
Académie de Lyon
Université Claude Bernard Lyon 1

Habilitation à Diriger des Recherches

préparée au Laboratoire de l’Informatique du Parallélisme
ENS de Lyon, UCBL, CNRS et Inria

Spécialité : Informatique

Contributions to the Performance
Modeling of Computer Networks

par

Thomas Begin

Manuscript rapporté par :

André-Luc Beylot, Professeur, Université Toulouse Rapporteur
Andrzej Duda, Professeur, Université Grenoble Alpes Rapporteur
Nihal Pekergin, Professeur, Université Paris-Est Rapporteure

Soutenue le 10 décembre 2018 à Lyon, devant le jury composé de :

André-Luc Beylot, Professeur, Université Toulouse Rapporteur
Andrzej Duda, Professeur, Université Grenoble Alpes Rapporteur
Nihal Pekergin, Professeur, Université Paris-Est Rapporteure
Mohand-Saïd Hacid, Professeur, Université de Lyon Examinateur
Catherine Rosenberg, Professeur, University of Waterloo . . . Examinatrice
Fabrice Valois, Professeur, Université de Lyon Examinateur

2

Contents

1 Introduction 3

1.1 Purpose of this Habilitation Thesis . 4
1.2 Performance Modeling of Computer Networks 4
1.3 A Few Words about Performance Evaluation 6
1.4 Studied Topics . 8
1.5 Selected Contributions . 9
1.6 Outline of the Thesis . 10

2 DPDK-based Virtual Switches 13

2.1 Research Context . 14
2.2 Outline . 15
2.3 Motivation . 15
2.4 Description of a vSwitch . 16

2.4.1 Context and definition . 16
2.4.2 DPDK library . 17
2.4.3 Scenarios . 19

2.5 Modeling a vSwitch as decoupled queues with server vacation 20
2.5.1 System notation . 20
2.5.2 Performance parameters of interest 21
2.5.3 Decomposition principle . 22

2.6 Solution to the queues and their performance parameters 23
2.6.1 Markovian assumptions . 23
2.6.2 Markov chain model associated with each RX queue 23
2.6.3 Estimating the service rate µi . 24
2.6.4 Estimating the switch-over rate β . 25
2.6.5 Estimating the vacation rate αi . 25
2.6.6 Fixed-point solution . 26
2.6.7 Computing the performance parameters 26

2.7 Accuracy of the Proposed Approach . 27
2.8 Examples of Application . 29
2.9 Related Works . 31
2.10 Conclusions . 33

3 IEEE 802.11 networks 37

3.1 Research Context . 38

i

3.2 Outline . 39
3.3 Motivations . 39
3.4 State of the Art . 40
3.5 System Description . 41
3.6 Model and its Solution . 44

3.6.1 Decomposing into subnetworks . 44
3.6.2 Solving each subnetwork as one or more Markov chain(s) 45
3.6.3 Combining subnetwork solutions . 49

3.7 Numerical Results . 50
3.7.1 Model validation . 50
3.7.2 Modeling complexity . 54
3.7.3 Possible application: Channel assignment 54

3.8 Conclusions . 57

4 Reduced State Description 63

4.1 Research Context . 64
4.2 Outline . 65
4.3 Motivation and Related Work . 65
4.4 Model with Infinite Buffer . 67
4.5 Model with Finite Buffer and State Dependencies 69
4.6 Numerical results . 71

4.6.1 Accuracy for the Mean Number in the queue 72
4.6.2 Loss Probability with finite buffers 73
4.6.3 Wait Probability . 74
4.6.4 Speed of Asymptotic Convergence for queues with unrestricted buffer 75
4.6.5 Speed of Convergence of the Fixed-Point Iterative Solution 75
4.6.6 Model with State Dependencies . 75
4.6.7 Computational Complexity . 76
4.6.8 Example of comparison with simple approximations 77

4.7 Conclusions . 78
4.8 Appendix . 82

5 Conclusions 83

5.1 “Missing” Contributions . 84
5.2 The Importance of Accuracy in Modeling 85
5.3 Work methods and Good practices . 87
5.4 Scientific Challenges and Prospects for the Future 89

