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Résumé – Nous proposons une procédure d’estimation basée sur MCMC pour calibrer un modèle markovien permettant de reproduire la volati-
lité de la charge dans un système de Vidéo à la Demande. Nous évaluons numériquement les performances de cette procédure d’identification en
termes de biais et de variance et nous comparons ses résultats avec ceux obtenus par une méthode ad-hoc d’identification. Les résultats montrent
la supériorité de la méthode MCMC qui offre ainsi un outil de calibrage efficace et indispensable à l’exploitation du modèle.

Abstract – We propose an MCMC based estimation procedure thought for an existing Markovian model that can reproduce the workload
volatility occurring in real-life VoD systems. We assess the accuracy of the proposed procedure in terms of bias and variance through several nu-
merical experiments, and we compare its outcome with an existing ad-hoc method. Results show that the MCMC procedure clearly outperforms
the other approach, and hence provides an efficient calibration tool which is of utmost importance for the usability of any model.

1 Introduction

In an era of data-intensive applications with pay-as-you-go
execution in a cloud environment, efficient resource manage-
ment has become prime interest for both Cloud Providers and
Cloud Users. The choice of resource deployment can be dyna-
mically tuned, thanks to the Software Defined Networks (SDN),
which enables resource virtualization to meet the Service Level
Agreement (SLA) of individual cloud applications. Of course,
the presence of a time-varying demand hinders the design of
such resource provisioning schemes. Adequate analytical mo-
dels can then be helpful for testing and validating new manage-
ment policies since they can offer a sound approach to capture
and get a better insight into the underlying mechanisms of the
applications.

In this paper we consider a Video on Demand (VoD) system
as a relevant example of a time varying application. Since VoD
has stringent streaming rate requirements, each VoD provider
needs to reserve a sufficient amount of server outgoing band-
width to sustain continuous media delivery.

Also, some videos may become popular very quickly (vi-
ral), and thus yield a flood of user requests (buzz) on the ser-
vers. Gonçalves et al. have proposed a Markovian model to re-
produce such workload volatility [2]. Although the model has
been shown to be theoretically able to correctly reproduce such
dynamicity, it involves 7 parameters and assumes the know-
ledge of unobservable variables (an intermediary process that
is impossible to observe in practice). These latter two points
are major obstacles to calibrate the model according to work-
load traces, and need to be circumvented in an efficient iden-
tification procedure. To this end, we propose a Markov Chain
Monte Carlo (MCMC) based procedure that provides estima-
tion for each of the model parameters.

In Section 2, we provide a brief reminder regarding the Mar-
kovian model. Section 3 describes the MCMC procedure as
applied in our context. Numerical results are discussed in Sec-
tion 4.

2 Brief Model Description
Several works (e.g. [1], [2]) have developped epidemic ins-

pired models to represent the way information spreads among
the viewers (gossip-like phenomenon) in a VoD system. In [2],
VoD users are categorized in three different classes as it is the
case of the classical SIR model (Susceptible - Infectious - Re-
covered). We now provide a short reminder on their model.
Class S refers to the people who are not currently watching
a video. I pertains to the people who are currently watching
a video. Note that I naturally represents the system workload,
and may be expressed as the total bandwidth requested at that
moment. When users complete watching their video, they move
from I to R before ultimately leaving the system. While the evo-
lution of I in time can be easily obtained through server traces,
this does not hold for R (since corresponding users already left
the VoD system). R is said to be an unobservable variable of
the model.

Based on this categorisation, [2] derives a Markovian mo-
del whose state description is the current values of (i, r) where
i = I(t) = i and r = R(t). Figure 1 (left part) depicts the possible
future states and the corresponding transition rates. Arrivals in
class I (corresponding to departures from S ) occur following
a quasi-Poisson process whose rate depends on the actual va-
lue of (i, r) so as to reproduce the gossip effect. The rate of the
Poisson process is expressed as follows : β(i + r) + l, and thus
involves two parameters. β is the rate of information dissemi-
nation carried out by any user in I or R. l corresponds to the



rate of viewers that enter into I, spontaneously. All individuals
stay in class I and then in R during times that are exponen-
tially distributed, after which they leave the system, definitely.
The sojourn time in class I with mean γ−1, corresponds to the
watching time of a video, whereas the mean duration µ−1 in
class R is the period during which, in average, a former viewer
keeps propagating the information. Finally, in order to take into
account the presence of buzz, β can take two possible values.
Its actual value is determined through a simple hidden Markov
chain with two states (as shown on the right side of Figure 1).
The first state corresponds to the “normal” state and β = β1.
The second state represents the buzz regime and β is then in-
creased to β2 � β1. The transitions between the normal and
the buzz states are parameterized by a1 and a2. For more de-
tails about this model, please refer to [2].
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Figure 1 – Possible transitions issuing from the state (i, r) and the
hidden Markov model for β.

