Data center disaggregation:
when and how much?

Thomas Begin
Université Claude Bernard Lyon 1,
ENS de Lyon, Inria, CNRS
Lyon, France
thomas.begin @univ-lyonl.fr

Abstract—Disaggregation has been proposed by both the
industry and academia as an approach to reduce resource
fragmentation in cloud data centers. With disaggregation the
entire rack is viewed as a single machine in which all resources
are remotely accessible from anywhere in the rack. Because a
large number of resources may be used remotely, the average
access time to resources tends to be elongated compared to a
non-disaggregated rack organization. This elongation represents
a technology penalty of disaggregation and impacts application
performance. This paper presents a model to capture basic trade-
offs between virtual machine (VM) lifetime elongation and im-
proved memory mutualization in a rack with disaggregation. Our
results show that disaggregation has the potential to significantly
improve the maximum VM launch throughput provided the
technology penalty remains moderate. Additionally, our model
provides guidance for the number of servers to combine through
disaggregation.

Index Terms—Cloud Computing, Virtualization, Disaggrega-
tion, Data Center Architecture, Analytical Model, Performance
Evaluation

I. INTRODUCTION

The use of cloud computing has skyrocketed over the last
decade, due to its attractive cost model. Virtualization is
the keystone technology making cloud computing possible
through flexible allocation/de-allocation of resources (in the
form of Virtual Machines, “VMSs”) and increased server us-
age. Unfortunately, current virtualization techniques operate
at physical machine granularity, which often leads to resource
fragmentation and underutilization and hence considerable
financial cost for operators. For example, Microsoft estimates
that a 1% reduction in fragmentation within its Azure cloud
platform would result in hundreds of millions of dollars in
savings [1].

Resource fragmentation is mainly due to a combination of
two factors: (1) the multi-dimensionality of server resources
(CPUs, memory, disk, network, etc.) and (2) the diversity of
types of virtual machine instances offered by operators to
cover a large spectrum of customer needs.

Among the approaches that have been proposed to reduce
fragmentation, rack disaggregation [2]-[8] appears to be the
most promising candidate. It consists in enabling PMs of a
same rack to share their hardware resources (CPUs, main
memory, persistent storage, etc.) so that the whole set of
distinct resources in the rack can be treated as if it was one

Alexandre Brandwajn
Jack Baskin School of Engineering
University of California, Santa Cruz
Santa Cruz, USA
alexb@soe.ucsc.edu

Alain Tchana
ENS de Lyon, Inria, CNRS
Université Claude Bernard Lyon 1
Lyon, France
alain.tchana@ens-lyon.fr

single, large resource that can be accessed by different PMs.
Hence, in this model, a data center can be seen as a set of
very large machines (the racks), that can each be dynamically
partitioned into VMs with flexible resource allocations.

Because in a disaggregated rack organization VMs can
access a large number of potentially remote resources, the
average access time to resources such as RAM can be expected
to be longer than in a classical rack without disaggregation.
We refer to this elongation as the technology penalty of disag-
gregation. The extent of this technology penalty is expected to
depend on the specific design and implementation choices for
the disaggregated rack [8]-[10]. In particular, Gao et al. [2]
studied the impact of network latency in a disaggregated rack.

Overall, it appears that disaggregation may not always
improve the general behavior of a data center [11], [12]. In
fact, the technology penalty of disaggregation is symptomized
by the increase of VM lifetime, which subsequently may
prevent a VM launch request because of a lack of memory.
In this paper we propose a high-level model to assess the
potential performance impact of disaggregation and to deter-
mine to what extent it is beneficial. By considering on the
one hand memory as the limiting resource for VM packing
[3], [13] and on the other hand increased memory latency
and VM lifetime in disaggregation as its technology penalty,
our model captures the overall impact of disaggregation using
the number of successful VM launch requests per time unit
as the performance metric. Additionally, our goal is to de-
termine the “right” number of physical machines to combine
through disaggregation. Our high-level model concentrates on
the specific disaggregation trade-offs discussed above. It does
not purport to model a specific cloud system or a specific
implementation. It re-purposes a published model of resource
sharing [14] with an existing analytical solution. We believe
that, for the purposes of our study, it is the right tool compared
to general cloud simulation models requiring a much greater
level of detail [15]-[17].