6 Co-Authored Publications 95

Résumé: Les réseaux informatiques sont devenus une partie intégrante de nos sociétés
modernes. Au cours des deux dernières décennies, le nombre d’internautes est passé
de 147 millions à plus de 4 milliards et de nouvelles applications sont apparues
(p. ex. messagerie instantanée, voix sur IP, réseau social, vidéo à la demande). Pour
faire face à ces nouvelles demandes, les réseaux ont fortement évolué, en augmentant
leurs performances et leurs services et en offrant un accès sans fil à leurs utilisateurs.
Le développement rapide du standard IEEE 802.11 (commercialisé sous le nom de
WiFi) depuis ses débuts en 1997 en est un bon exemple. Plus récemment, le dé-
ploiement du NFV (Network Function Virtualization) devrait permettre une gestion
plus flexible et efficace des réseaux en remplaçant le matériel spécialisé et proprié-
taire par du logiciel exécuté sur du matériel banalisé. Le renouvellement constant
des technologies réseaux et le besoin croissant de qualité de service rendent crucial
la modélisation des performances des réseaux.

Cette thèse d’habilitation décrit une sélection des mes contributions scientifiques
dans le domaine des réseaux informatiques et de l’évaluation de performances. Le
Chapitre 1 comprend une description des mes activités de recherche et une discussion
sur quelques défis majeurs à venir.

Le Chapitre 2 est consacré à mes contributions dans le contexte du NFV. Il présente
un modèle analytique de type file d’attente pour évaluer les performances d’une fonc-
tion réseau (implémentée comme un logiciel) qui commute des paquets, c’est-à-dire
un commutateur virtuel (vSwitch). Le modèle calcule des mesures de performances
comme l’occupation des tampons, le taux de perte et le temps de séjour des paquets
dans le vSwitch. La solution proposée est conceptuellement simple, peu coûteuse
en calcul et généralement précise. Un exemple basé sur un cas d’étude réel illustre
comment le modèle peut aider à bien régler les paramètres d’un vSwitch.

Le Chapitre 3 traite du problème de modélisation des réseaux sans fil basé sur IEEE-
802.11 (WLANs). Il décrit une méthode de modélisation qui estime le débit atteint
par chaque Point d’Accès (AP) en fonction du graphe de conflit du WLAN, de la
charge des AP, de la taille des trames et des taux de transmissions. L’approche
proposée repose sur une stratégie type Diviser pour régner qui sépare le problème
initial en plusieurs sous-problèmes dont les solutions sont combinées pour obtenir
celle du problème initial. Le modèle est en général précis et son utilisation peut
aider à allouer efficacement les canaux de fréquence aux APs lors de la configuration
d’un WLAN.

Le Chapitre 4 étudie les files Ph/Ph/c et Ph/Ph/c/N qui sont des modèles communs
pour les systèmes multi-serveurs. Il présente une approximation simple pour calculer
les probabilités stationnaires de ces files grâce à une description d’état réduite qui
permet d’éviter la croissance combinatoire des états inhérente à la description d’état
classique. Le nombre d’équations à résoudre dans cette approche croît linéairement
avec le nombre de serveurs et le nombre de phases dans la distribution du temps
de service. La précision de l’approximation est en général très bonne et tend à
s’améliorer pour un nombre important de serveurs.

Cette thèse se termine avec le Chapitre 5 qui présente des méthodes de travail et des
bonnes pratiques fondées sur ma propre expérience ainsi que quelques perspectives
de recherche pour le futur.

iii

Abstract: Computer networks have become part of our daily life and, to some extent,
a key element of our modern society. Over the last two decades the number of In-
ternet users have surged from 147 million to over 4 billion and many applications
have emerged (e.g., instant messaging, voice over IP, social networking, video on de-
mand). To meet these new demands, computer networks have undergone tremendous
changes, augmenting their performance, their services and providing access through
wireless communications. A case in point is the fast development of the IEEE 802.11
standard (commercially known as WiFi) that experienced many changes since its re-
lease in 1997. More recently, NFV (Network Function Virtualization) emerged as a
promising paradigm to bring flexibility and efficiency to the networks by replacing
specialized and proprietary hardware with software ran over commodity hardware.
Because of the constant renewal of networking technologies and increasing needs for
Quality of Service (QoS), the performance modeling of computer networks remains
a challenging and crucial issue.