3 Model Calibration using MCMC
An MCMC method is an algorithm used to generate samples

from a target distribution of interest. MCMC methods are com-
monly used to estimate parameters of a given model when mis-
sing data needs to be inferred. Typically, the target distributions
coincide with the posterior distributions of the parameters to be
estimated. If I is the observable data and we want to estimate
the model parametersΘ, the posterior distribution ofΘ derives
from the Bayes rule :

p(Θ | I) ∝ p(Θ) · p(I | Θ). (1)

Here, p(Θ) is the pdf of the prior distribution ofΘ and p(I | Θ)
is the likelihood of Θ. As in general, p(Θ) is unknown, a stan-
dard practice [4][6] in MCMC algorithms is to choose adequate
conjugate priors that multiplied with the likelihood yield com-
putationally convenient posterior distributions.

There are several algorithms in MCMC family, the Metro-
polis and the Gibbs algorithms being certainly the most widely
used in practice. A Metropolis algorithm is used when it is dif-
ficult to draw samples ofΘ from the posterior p(Θ | I). It then
replaces the posterior with an instrumental distribution q(Θ)
from which it is easier to draw the samples. To closely match
to the actual posterior distribution, at each step, the new sample
is accepted (otherwise the previous draw is kept) with a proba-
bility given by the Metropolis ratio :

α = min
{

1,
p(Θ(k)|I)

p(Θ(k−1)|I)
·

q(Θ(k−1))
q(Θ(k))

}
. (2)

As for the Gibbs sampler, it is mainly used when the Θ pa-
rameter of the model is multi-dimensional. The Gibbs sam-
pler iteratively and sequentially generates each component ofΘ
from its conditional posterior law, assuming the other compo-
nents are fixed. Whenever these conditional posteriors are hard
to sample, instrumental laws can be used, leading to the so-
called Metropolis within Gibbs sampler. We now apply theses
algorithms to fit our model to a workload trace.

In our case, (I(t), t ∈ [0,T ]) is the only observation we can
access to calibrate the proposed model. From it, we readily
identify the instants {tan }n=1,...n1 and {tpn }n=1...n2 at which indi-
viduals enter and leave the state I, respectively. As the expo-
nential parameter γ of the watching time only depends on the
sojourn time in I, it can then straightforwardly be estimated
with a maximum likelihood procedures and reads [5]

γ̂MLE = n2 · (
∫ T

0 I(t) dt)−1. (3)

In contrast to γ though, all other parameters of the model rely
on the unobserved time series (R(t), t ∈ [0,T ]), or more preci-
sely on the unknown departure instants from state R, that we
note {tsn }n=1,...,n3 . With this incomplete dataset, a maximum li-
kelihood estimate of the form of (3) is precluded to estimate
the propagation parameter µ. Instead we resort to a Metropolis-
Hastings within Gibbs procedure to estimate simultaneously
and iteratively t̂s and µ̂, assuming at each iteration step k, known
values for all the other parameters. This step is described below
in Algorithm 1, which defines the outer loop of our complete
estimation procedure. Now, regarding the current estimates of
the remaining parameters (β̂1, β̂2, l̂, â1, â2) at step k, they also
need to be updated according to the ongoing values of µ̂(k) and
t̂s

(k)
. To do so, we derive another MCMC estimator based on the

posteriors expressed for each of these parameters taken indivi-
dually (and conditioned to all others). This part is instantiated
with Algorithm 2 as a inner loop of Algorithm 1.

3.1 Outer loop : estimation of µ̂ and t̂s

We start deriving the likelihood function of the sought para-
meters Θ = (µ, β1, β2, l, a1, a2) :

p(ta, tp, ts | Θ) ∝
∏n1

j=1[((1 − π)β1 + πβ2)(I(t−a j
) + R(t−a j

)) + l]

×
∏n2

j=1 γ̂MLEI(t−p j
)
∏n3

j=1 µR(t−s j
) ×

e−
∫ T

0 [((1−π)β1+πβ2)(I(t)+R(t))+l+γ̂MLEI(t)+µR(t)]dt (4)

where t− stands for the time just before t and where we set for
convenience π = a1/(a1 + a2), the probability that β = β2. Eq.
(4) plays a central role as it will be directly the target distribu-
tion of ts and, combined with appropriate conjugate priors, it
will yield the posterior of µ.

