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Abstract. Current computer systems and communication networks tend to be 
highly complex, and they typically hide their internal structure from their users. 
Thus, for selected aspects of capacity planning, overload control and related 
applications, it is useful to have a method allowing one to find good and rela-
tively simple approximations for the observed system behavior. This paper in-
vestigates one such approach where we attempt to represent the latter by ade-
quately selecting the parameters of a set of queueing models. We identify a 
limited number of queueing models that we use as Building Blocks in our pro-
cedure. The selected Building Blocks allow us to accurately approximate the 
measured behavior of a range of different systems. We propose an approach for 
selecting and combining suitable Building Blocks, as well as for their calibra-
tion. We are able to successfully validate our methodology for a number of case 
studies. Finally, we discuss the potential and the limitations of the proposed ap-
proach. 
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1 Introduction 

1.1 Motivations 

Analytic performance modeling of computer and communication systems has numer-
ous applications throughout the life-cycle of such systems, from their design phase to 
the actual configuration, tuning and capacity planning [11]. A commonly used 
method, which we refer to as the constructive approach, is to attempt to reproduce in 
the mathematical model essential aspects of the system structure and operation. This 
constructive approach has its limits. First, important aspects of large and heterogene-
ous computer or communication systems, such as modern I/O controllers, or Internet 



Service Provider networks, may be largely unknown. Second, extensive knowledge 
and expertise that may simply not be available may be necessary to correctly identify 
key system components and features lest the resulting models become unrealistic or 
intractable in their complexity. These difficulties motivate in part our approach. 

In our high-level modeling, we don’t necessarily seek to “mimic” the structure of 
the system under study. Rather, we focus on the observable behavior of the system as 
given by measurements, and attempt to infer a possible high-level model structure ca-
pable of adequately reproducing the observed system. In doing so, we forego the de-
tailed representation of the system in favor of the possibility that a relatively simple 
model, not necessarily related to the apparent structure of the system, might be able to 
capture the behavior of the system under consideration (e.g. certain priority systems, 
cf. Section 2.3). An obvious justification for our approach is that, even in a complex 
system, it is possible that a small number of components, or a single component, may 
be the critical bottleneck, effectively driving the system behavior. This idea is by no 
means novel, and has been frequently employed in the past, e.g. in the case of an In-
ternet path [20, 2], disk arrays [22], time-sharing system [21] and a Web server [7]. 

Our approach has several objectives. First, it may help discover properties of the 
system not immediately apparent from the system structure. This may include both 
the fact that the system performance can be represented by a simple model, or, on the 
contrary, that no simple model (among the ones examined) will be able to adequately 
represent the system. As such, our approach can be viewed as helpful for and com-
plementary to constructive system modeling. Second, our approach may provide the 
performance analyst with a ready-to-use model to generate reliable predictions for 
system performance at other workload levels, without the expense and the effort of 
obtaining additional measurements. Finally, for a subsystem embedded in a larger 
system (with the obvious proviso that measurements be available for the subsystem), 
our approach may be able to provide a model of the subsystem that can then be incor-
porated in the overall system model. This latter application has a clear connection 
with decomposition methods [4]. 

The advantage of the proposed approach is that it requires a priori little information 
about the system. Our contribution is to automate the process of model selection and 
to make it systematic by embedding it into a software tool with an optimization 
method. As a result, the approach requires no special modeling or queueing theory 
expertise from the end user. 

1.2 Structure 

The paper is structured as follows. Section 2 describes the general framework in 
which we cast our approach. We present a subset of the selected models (Building 
Blocks), as well as our general approach to determining the best set of model parame-
ters and grading the goodness of fit for a given Building Block. Section 3 presents a 
few examples of application of our tool. All case studies in our paper use measure-
ment data from real life systems. Finally, Section 4 summarizes the main contribu-
tions of our approach, as well as its limitations, and outlines possible extensions of 
our work. 