This habilitation thesis describes a selection of my scientific contributions in the
scope of computer networks and performance evaluation. Chapter 1 comprises a
description of my research activities and a discussion on some potential forthcoming
challenges.

Chapter 2 is devoted to my contributions in the context of NFV. More precisely, it
presents an analytical queueing model to evaluate the performance of a network func-
tion (implemented as a software) commuting packets, aka a virtual switch (vSwitch).
The model delivers performance metrics such as the buffer occupancy, the loss rate
and the sojourn time of packets in the vSwitch. The proposed solution is conceptu-
ally simple, computationally efficient and generally accurate. An example based on
a real-life case study illustrates how the model can help in determining an adequate
setting of the vSwitch parameters.

Chapter 3 deals with the issue of modeling IEEE-802.11 based Wireless Local Area
Networks (WLANs). It describes a performance modeling method that estimates
the attained throughput of each Access Point (AP), as a function of the WLAN’s
conflict graph, the AP loads, the frame sizes, and the link transmission rates. The
modeling approach employs a Divide-and-Conquer strategy that breaks down the
original problem into multiple sub-problems, whose solutions are then combined to
provide the solution to the original problem. The model accuracy is generally good
and its application may help to assign AP channels when configuring a WLAN.

Chapter 4 considers Ph/Ph/c and Ph/Ph/c/N queues that can be viewed as a
common model of multi-server facilities. It introduces a simple approximate solution
for the equilibrium probabilities in such queues based on a reduced state description
in order to circumvent the well-known combinatorial growth of the number of states
inherent in the classical state description. The number of equations to solve in our
approach increases linearly with the number of servers and phases in the service
time distribution. The overall accuracy of the proposed approximation appears very
good, and tends to become excellent as the number of servers increases.

This thesis ends with Chapter 5 that provides work methods and good practices
derived from my experience, as well as a number of prospects for the future.

iv

Remerciements

Je souhaite d’abord adresser mes plus sincères remerciements à mes rapporteurs que sont
André-Luc Beylot, Andrzej Duda et Nihal Pekergin pour le temps qu’ils ont consacré à
la lecture et à l’évaluation de ce manuscrit. Je tiens également à remercier Catherine
Rosenberg, Mohand-Said Hacid et Fabrice Valois pour avoir accepté d’être membres de
mon jury.

Durant ces 10 années passées au laboratoire LIP, j’ai eu la chance de travailler avec des
collègues d’une grande qualité scientifique mais aussi humaine. Je remercie Alexandre,
Bruno, Isabelle, Paulo, Anthony, Serge ainsi que les (actuels ou anciens) postdocs et doc-
torants que sont Roy, Thiago, Nghi, Guillaume et Marija. Plus généralement, je souhaite
remercier l’ensemble des personnes ayant appartenu à l’équipe RESO ou appartenant à
l’équipe Dante. Je souhaite également remercier mes collègues du département Informa-
tique de l’UCBL avec qui j’assure mes enseignements ainsi que l’ensemble du laboratoire
LIP.

Je remercie également ma famille et en particulier Margit qui m’a toujours encouragé et
soutenu ainsi que mes parents qui ont toujours cru en mon projet professionnel.

Enfin je remercie Charlotte dont les ronronnements et les câlins ont mâtiné mes journées
de rédaction de ce manuscrit.

v

vi

Preamble

A few words about me

My interest in Sciences really started in 1998 thanks to an excellent Math teacher who
managed to make Mathematics much more compelling and interesting to me. I obtained
an Engineer Diploma in Telecommunication and Network from ISEP (Institut supérieur
d’électronique de Paris, France) in 2003, as well as a Master of Computer Science from
Université Pierre et Marie Curie (UPMC, France) in 2005. I spent the next 3 years
preparing a Ph.D. in Computer Science, Telecommunication, and Electronics at the LIP6
lab under the supervision of Prof. Serge Fdida (UPMC, France) and Assoc. Prof. Bruno
Baynat (UPMC, France). At the end of 2008, I defended my Ph.D. and then I started
a PostDoc position under the guidance of Prof. Alexandre Brandwajn at the University
of California, Santa Cruz (UCSC, USA). In 2009, I was hired on an Assistant Professor
position at the Université Claude Bernard Lyon 1 (UCBL, France). During the 2015-2016
academic year, I was on research leave in the lab of Prof. Azzedine Boukerche at the
University of Ottawa (uOttawa, Canada). This leave was funded through a CNRS grant.