Given a current set of values for β̂1, β̂2, l̂, â1, â2, we update
the values of µ̂ and t̂s as follows. First, we use a Gamma distri-
bution parameterized by (λµ, νµ) as the prior distribution for µ.
This latter multiplied by the likelihood of Eq. (4), leads to the
posterior distribution of µ̂ :

p(µ̂|ta, tp, t̂s) ∝ Γ
(
λµ + n3 − 1, νµ +

∫ T

0
R̂(t)dt

)
, (5)



from which we draw an updated value for µ̂. Note that the pos-
terior distribution for µ̂ does not depend directly on β̂1, β̂2, l̂, â1, â2.
Second, we update t̂s by modifying randomly one of its com-
ponent. However, the acceptance of this new t̂s is not systematic
and depends on the outcome of the Metropolis ratio of Eq. (2).
Then, considering the updated time series t̂s, we refresh the cur-
rent values of β̂1, β̂2, l̂, â1, â2 applying the inner loop described
in Section 3.2. We iterate these three steps until µ̂ converges to
a stable estimate. Algorithm 1 summarises the details of this
outer loop.

Algorithm 1
Assume n3 ← n2
Set arbitrary initial guess µ̂(0) ← γ̂MLE

Draw ∆ts
(0) = {∆ts1

(0),∆ts2
(0), .....} from exponential distribu-

tion with rate µ̂(0)

t̂s
(0)
← {tp1 + ∆ts1

(0), tp2 + ∆ts2
(0), .....}

repeat for k = 1, 2, ....
– Construct R̂(k) from tp and t̂s

(k−1)

– Estimate β̂1
(k), β̂2

(k), l̂(k), â1
(k) and â2

(k) using Algo-
rithm 2

– Draw µ̂(k) according to the posterior distribution des-
cribed in Eq. (5)

– Generate a new candidate for t̂s
(k)

by modifying the
cth component of t̂s

(k−1)
with a new value uniformly

sampled in [0,T ] ; c ∈ [1, n3]
– Accept the latter candidate as the new current esti-

mate of t̂s according to the following Metropolis ra-
tio : α = min{1, p(t̂s

(k+1)
|Θ̂(k))/p(t̂s

(k)
|Θ̂(k))}

– Otherwise, t̂s
(k)
← t̂s

(k−1)

until acceptable convergence

3.2 Inner loop : estimation of β̂1, β̂2, l̂, â1, â2

We now describe how we can use a Gibbs sampler to esti-
mate β1, β2, l, a1 and a2 based on the current knowledge of R̂
obtained at each step of the outer loop. To begin with, let us re-
mind that the rate of new viewers grows linearly with I(t)+R(t).
More specifically, if we denote by w the times between two
consecutive arrivals, we have :

E(w|I(t) = i,R(t) = r) = (β(i + r) + l)−1 (6)

If β was constant, we could straightforwardly apply a linear
least square regression on the empirical conditional mean of w
to get β̂ and l̂. In our model though, the β parameter alternates
between different values (β1 and β2) which leads us to design a
MCMC procedure to estimate β1, β2, l, a1 and a2 .

Each {wn}n=1...n1 corresponds to either β1 or β2, so we need to
consider the wn’s individually through their distribution :

wn ∼

{
p1(w) : exponential law with rate β1(i + r) + l
p2(w) : exponential law with rate β2(i + r) + l. (7)

We introduce an intermediate variable z = {z1, . . . , zn1 } ∈ (0, 1)n1

whose elements indicate the current state of the system (zn = 0

when β = β1 and zn = 1 when β = β2). With this unobserved
variable, we compute the likelihood p(z,w|β1, β2, l, π) (that we
do not report here). Considering appropriate conjugate priors
for the parameters, namely Normally distributed priors for β1,
β2, l and Beta distributed prior for π, we get from Eq. (1), the
posterior distributions of the parameters. We use a Gibbs sam-
pler to sequentially update the current values of the parameters
that we also use to update ẑ (applying a likelihood ratio test
built on Eq. (7)). After convergence of the Gibbs sampling, â1
and â2 are directly obtained from ẑ. Algorithm 2 summarises
the details of this Gibbs procedure.

Algorithm 2

Set arbitrary initial values of β̂1
(0)
, β̂2

(0)
, l̂(0) and π̂(0)

Consider current knowledge of R̂ from outer loop
repeat for m = 1, 2, ....

– Generate ẑ(m) = {ẑ1
(m), ..... ˆzn1

(m)} where ẑn = 1 if
p1(wn)π

p1(wn)(1−π) ≥ 1 and ẑn = 0 otherwise

– Draw β̂1
(m)
, β̂2

(m)
, l̂(m) and π̂(m) according to their

conditional posterior distributions
until acceptable convergence

4 Results and Discussion
We validate our estimation procedure, detailed in Section 3,

against several synthetic traces corresponding to different sets
of parameters. Due to space constraint we exhibit one set of ex-
perimental result for the parameter values, reported in Table 1.
We conduct 20 independent realizations to produce 20 inde-
pendent traces (each containing 218 events) from these parame-
ters.