2 General framework 

2.1 Terminology 

Systems considered in our study may represent a whole computer or communication 
system, or specific components such as processors, a disk array, an Ethernet network 
or a WLAN, etc. We use the term requests to refer to the individual entities that are 
treated by the system, such as packets or frames in the case of networks, I/O requests 
in the case of storage systems, HTTP requests in the case of web servers, etc. The 
workload (offered load) includes all the requests that are submitted to the system for 
treatment. In our view, the system performance changes in response to the workload, 
and these changes are reflected in the corresponding measurements. More details on 
workloads for networks can be easily found (e.g. [24] and [8]). 

2.2 Measurements of the observed system’s behavior 

Our approach relies on the availability of measurements of specific system perform-
ance parameters. These parameters may include quantities such as the attained 
throughput of requests processed by the system per time unit, as well as measures of 
internal system congestion such as the number of requests inside the system. Typical 
measured performance parameters include throughput, loss probability, average re-
sponse time and queue length, denoted by
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Q mes, respectively. 
This is illustrated in Fig. 1. The throughput 

! 

X 
mes

 represents the average number of 
requests that leave the system per unit time (this quantity may differ from the offered 
workload if the system is subject to losses). 

! 

L 
mes

 gives the probability that an arriving 
request is rejected, i.e., denied entry to the system. 

! 

R 
mes

 defines the average sojourn 
time (waiting for and receiving service) experienced by a request inside the system. 
Finally, 

! 

Q mes represents the average number of requests in the system. Note that, by 
Little’s law [15], 

! 

Q mes = X mesR mes  so that it suffices to measure any two of these three 
quantities. 

 

Fig. 1. Performance parameters. 

In computer networks, typical performance parameters are the throughput at an in-
terface, the time spent by packets inside the network and the packet loss ratio. In disk 
arrays, performance parameters may represent the I/O response time, I/O request 



throughput, device utilization, etc. Crovella and Krishnamurthy [10], as well as Pax-
son [17] give additional useful information regarding network measurements. 

Each measurement point corresponds to a set of performance parameters that have 
been measured at a particular state of the load (e.g. 

! 

(X 
mes
,R 

mes
) ) and may in general 

also include input parameters such as the corresponding offered load. A total of n 
measurement points for the same system constitutes a set of measurements. 

Note that in our high-level modeling approach, the measurement set must include 
measurement points for different load levels.  Hence, methods that consist in fitting a 
model of discrete or continuous distribution to a sample of measurements for a single 
level of system load are clearly unsuitable for our approach [5]. 

2.3 Simple and not so simple models 

As discussed in Section 1, one of the premises of our approach is that a complex sys-
tem may exhibit behavior that can be reproduced by a relatively simple queueing 
model. Consider for example an M/G/1 queue with preemptive-resume priority disci-
pline and three priority levels where level 1 has the highest and level 3 the lowest pri-
ority. We denote by 

! 

"
i
 the rate of arrivals to priority level i, by 

! 

1 µ
i
 the mean and by 

! 

"
i
 the coefficient of variation of the service time for level i. We look at the mean re-

sponse time of the lowest priority level for a number of values of 

! 

"
3
 with the work-

load of higher priority levels kept constant. The well-known solution of the M/G/1 
priority queue (e.g. [1]) gives the performance curve represented in Fig. 2. 

While the analytical formula used to generate this curve is manageable, it may not 
be obvious that the mean response time for the selected priority level is in fact that of 
a simple M/G/1 queue with a different (higher) coefficient of variation as shown in 
Fig. 2. It is interesting to note that, for the parameter values used in this example, a 
simple M/M/1 queue (as proposed in some approximations) cannot adequately repre-
sent the behavior of lower priority levels (cf. [12]). 

Our simple Building Blocks include queues such as the M/M/C, M/M/C/K, M/G/1, 
M/G/1/K [6], as well as the M/G/C approximation [14]. Additionally, we have de-
fined original Building Blocks whose service times are driven by the congestion pa-
rameters of an embedded model. These Building Blocks belong to models with load 
dependent service times, and are not presented in this paper due to lack of space. To 
represent the fact that, in some systems, the response time comprises a fixed overhead 
as an additive load-independent component, we expand our Building Blocks to in-
clude a fixed “offset” value. Note that this offset does not affect the congestion at the 
server, and the response time in our Building Blocks is simply the sum of the offset 
value and the response time at the server. This quantity can be viewed as an irreduci-
ble and load independent additive overhead in the response time. This constant offset 
value is denoted by 

! 