Since the completion of my Ph.D., I have been involved in several Research Projects and
I have co-supervised the thesis of 4 Ph.D. students (Dr Doreid Ammar, Dr Shubhabrata
Roy, Dr Thiago Abreu, Dr Nghi Nguyen) and of 12 M.Sc. students. I became member of
the Program Committees for well-established conferences such as IEEE LCN and ACM
MSWiM. Lately, I was appointed as the Technical Program Co-Chair for the Algotel
conference 2019 edition.

1

2

Chapter 1

Introduction

Contents
1.1 Purpose of this Habilitation Thesis . 4

1.2 Performance Modeling of Computer Networks 4

1.3 A Few Words about Performance Evaluation 6

1.4 Studied Topics . 8

1.5 Selected Contributions . 9

1.6 Outline of the Thesis . 10

3

1.1 Purpose of this Habilitation Thesis

This Habilitation Thesis is built on my research activities since the end of my Ph.D. It
comprises a selection of my Scientific Contributions in the scope of Computer Networks
and Performance Evaluation, as well as work methods and good practices derived from
my experience over these years. It ends with a number of prospects for the future.

The goal of this thesis is to provide a summary of my research activities that is both mature
and critical but also accessible to any Computer Scientists (having or not a background in
my domain of interest). Scientific contributions are presented at high-level of description
and some technical details may be omitted for the sake of conciseness. The reader can refer
to the corresponding published paper(s) for more details. On the other hand, a special
attention is given to other aspects of these contributions. Thus, I’ll discuss the following
points for each contribution: explaining the motivations and research context that led
to this work, assessing fairly the strengths and limitations of the proposed contribution,
describing possible extensions and follow-up works, discussing its potential impact on the
related field and community, and finally, summing up the learned experiences.

Virtually all my scientific contributions result from joint-efforts with other researchers
and students. Therefore, I consider each of these works as a collective achievement in
which my role (as a contributor) has varied. In Computer Science, as in many scientific
disciplines, noticeable works generally comprise several aspects (e.g., proposing new algo-
rithms and modeling techniques; analyzing and understanding the studied system; coding
and measuring; defining the case studies and scenarios; reviewing the existing associated
literature; writing the corresponding reports and papers). Although I contributed to
each of these aspects, my degree of commitment may vary from one contribution to an-
other. And I sometimes find it hard to identify the main contributor(s) on a given aspect
as good ideas often arise from brainstorming sessions and intense discussions. Without
further ado, I summarize my research activities.

1.2 Research Activities: Performance Modeling of Computer Net-
works

My research activities are primarily concerned with the Performance Modeling of Com-
puter Networks. To provide a better understanding of my field of interest, I start by
discussing each of these terms.

Modeling

Modeling refers to the art of using mathematical and theoretical tools to describe the
behavior of a system. Theoretical models can take many different forms, including statis-
tical models, differential equations, Markov Chains, game theoretic models, or queueing
models. Any model generally relies on a set of assumptions that eases its analysis so that
the model can be viewed as an abstraction of the system. A model may help to explain a
system, to help its parameterization, to study the effects of its different components, and
to make predictions about its behavior.