II. MEMORY UTILIZATION MODEL

We focus our work on memory allocation to VMs at launch
time assuming no memory over-commitment and infinite ca-
pacity for other resources. We consider two rack organization
types: classic, in which each physical machine (PM)’s memory



is private, and disaggregated, in which the memory banks of
all PMs are mutualized and seen as a single memory pool.

We outline a high-level analytical model whose goal is
to capture the salient effects of these two rack organization
choices in order to assess quantitatively the potential for
performance improvement/degradation due to disaggregation.
Figure 1 shows an example of memory utilization with three
classes of VMs. We use the maximum number of VMs that can
be launched (packed, activated) per time unit as the relevant
performance metric.

To account for different workloads, we consider three
classes of VMs with respect to their memory size require-
ments: “small”, “medium” and “large”, denoted by b, b,, and
by, respectively. Additionally, VMs are characterized by their
expected lifetime ¢, (x = s, m, !, according to the VM class).
We study different “mixes” of these VM classes with different
proportions of each class.

We denote by N the number of PMs in the rack, and
we let B; be the amount of memory available on jth PM,
(j =1,...,N) for VM launch requests. Thus, in the disag-
gregated architecture, the VMs share a single memory pool of
size B = Zjvzl B;. With the classic architecture, each PM
and the VMs it hosts are limited to the PM’s private memory.
While disaggregation has the clear benefit of consolidating
the memory of all PMs, it potentially leads to an overhead
due to the utilization of remote memory. This fechnology
penalty of disaggregation is represented in our model by the
increase of the VM lifetime by a given percentage denoted
by a. The expected task execution time with disaggregation
is correspondingly elongated.

Our model represents VM launch requests (initiated by
cloud tenants) as generated by a large set of request sources.
In our model, shown in Figure 2, an arriving request needs
to find enough memory available to be satisfied. In the case
of a disaggregated architecture this is the residual memory
available in the global memory pool. In the case of the
classical architecture, it is the residual memory available at the
individual PM. When enough memory is available to satisfy a
VM launch request, the amount of memory corresponding to
the VM class is held by the VM during its entire lifetime.
Otherwise, the VM launch request is rejected and will be
retried some time later.

Clearly, for a given rack memory, the availability of suffi-
cient memory to launch a new VM of a given size depends on
factors such as the rate of VM launch requests, the lifetime
of VMs and their memory requirements. The proposed model
captures interactions between these factors.

We now briefly describe the probabilistic model used. A
resource of total quantity R is shared by c classes of requests.
Referring to class j, 7 = 1,...,c¢, we denote by r; the
amount of resource required by a single request and by 1/p;
the mean time the request holds the resource. There are
N; sources generating class j requests and the mean time
for a source to generate a new request upon completion or
rejection of a preceding request is denoted by 1/a;. Arriving
requests that don’t find enough resource left are rejected and

the corresponding source will generate a new request after
a mean time of duration 1/a;. The resource holding times
and the times to generate a new request are assumed to be
exponentially distributed. It is worthwhile mentioning that,
in steady state, loss system models tend to be insensitive
to distributions of resource holding times, as well as of
the request generation/inter-arrival times under rather general
conditions [18].

We consider the above model in the steady state and we let
p(ma, ..., m.) be the corresponding probability that there are
my; requests of class j, j = 1,...,c, using the resource. The
state-transition diagram for our model is illustrated in Figure 4.
Customary performance metrics can then be calculated as
follows. The attained throughput for class j can be computed

as
Z p(mq, ...

M yeneyMe

0; = S Te) ML

The offered throughput can be written as

¢j = Z p(ml,...

M1y Me

sme)(Nj —mj)ay.

The probability that a request is rejected for lack of resource
can be expressed as

(5 —0;)0;.