Off  in figures and formulas. 



 
Fig. 2. Behavior of the lowest priority class in an M/G/1 priority system with 

! 

µ1 = 0.1,"1 = 2 , 

! 

µ2 = 0.5,"2 = 2  and 

! 

µ3 = 1,"3 = 2  with higher classes workload kept constant. 

In the example shown in Fig. 2, to find an M/G/1 block that matches the behavior 
of a lower priority level in an M/G/1 priority queue, we need to determine the appro-
priate values for the first moment of the service time, its coefficient of variation, as 
well as the additional offset value. These three quantities are the parameters of this 
particular Building Block. We note that, in our approach we are unable to derive the 
values of its parameters directly from the underlying model, as would be the case in 
constructive modeling. This limits the predictive power of our approach. However, 
the fact that an M/G/1 queue (in this example) is a good fit, and the M/M/1 is not, 
may be valuable in the search of a simple constructive model. Interestingly, several 
authors [21, 20] have contemplated the use of the M/G/1 queue to model general 
queueing networks. 

2.4 Error criterion 

We need a way to measure the goodness of fit of a given model versus the measure-
ment set. This is the role of the error criterion, referred to as 

! 

" . The goal of the func-
tion 

! 

"  is to provide a convenient way to compare fairly various models. There are 
many reasonable ways to define such a function. In our implementation, we have se-
lected the sum of the deviations between mean sojourn time obtained from measure-
ments and the one obtained from the model for values of throughput equal to the 
measured throughput as illustrated by the Fig. 3. We use the subscript 

! 

th  to denote 
values obtained from a model. Thus, let 

! 

R 
mes,i ,i = 1,...,n  be the measured mean re-

sponse time values, and 

! 

R 
th,i ,i = 1,...,n , the corresponding mean response times ob-

tained from a model. 

! 

"  can be formally expressed as: 
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" = R 
th,i # R 

mes,i

i=1

n

$  (1) 

It is worthwhile noting that using a different definition for the function 

! 

"  may af-
fect the results of our approach. In particular, the selected definition, while simple to 
implement, may introduce an undue bias for points near system saturation where a 
small visual distance between two curves may result in a very large error value (see 
Fig. 3). Some adjustments to the definition of 

! 

"  are possible. As an example, one can 
take into account absolute and relative components for deviations. 

 
Fig. 3. Error criterion. 

2.5 Search for an adequate model among the Building Blocks 

Our high-level approach uses a set of generic models - the Building Blocks - that we 
attempt to automatically calibrate. By calibration of a Building Block we mean the 
search for a set of values of model parameters that minimizes the error criterion 

! 

" . In 
general, this leads to a non-linear numerical regression problem. Such a search must 
be efficient since it is repeated for each Building Block. Clearly, because of its inher-
ent exponential complexity, we must exclude exhaustive search of the parameter 
space. Liu et. al. [16] propose an efficient and robust solution method based on a 
quadratic programming. Unfortunately, their method does not appear usable for our 
application since it is specifically tailored to open Kelly-type queueing networks [13], 
and it appears restricted to end-to-end delays and server utilization. We avoid as well 
algorithms based on derivatives of 

! 

" . In most cases, computing the derivative of 

! 

" , if 
at all possible, is time consuming and it is specific to each Building Block making the 
inclusion of new blocks difficult. 