With this short definition of a model in mind, I would like to discuss one recurrent concern
about modeling. Almost any system existing in Computer Science has been the subject
of numerous models. Although this may appear as disproportionate and unneeded at first

4

glance, there are also legitimate reasons for this abundance. First, as the common saying
goes, There are no good models for a system, but there are good models for the purpose
they serve. This saying conveys that, depending on the specific aspect being studied
on a given system, different models must be considered since a detailed description, or
conversely an abstraction, of some of the system features and components may then
be desired. Therefore, when considering a model, one needs to also consider its scope,
which defines its domain of applicability. Second, aside from their scope, models may
differ by their complexity and accuracy. These two seemingly disjoint aspects may be
considered jointly since modeling generally involves a trade-off between complexity and
accuracy. Broadly speaking, adding complexity to a model usually improves its realism.
On the other hand, model complexity tends to make the model difficult to understand
and to solve. In practice, ouf of two models having about the same level of accuracy, the
simplest one is quite straightforwardly the most preferable, following the Occam’s razor
principle (aka law of parsimony) However, things get more complicated when dealing with
two models with a different level of accuracy. Depending on the intended application for
the model, one may favor the simplicity over the accuracy, or vice versa. Third, models
of a same system may also differ by the mathematical formulation and tools used to their
analysis. Overall, models of a same system may differ in a number of aspects (including
their scope, complexity, and accuracy) explaining why many have been proposed in the
literature.

Performance

In Computer Science, the word Performance denotes the efficiency of a computer system,
and was informally defined by Arnold Allen as follows: “How well is the computer doing
the work it is supposed to do?". When evaluating the performance of a computer sys-
tem, a number of parameters (or metrics) are generally used to determine the result. A
non-exhaustive list of the performance parameters includes throughput, completion time,
transmission time, response time, sojourn time, loss rate, blocking probability, resource
utilization, CPU usage, queue length, buffer occupancy, and availability.

Computer Networks

A Computer Network comprises all components that enable communication between com-
puters or other digital devices (e.g., phones, sensors). Computer networks make use of
different types of links (e.g., wired, wireless), comprise specialized devices (e.g., routers,
switches, access points), follow different topology (e.g., bus, star, ring, mesh, fully con-
nected, tree), involve various protocols (e.g., IEEE 802.3 commercially known as Ethernet,
IEEE 802.11 commercially known as WiFi), are of different sizes and scales (ranging from
personal area networks (PAN) and local area networks (LAN) up to wide area networks
(WAN) and backbone networks).

Computer networks have become part of our daily life and, to some extent, a key ele-
ment of our modern society. They have undergone tremendous changes over the last two
decades with the number of Internet users surging from 147 million to over 4 billion and
the emergence of many applications (e.g., instant messaging, voice over IP, social network-
ing, video on demand). To meet these new demands, computer networks have significantly
evolved, augmenting their performance, their services and providing access through wire-
less communications. A case in point is the fast development of the IEEE 802.11 standard
(commercially known as WiFi) that undergone many changes since its release in 1997.

5

More recently, NFV (Network Function Virtualization) emerged as a promising paradigm
to bring flexibility and efficiency to the networks by replacing specialized and proprietary
hardware with software ran over commodity hardware.

With these definitions in mind, and to illustrate the range of topics falling in the scope of
the performance modeling of computer networks, I briefly mention a couple of them that
I actually studied these last years: analyzing the efficiency of a virtual switch within a
wired computer network; understanding the behavior of an IEEE 802.11-based network;
predicting the congestion occurrence on a given network link; reproducing the workload
volatility of a Video on Demand system.

1.3 A Few Words about Performance Evaluation

Theoretical or Applied Research?

In my opinion, the art of Performance Evaluation lies at the crossroads between Theoret-
ical and Applied Research. On the one hand, it typically involves the use of probability,
Markov Chains, elements of queueing theory as well as methods of statistical data analysis
such as hypothesis testing, confidence intervals, regression and correlation analysis. On
the other hand, evaluating the performance of a system requires both an expertise of the
system under study and skills in coding simulations and/or in performing measurements
from real-life experiences. Therefore, it is quite common for scientific contributions in
the domain of performance evaluation to include both theoretical results and practical
findings. For instance, the accuracy of a proposed theoretical model may be validated
with real-life measurements collected from the system under study. This duality between
theory and practice hardens the process of performance evaluation, but it also greatly
participates to make it interesting.

New Challenges for Performance Evaluation

Since its beginning with the earliest theoretical work on its logical foundations in 1930’s,
Computer Science has quickly grown and expanded into a broad range of fields including
Computer Architecture, Computer Algebra, Programming and Algorithms, Information
Theory, Complexity Theory, Computer Networks, Distributed Systems, Operations Re-
search, Artificial Intelligence, etc.