As shown in [14], the model has a simple closed-form so-
lution for the steady-state probabilities p(my, ..., m.), which
enables a fast solution to the model. We study the model
for given attained throughputs, which are used to determine
the rates «; (an implementation of the model is available for
download [19]). We set the numbers of request sources such
that N; >> [R/r;] so that their precise values matter little.
As mentioned before, for simplicity, we limit the number of
classes in our application of the model to three. We map
VM launch requests to arriving requests in the model and
VM lifetime to resource holding times. The total resource
amount corresponds to the available memory size: R = B
or R = B;, depending on the architecture considered. In the
case of a classic architecture, we assume that the sources are
divided evenly across the PMs. We use this model to assess
the respective maximum numbers of VMs per time unit that
can be launched in the two architectures considered under
the condition that an overwhelming majority of VM launch
requests finds enough available memory for the VM to launch
successfully. For the purposes of this study, we take it to be
at least 99% of VM launch requests.

III. RESULTS

We start by configuring our three VM classes as follows:
bs = 2 GB, b,, = 4 GB, b; = 8 GB. We consider the following
three “mixes” of these classes: in mix; 50% of VMs are small,
while medium and large VMs represent each 25%j; in mixs,
medium VMs represent 50% while the other two classes count
for 25% each; in mix3 large VMs represents 50% while small
and medium VMs each account for 25% of the mix. In other
words, small, medium and large VMs dominate in mix;, mixs



s __VMclass1__|
(8)
¢‘® s

VM class 1

' VM class 1

" VM class 1 -

At that time, any VM request (be
it for class 1,2 or 3) is refused

Time

At that time, a VM request for class 1
or 2 (not for class 3) can be accepted

Fig. 1: Example of the utilization of a PM memory with three classes of VMs.

Sources of class 1,
2 and 3

VM activation request is postponed

Total memory

VM class 1

VM ends and its
memory freed

VM class 1
VM class 1

VM class 1

Fig. 2: Memory acquisition model with three classes of VMs.

and mixs, respectively. We chose VM memory requirements
and their distribution in mix; according to [20].

As is the common case [1], we assume that all PMs of
the rack have the same amount of memory B; = 64 GB
for j = 1,...,N. We start by setting the expected lifetime
of a VM in absence of disaggregation equal to 1 time unit
(e.g., 1 hour) for all VM classes, namely t;, = t,,, = t; = 1.
Since disaggregation can be expected to carry a technology
penalty caused by remote memory accesses, we use our model
to study the attainable VM launch throughput with and without
disaggregation for different values of the technology penalty,
varying from o =0% to o =120%. A penalty of around 40%

compared to the classical architecture was suggested in [12].
As mentioned before, attainable VM launch throughput refers
to the expected maximum number of VM launches per time
unit where for VMs of all classes at least 99% of launch
requests find the memory they need. Although the choice
of 99% is arbitrary, studies with other values show similar
qualitative behavior.

Figures 3a, 3b and 3c show the attainable VM launch
throughput per PM for N = 2, 4 and 8 PMs, respectively, as
a function of the technology penalty. In each figure we have
also included the attainable throughput without disaggregation,
labeled “classic”. We observe that the attainable throughput
can be significantly improved through disaggregation (upwards
of 100%, depending on the mix). For a given number of
PMs combined through disaggregation, not unexpectedly, the
amount of improvement depends on the technology penalty. If
the latter is high enough, the disaggregated architecture may
actually perform less well than the classical architecture. The
precise value of the technology penalty for which disaggrega-
tion stops outperforming the classical architecture may vary
with the VM mix and the number of PMs disaggregated but,
for the parameter values considered in our study, appears to be
around a technology penalty of 100-120%. This is illustrated in
Figure 5. Intuitively, in general, one can expect the technology
penalty to increase with the number of PMs combined through
disaggregation due to a larger number of remote resources
shared by a larger number of VMs..