We cast the calibration of a Building Block as a numeric optimization problem, 
and we choose to employ an iterative descent technique in order to find a minimum of 
the error function. Our tool is based on Derivative Free Optimization (DFO) methods 
[18] and [9]. These methods have the advantage that no derivatives are invoked or es-
timated. They are not specific to a particular Building Block, so that the introduction 



of a new Building Block is an easy task. In our specific implementation, we use a lo-
cal quadratic approximation, which implies a low computational cost while speeding 
up the convergence. A drawback of DFO methods is that they require that all parame-
ters be continuous. To treat all Building Block parameters as continuous, we define 
intermediate models in which discrete parameters are replaced by their corresponding 
continuous extensions. These intermediate models coincide with “standard” models 
when their extension parameters have integer values. 

We note in passing that for a given Building Block and a set of measurements, cer-
tain bounds on the values of the Building Block (such as related to the stability of an 
open queue) must be taken into account in the search procedure. 

The results of our experiments indicate that the proposed search method tends to be 
robust and very fast for Building Blocks with a limited number of parameters (say, up 
to 5 or 6). With a larger number of parameters, the complexity of the method leads to 
excessive search times. There exist several other DFO methods, some of which might 
outperform the one we use. 

In our search for an adequate model, we start by the simplest Building Blocks (in 
terms of the number of parameters and their computational complexity) and move on 
to more complex ones only if no good calibration has been found for a simpler model. 

2.6 Requirements for the methodology 

Measurements represent a key component for our approach. To be of use, the sets of 
measurements must satisfy certain common sense conditions. 

First, the different measurement points from a particular set must come from the 
same system, and correspond to varying load levels. As a result, it makes sense to re-
quire that key parameters of the system stay identical for every measurement point or 
vary in a “non-random” way as a function of the workload. 

Second, in our view, the system resources can be shared by two types of traffic: the 
one directly captured in the available measurements (captured traffic) and the uncap-
tured or background traffic. In a large computer network, a significant part of the traf-
fic may be processed without being directly captured by measurements. Since the 
background traffic competes for shared system resources, the common sense condi-
tion discussed above requires that the background traffic be either negligible, con-
stant, or in a clear relationship to the captured (measured) traffic for all measurement 
points. 

Third, the available measurement data must adequately capture the salient features 
of system behavior in the range of interest. Clearly, for instance, if the system re-
sponse exhibits an inflection point and this inflection point is not present in the meas-
urement data, there is little chance that the model proposed by our approach will cor-
rectly reproduce such a behavior. 



3 Case Studies 

3.1 Preliminaries 

The proposed approach aims at finding a model, referred to as the laureate model, 
whose performance parameters match as closely as possible those known from system 
measurements (in terms of the error function described in Section 2.4). As discussed 
before, the laureate model is chosen from a set of pre-defined more or less simple 
Building Blocks. 

In addition to simply matching the data points in the measurement set, we would 
want the laureate model to be able to correctly predict the performance of the system 
within some reasonable domain. Therefore, in the case studies that follow we deliber-
ately remove one or more data points from the measurement sets. Having found the 
laureate model for a given data set, we then test the ability of this model to predict the 
system performance at the removed data points.  

The data sets used in this paper have been measured in operational real-life sys-
tems such as wireless and Ethernet networks. 

3.2 Broadband Wireless Network 

We start by considering the high-speed wireless network for which Quintero et al. 
give in [19] a set of performance measurements. The measurement points, shown in 
Fig. 4, relate packet throughput to queueing delays experienced by packets in high 
load scenarios. As mentioned before, we remove some number of measurement points 
from the measurement set during the search for the laureate model. It is apparent from 
the shape of the delay time curve in Fig. 4 that, in this case, the point for the highest 
load level is likely to be most difficult to reproduce accurately. We elect to remove 
precisely this point from the measurement set in order to test the predictive capabili-
ties of the laureate model. 

Fig. 4 shows that a simple M/G/1 queue with adequate parameters determined by 
our approach, viz. 

! 

µ = 20.03, 

! 

" = 5.5 and 

! 