Table 1 – Parameter values, used to generate the traces for validating
the calibration procedure

β̂1 β̂2 γ̂ µ̂ l̂ â1 â2
4.7.10−4 3.2.10−3 1.1.10−2 5.0.10−4 10−4 10−7 6.6.10−2

The box plots in Fig. 2 indicate for each estimated parame-
ter (centered and normalized by the corresponding actual va-
lue) the sample median (red line), the inter-quartile range (blue
box height) along with the extreme samples (whiskers) obtai-
ned from traces of 218 points. We also compare the performance
our estimation procedure with the ad-hoc procedure described
in [5].

Since we estimate γ from maximum likelihood method we
do not report it here in our result. Nevertheless we would like to
mention that its estimation is the most accurate, both in terms
of the bias and variance. β1 is also reasonably estimated with
low bias and variance and performs reasonably better than the
estimation of the ad-hoc procedure. Here, the extreme devia-
tions of the estimated values are less than 5% of the true va-
lue. Compared to β̂1, β̂2 behaves less accurately (higher inter-
quartile range being around 10%) and does not show significant
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Figure 2 – Comparison of the relative precision of the MCMC and
the ad-hoc estimators.

improvement over the ad-hoc method, owing to the fact that it
is only based on buzz periods which represent a small fraction
of the entire trace. However, the estimation is still very low
biased. Estimation of µ also improves significantly, with a 5%
inter-quartile range and negligible bias. Finally, estimation of
the transition parameters a1 and a2 also outperform the ad-hoc
procedure and shows less bias and 10% inter-quartile range.
Our experiments with other sets of parameters also show simi-
lar accuracy.

In Fig. 3, we represent the relative estimation error for three
key parameters of our model (i.e. β1, µ and π = a1/(a1+a2)) as a
function of the number of iterations performed by Algorithm 1.
In this example, the length of the trace is of 104 points. We
observe that the convergence of the three parameters is attained
after approximately 2.104 iterations. Note that we discard the
first hundred values for π to ease the readability of the figure.
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Figure 3 – Evolution of relative estimation error versus with the num-
ber of iterations in a semilog plot. The blue curve corresponds to µ̂,
green curve corresponds to β̂1 and the red curve corresponds to π̂.

Finally, we use a real-life VoD trace released by [3] to illus-
trate the ability of our MCMC procedure to correctly calibrate
the VoD Markovian model. We apply our estimation procedure
on this trace, and from the resulting parameterized model, we
generate a synthetic trace. In Fig. 4, we plot both the original
and the synthetic traces. Clearly, Fig. 4 shows that, given an
adequate calibration, the model succeeds to reproduce different
types of buzz with peaks and troughs at many scales similar to
those of the real trace. Note that the means and the standard
deviations of real and synthetic trace differ by less than 10%.

To better illustrate this adequacy, we consider the steady
state distributions of the original trace and of the synthetic trace.
Fig. 5(a) shows that the workload distribution resulting from
these two traces are very alike, which suggests that the synthe-
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Figure 4 – Left plot shows real trace and the right plot shows the cor-
responding synthetic trace. Horizontal axes represent time (in hours)
and vertical axes represent workload (number of active viewers).

tic trace successfully captures the inherent volatility of the ori-
ginal one. Furthermore, we compare the auto-correlation func-
tion exhibited by both traces in Fig. 5. Remind that the auto-
correlation measures the statistical dependency RI(τ) =E{I(t)×
I∗(t + τ)} between two samples of a (stationary) process I, dis-
tant of a time lag τ : the larger RI(τ), the smoother the path of
I at scale τ. Fig. 5(b) shows that the synthetic trace correctly
reproduces the long-term correlative structure of the real trace.
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Figure 5 – Plot(a) shows the steady-state distributions of the real and
synthetic traces while plot(b) shows their empirical autocorrelation
functions. In both plots the red-curves correspond to the real trace and
the green curves correspond to the synthetic trace.

5 Conclusion
We considered a Markovian model aimed at reproducing the

volatility of workload observed in real-life systems such as
VoD servers. The model involves several parameters whose es-
timation is hindered by unobservable data. We derived an ori-
ginal estimator based on a MCMC sampler. Its numerical eva-
luation on both synthetic and real traces shows accurate results,
and demonstrates the procedure’s ability at capturing the dyna-
mics of buzz activity.
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