In Figure 6a we show the percent improvement in attainable
throughput for a technology penalty of 40% as a function of
the number of PMs combined through disaggregation. We can
observe a clear pattern of “diminishing returns” at around N=6
PMs. Indeed, doubling the number of PMs from 2 to 4 results
in over twofold increase in the percentage improvement for the
attainable gain, while doubling again from 4 to 8 PMs leads
to a much smaller increase. This trend seems to intensify after
8 PMs. The percent improvement in attainable VM launch
throughput for other values of the technology penalty (for



Attainable Throughput per PM
Attainable Throughput per PM

Classic. 0 20 40 60 80
Technological Penalty, « (%)

(a) With 2 PMs.

100 120 Classic. 0 20 40

Technological Penalty, « (%)

(b) With 4 PMs.

Attainable Throughput per PM

60 80 100 120 Classic. 0 20 40 60 80 100 120

Technological Penalty, « (%)

(c) With 8 PMs.

Fig. 3: Attainable VM launch throughput per PM.

(N — me)oy

Mefe

Fig. 4: Outgoing transitions for state (mg,..
Markov chain.

.,m¢) in the

which there is an improvement in the attainable throughput)
appears to follow a similar pattern.

It is intuitively clear that the improvement in attainable
launch throughput should tend to increase as the memory
size of the VMs increases relative to the memory size of a
single PM. In Figure 6b we show the results obtained for a
memory size mix similar to our mix; but with 3 larger sizes
for the third class of VMs: b;=12, 16 and 20 GB, respectively.
We observe that the percentage improvement in the attainable
throughput can exceed 200% when b;=20 GB. Interestingly,
the diminishing returns appear to follow the same pattern as
for our original value of b;=8 GB.

So far we have assumed that the expected lifetime duration
was the same for VMs of all classes. Figure 6c illustrates
the improvement in attainable VM launch throughput for
VMs whose memory requirement are those of our “mixes”
considered in Figure 6a with different expected VM lifetimes.
Specifically, we assume that ¢,=0.5, ¢,,,=1 and ¢;=2 time units.
In other words, small VMs have shorter lifetimes while large
VMs also persist for the longest time. We observe a behavior
similar to that seen in Figure 6a.

140 T T
120
100
80
60
40

Technological penalty, o (%)

2 4 6 8 10 12
Number of PMs

Mix 2
140 T T

120
100
80
60
40

2 4 6 8 10 12
Number of PMs

Mix 3
140 T T

120
100
80
60
40

Technological penalty, o (%)

Technological penalty, o (%)

2 4 6 8 10 12
Number of PMs

Fig. 5: Technology penalty for which disaggregation stops
outperforming classical architecture.

Overall, these results seem to suggest that the “good”
number of PMs to disaggregate is between 4 and 8, and disag-
gregating a larger number might not be warranted, especially
if the technology penalty increases with the number of PMs
combined through disaggregation.

IV. CONCLUSIONS

Based on the observation that memory tends to be the limit-
ing resource in current cloud systems, we present a high-level
model of VM launch / memory allocation in disaggregated
architecture. The model possesses a simple analytical solution.



g a7 g
= -
E 150 A A 1 § 4 -
100} 1 30 ——
_._Mix1withb‘:17GB —.—MIX1wlthts:0,5,tm:1_t‘:9
50 Y. 5 Mix1withb‘:16GB, 20 - Mix2witht5:0.5,tm=1.t‘=2
‘ Mix 1 with b‘ =20GB ‘ Mix 3 with ts =0.5, ‘m = 1,1‘ =2
10 : ; : : 0 : : 10
2 4 6 8 10 12 2 4 6 10 12 2 4 6 8 10 12
Number of PMs Number of PMs Number of PMs

(a) VM configuration inspired by [20].

(b) VMs of larger memory sizes.

(c) VMs of heterogeneous lifetimes.

Fig. 6: Increase (in %) in attainable PM launch throughput for a technology penalty of 40% as suggested in [12].

We use our model to study the potential improvement in
attainable VM launch throughput that could be expected from
disaggregation. We present the results obtained for several
mixes of VMs with different memory size requirements.