Off = 0.44 , closely approximates the ob-
served performance for this system. We have also represented in Fig. 4 the results of 
the “best” (in terms of smallest error) M/M/C and M/M/C/K queues (these two curves 
are so close that they are difficult to tell apart). We notice that neither of these two 
queueing models is able to correctly reproduce the measured system behavior. The 
laureate M/G/1 model provides also a reasonable prediction for the removed point. 
When comparing the expected sojourn times for the throughput level of the removed 
point, we observe a relative error of 15%, while a comparison of expected through-
puts at the same mean sojourn time for the removed point yields a relative difference 
of less than 1%. Given the steep slope of the performance curve in the vicinity of the 
removed point, we view the attained accuracy as more than reasonable. Not surpris-
ingly, we note that the performance predictions of the M/M/C and M/M/C/K Building 
Blocks are poor. If we remove other, randomly selected points, and repeat the calibra-
tion procedure, we find that the laureate M/G/1 model yields predictions whose rela-
tive errors are all below 5%. 



 
Fig. 4. Broadband Wireless Network. 

It may be of interest in building a constructive model of the average performance 
parameters for the wireless network considered that neither the M/M/1 (M/M/C) nor 
the M/M/1/K (M/M/C/K) models appear adequate. Our results show that even with 
the best possible combination of parameters these two Building Blocks fall short from 
matching the observed performance. 

3.3 Ethernet Network 

In this example, we consider the Ethernet network with a nominal rated capacity of 10 
Mbps described and measured by Wang and Keshav [23]. The performance of this 
network has been measured for three packet sizes: 64, 512 and 1500 bytes. Thus we 
have three measurement sets, one per packet length. The data points in each set give 
the expected sojourn time and the corresponding average packet throughput in the 
network. 

As could be expected, the behavior of the Ethernet network considered depends on 
the packet size. Since the service time of a packet in this network (such as in many 
other communication and computer systems) includes a fixed incompressible over-
head, using shorter packets reduces the transfer time of a packet but also the achiev-
able network throughput. This tradeoff between minimizing delay versus maximizing 
network throughput has been extensively studied. 

Fig. 5 illustrates the results obtained for this Ethernet network with 64, 512 and 
1500 byte blocks. Note that the throughput in Fig. 5 is expressed in requests per time 
unit and not in bits or bytes per time unit. 

To represent the effect of the size of packets on the network behavior, we assume 
that the intrinsic service time in our Building Blocks  

! 

1 µ  can be expressed as 

! 

1 µ = S
0

+U capa  (2) 



where 

! 

U  is the length of a packet in bits (units of work considered), 

! 

S
0
 is the 

fixed overhead expressed as a time, and 

! 

capa  denotes the treatment capacity of the 
server in terms of units of work per time unit. A similar representation of the service 
time may be of interest in other applications such as I/O subsystems, virtual memory, 
file systems, etc. In our case, two parameters, 

! 

S
0
 and 

! 

capa , are required to define the 
service-time for a given packet size. Clearly, the use of a formula like (2) implies 
some knowledge of the system and a bit of constructive modeling. 

This case study has two objectives. First, we show that a simple model can ade-
quately represent the performance of this Ethernet system. Second, we show that, if 
we use only two of the three measurement sets, our laureate model is able to correctly 
predict the performance of this network for the third packet size, not used to calibrate 
the laureate model. 

As shown in Fig. 5, the first objective is fully achieved. We observe that a simple 
M/G/1 with (

! 

capa = 9.7"10
+6 , 

! 

S
0

= 1.4 "10
#4  and 

! 

" = 6.0#10$1) is well suited to 
reproduce the measured system behavior for different throughputs and packet sizes. 
As before, we tested the predictive capability of the laureate model by randomly re-
moving some number of measurement points from the search and calibration process. 
These results are not presented for the sake of clearness, but the laureate M/G/1 
yielded accurate predictions for the removed data points.  

 
Fig. 5.  Ethernet Network. 



 
Fig. 6.  Ethernet network – only sets for 64 and 512 bytes packets are used for calibration. 

To illustrate our second objective, we remove one of the data sets (corresponding 
to one of the packet sizes) from the model search and calibration procedure. As an ex-
ample, we remove the measurement set for 1500 byte packets, and we search for the 
“best” model. We find the same laureate as before, viz. an M/G/1 queue with 
(

! 

capa = 9.7"10
+6 , 

! 

