under different levels of workload: We configure the APs
according to x∗ and we run simulations on four different scenarios: p = 0,
1
3
, 2

3
and 1. Each of these simulations lasts 30 seconds so that the WLAN

configured with x∗ can converge to a stable state. At the end of each 30
seconds simulation, the reward, the fairness, and the aggregate throughput
of the WLAN are collected.
We study the robustness of three different strategies: (i) DEFAULT, the legacy
default configuration of 802.11: (TX PWR, OBSS PD) = (20 dBm, -82 dBm)
for each AP, (ii) TS, the solution proposed by [18] described in the previous
section and (iii) OURS, the strategy described in this work.
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The confidence intervals on these metrics are shown in Table 3. Each con-
fidence interval has the form a +/- b, with a the center of the interval and
b its radius. For each metric and each scenario, the confidence interval with
the best center is shown with bold text.
With Table 3, we can see how a configuration obtained with p = 2

3
behaves

with different workloads. For the lowest workload considered (p = 0), the
best configuration is the default configuration of 802.11, with a reward near
its maximal value. The configuration recommended by OURS is barely infe-
rior with relative differences of -1.0%, -1.1% and -0.4% for the reward, the
fairness and the aggregate throughput, respectively. The configuration rec-
ommended by TS also behaves properly, although the relative differences with
the DEFAULT are higher. With p = 1

3
, our solution provides better values for

each performance metrics considered, although the workload is lower than
the one used for the learning of the recommended configuration. When com-
pared to DEFAULT, the reward, the fairness and the aggregate throughput are
greater by 14.8%, 3.8% and 27.4%, respectively. Although the gap between
DEFAULT and TS is reduced, the former still performs better than the latter
for this workload, except on the aggregate throughput. For p = 2

3
, we observe

the same dynamics: the relative difference between OURS and DEFAULT keeps
increasing and TS seems equivalent to DEFAULT in regards to the reward and
the fairness, except on the aggregate throughput where TS is better. Even-
tually, even with a higher workload than the one used for the learning of
the recommended configuration (p = 1), our proposed solution consistently
performs better than DEFAULT with relative differences of +72.0%, +56.3%
and +74.3% for the reward, the fairness and the aggregate throughput, re-
spectively. The configuration recommended by TS outperforms DEFAULT and
provides the best aggregate throughput for this scenario. However, its reward
is still significantly lower than the one obtained by OURS.
Based on these numerical results, we observe that the configuration recom-
mended by our proposed solution ensures efficient performance metrics even
when the WLAN’s workload is moved to higher or lower levels than the one
used during the learning phase. Overall, OURS is found to be more robust
than the state-of-the-art solution TS and significantly better than the de-
fault configuration DEFAULT. Once again, we can see that, except for the case
p = 1, having the best reward means having the best values on the other per-
formance metrics. This suggests that our reward function is a good quality
criterion. As a side note, and not surprisingly, we observe through Table 3
that, in general, the higher the workload, the lower the performance met-
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Figure 12: Cumulative regret at the end of the simulation for the five considered strategies
on T1, T2 and T3.

rics. Therefore, we recommend to perform the learning phase under levels of
workload as high as possible for the studied WLAN.

5.3.2. Influence of the starvation threshold parameter, α

Eventually, we study the impact of α, the starvation threshold parameter,
on the considered strategies. Recall that the value of this parameter reflects
the level of requirements on STAs’ performance and is decided by the net-
work administrator. In Figure 12, we show the confidence intervals for the
cumulative regret at the end of a 120 seconds lasting simulation on the three
considered topologies (T1, T2 and T3) for multiple credible values of α.
Since the starvation threshold of any STA is proportional to α, the larger α,
the more likely STAs are considered in a starvation situation, and ultimately,
the more difficult it is for the optimizer to collect large rewards. This explains
why the cumulative regret tends to increase for larger values of α as shown
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by Figure 12. Overall, we observe that for all the considered topologies and
values of α, our proposed solution is the most successful at minimizing the
cumulative regret. This suggests that the superiority of our proposed solution
is robust to changes in the starvation threshold parameter.

6. Conclusions

We have presented a new solution to improve the spatial radio reuse of
802.11ax-based WLANs by configuring two parameters at each AP, namely
their transmission power and their sensitivity threshold. More precisely, we
introduced a reward function specifically tailored to our purpose that quanti-
fies the quality of a WLAN configuration. To help the exploration process at
discovering promising configurations, we present a new way of sampling the
state space that differs from uniform sampling, and of decoupling the search
for the best configuration among those discovered so far and the discovery
of new promising configurations. The obtained results on ns-3 demonstrate
the large potential benefit brought by adapting the transmission power and
sensitivity threshold of APs, as well as the ability of our solution to find
an adequate configuration. Additionally, we showed that the configuration
found by our solution is also robust to workloads variation and consistently
brings positive improvements in terms of spatial reuse when compared to the
default configuration of 802.11.
A natural follow-up to our work is to implement our solution in a WLAN
to test our solution in a real-world environment. Other future works include
the extension of our approach to a distributed context making it applicable
to WLANs that do not include a network controller.
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