Our results indicate that disaggregation has the potential to
significantly improve the attainable VM launch throughput.
The caveat is that the technology penalty, caused by the
increase of the average memory access time, must remain
moderate (say, no more than about 50%). Clearly, this elon-
gation in average resource access time will translate in at
least a commensurate elongation in the expected end-user task
execution time. The percentage improvement in the attainable
VM launch throughput per PM exhibits a clear pattern of di-
minishing returns so that, for the parameter values considered
in our study, disaggregation of some 4 to 8 PMs seems the
right option. Our results are a potentially important element
of guidance for system architects and cloud operators in the
design and deployment of rack disaggregation. In our future
work, we plan to focus on experimental validation of our
model , which may lead to incorporating other PM resources
in our model.

REFERENCES

[11 O. Hadary, L. Marshall, I. Menache, A. Pan, E. E. Greeff, D. Dion,
S. Dorminey, S. Joshi, Y. Chen, M. Russinovich, and T. Moscibroda,
“Protean: VM allocation service at scale,” in Proc. of USENIX
Symposium on Operating Systems Design and Implementation (OSDI).
USENIX Association, Nov. 2020, pp. 845-861. [Online]. Available:
https://www.usenix.org/conference/osdi20/presentation/hadary

P. X. Gao et al., “Network Requirements for Resource Disaggregation,”
in Proc. of USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

V. Nitu et al., “Welcome to Zombieland: Practical and Energy-Efficient
Memory Disaggregation in a Datacenter,” in Proc. of ACM EuroSys,
2018.

E. Amaro et al., “Can Far Memory Improve Job Throughput?” in Proc.
of ACM EuroSys, 2020.

J. Gu et al., “Efficient Memory Disaggregation with INFINISWAP,” in
Proc. of USENIX NSDI, 2017.

Z. Ruan et al., “AIFM: High-Performance, Application-Integrated Far
Memory,” in Proc. of USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2020.

J. Zhang et al., “GiantVM: A Type-II Hypervisor Implementing Many-
to-One Virtualization,” in Proc. of ACM VEE, 2020.

Y. Shan et al., “LegoOS: A Disseminated, Distributed OS for Hardware
Resource Disaggregation,” in Proc. of USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2018.

[2]

[3]

[4]
[5]
[6]

[9]

[10]

[11]

(12]

[13]

[14]

[15]
[16]
(17]
[18]
[19]

[20]

K. Lim et al., “Disaggregated Memory for Expansion and Sharing in
Blade Servers,” in Proc. of ISCA, 2009.

M. Amaral, J. Polo, D. Carrera, N. Gonzalez, C.-C. Yang, A. Morari,
B. DAmora, A. Youssef, and M. Steinder, “Drmaestro: orchestrating
disaggregated resources on virtualized data-centers,” Journal of cloud
computing, vol. 10, no. 1, pp. 1-20, 2021.

S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and S. Shenker,
“Network support for resource disaggregation in next-generation dat-
acenters,” in Proceedings of the Twelfth ACM Workshop on Hot Topics
in Networks, 2013, pp. 1-7.

P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker, “Network requirements for resource
disaggregation,” in Proc. of USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2016, pp. 249-264.

K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F.
Wenisch, “Disaggregated memory for expansion and sharing in blade
servers,” ACM SIGARCH computer architecture news, vol. 37, no. 3,
pp. 267-278, 2009.

A. Brandwajn and A. K. Sahai, “Aspects of the solution of some
multiclass loss systems,” Performance Evaluation, vol. 17, no. 2, pp.
141-154, 1993.

“CloudSim,” http://www.cloudbus.org/cloudsim/, 2021.

“SimGrid,” 2021. [Online]. Available: https://simgrid.org/

“DiME,” https://github.com/networkedsystemsIITB/DiME/blob/master/README.md,
2021.

J. Kaufman, “Blocking in a shared resource environment,” IEEE Trans-
actions on communications, vol. 29, no. 10, pp. 1474-1481, 1981.
“Matlab implementation - https://github.com/memory-
disaggregation/model, 2021.

E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting work-
loads for improved resource management in large cloud platforms,” in
Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP), 2017, pp. 153-167.