S
0

= 1.4 "10
#4  and 

! 

" = 5.3#10$1). Therefore, it is not surprising 
that the laureate model correctly predicts the performance of the network for the 
“missing” packet size of 64 bytes. This is illustrated in Fig. 6. Similar experiments 
where we remove the measurement set for 512 and 1500 bytes, respectively, yield the 
same result (not presented to be more concise). 

It is important to note that, in general, the execution times for our approach are 
quite short. Thus, (to the extent that the network can be adequately represented as one 
of the Building Blocks, and we have measurement sets for two different packet sizes), 
the laureate model provides a convenient way to approximately determine the optimal 
packet size in a specific application. 

Clearly, in some systems, the real dependence of the service time on the request 
size may be more complex than the one given in formula (2). The results presented 
here, suggest that, at least for this type of system, formula (2) is adequate. 

4 Conclusions 

We have presented a high-level modeling approach based on measurement data. Un-
like in constructive modeling, we don’t seek to represent “explicitly” the structure of 
the system being studied. We focus on the measurement results, and attempt to dis-
cover a more or less elementary model that might correctly reproduce the observed 
behavior. We identify a few obvious classical queueing models as possible Building 
Blocks for our approach. Using several sets of measurements from real computer and 



communication systems, we have shown that our Building Blocks are not only able to 
reproduce the observed system behavior, but have also some predictive power. 

We embed the search for a best fitting model in an efficient Derivative Free Opti-
mization procedure. The speed and the efficiency of this approach allow us to auto-
mate the search for the best fitting Building Block. Note that, owing to the use of 
DFO methods, our approach is not limited to the particular performance measures 
used in this paper. Other performance measures could be used as long as the Building 
Blocks considered can be solved for the selected performance indices. 

Our main contribution lies in the automation of the search for the laureate model. 
Since the search for a laureate model has been automated, performance analysts with 
a minimal queueing network background can use the resulting tool. It is worthwhile 
noting that, in addition to the laureate model, our tool can produce the next best can-
didate (from another Building Block), which may be of interest in some situations. 

The laureate models obtained from our approach are useful to predict performance 
at workload levels for which measurements may not have been obtained.  Hence, our 
approach may be of help in predicting whether the system considered fulfills or fails 
to fulfill a quality of service requirement.  For instance, based on a projection of the 
growth in workload, the laureate model provides a quick answer whether a given al-
lowed threshold-value for the average response time will be satisfied or not by the 
system. Unlike the “classical” constructive approach (such as a proposed framework 
for e-business applications [3] or disk arrays [22]), our approach reaches this goal 
without investigating the internal behavior of the system. The nature of the best-
fitting Building Block may also be of help for constructive modeling of the system. 
Indeed, it may provide guidance in the search for simple approximations, by indicat-
ing which Building Block may and which ones may not work. 

Our approach has several limitations. Since it is based on measurement data, the 
system considered (or a detailed constructive simulation model of the system) must 
exist, and there must be a sufficient number of measurement points to adequately cap-
ture the behavior of the system. In general, there is no guarantee that our approach 
will find an adequate model, and a failure of the approach does not necessarily imply 
that there is no adequate simple model for the given system. 

As mentioned before, the laureate model determined by our approach may be a 
good starting point for constructive modeling or for a search for a good approxima-
tion. The potential drawback of our approach is that there is in general no clear read-
ily seen relationship between the parameters of the laureate model and the “natural” 
parameters of the corresponding constructive model. This limits also the predictive 
application of the laureate model in that it is not typically clear how the parameters of 
the laureate should be modified to reflect a change in the characteristics of the system 
being modeled. However, we believe that, packaged as a ready-to-use tool, our ap-
proach can be of significant value both to the performance analyst in capacity plan-
ning situation, and to the performance modeler in general. 

Acknowledgments. We would like to thank Safia Kedad and Francis Sourd from 
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method we implemented in our automatic model calibration tool.  
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