As for the field of Performance Evaluation, the “golden age” of this research community
probably occurred in the 1960’s and 1970’s with the discovery of many major ground-
breaking results such as the product-form solutions for Jackson Networks [A12, A13], the
Gordon-Newell theorem [A11], the BCMP networks [A2], etc. Besides, in the early 1960’s,
theoretical works conducted by Kleinrock [E15] to model the performance of packet-
switched networks have underpinned the development of the ARPANET (which later
gave birth to the current Internet). Another major step for performance evaluation was
done in 1971 with the introduction of the central server model [E6] by Buzen. While
earlier models had studied separately the performance of individual system components
such as processors and I/O devices (e.g., disks), the central server model brought ma-
jor progress as it provided a convenient means to represent the interactions taking place
among components, and ultimately, to determine the overall system performance [A8].
Although this community has kept producing remarkable contributions up to this day,
I believe that the excitement and the publicity around this community have somehow

6

faded, and that today’s scientific largest efforts and biggest progress have been shifted to
other fields of Computer Science. Nonetheless, the rapid changes of computer and com-
munication systems with the continuous release of new devices, protocols, technologies,
and usages, fuels the need for new theoretical models, ensuring thereby substantial work
and recurrent challenges for the performance modeling community.

For Performance Evaluation to regain a central role in the development of Computer
Science, I believe that new approaches specially designed to cope with the complexity
of today’s computer and communication systems are needed. Indeed, most of today’s
computer and communication systems involve many components (e.g., be it the number
of nodes in a network, the number of CPU cores of a machine, or the number of Virtual
Machines hosted on a server). Additionally, today’s systems often exhibit highly variable
distributions (e.g., in their inter-arrivals, service times, file lengths, call holding times)
that may invalidate simplifying assumptions such as the memoryless assumption (e.g.,
[A9, A19, A17, A10]). Overall, I think that the growing complexity of today’s systems
hinders existing modeling approaches and tools. For instance, let us consider a given
Markov chain modeling a computer or communication system that does not possess any
closed-form solution. In order to obtain the associated steady-state probabilities, one
typically relies on the use of numerical solutions (after having transformed this problem
into a linear system formed by the balance equations). Depending on the structure of the
underlying stochastic matrix (e.g., sparsity, eigenvalues), direct solutions can handle linear
systems with up to several hundreds of states before numerical instabilities (largely due
to rounding errors) occur. On the other hand, iterative solutions significantly postpone
the onset of instabilities and can handle several hundreds of thousands of states [A20,
A5]. Nonetheless, because the state space of underlying Markov chains typically grows
combinatorially with the system parameters, those solutions may reach their limitations
when modeling a large real-life system. Another example includes the solution to the
steady-state probabilities of a multi-server queue with general service times. Several
approximate solutions have been proposed in the literature, but most, if not all, have
been validated on a small number of servers, typically less than a dozen. It may raise
concerns as, in practice, the number of CPU cores on a machine or the number of Virtual
Machines on a server can easily exceed 16.

Efforts have been made to devise new approaches to alleviate, or better yet, to circumvent
these dimension limitations. For example, the mean field theory is well suited to deal
with large and complex stochastic systems in which a large number of small individual
components interact with each other. This approach approximates the effect of all the
other individuals on any given individual by a single averaged effect, thus reducing a many-
body problem to a one-body problem. The mean field theory has been successfully applied
to large computer and communication systems (e.g., [A3]) as well as to queueing theory
problems to evaluate the asymptotic behavior when the number of queues goes to infinity
(e.g., [A1, A4]). Another interesting lead to deal with high-dimensional systems is the
reduced state description that has been proposed lately by Pr. Brandwajn and me [A6],
which is the subject of Chapter 4. This approach drastically reduces the complexity of
analyzing multi-server queues by describing explicitly the state of only one server. In fact,
not only is the reduced state description well-behaved for queues with a large number of
servers, but its accuracy actually increases with the number of servers.

7

Relations of Performance Evaluation with the other fields

Any researcher could arguably benefit from developing additional skills in another field of
Computer Science. In the particular case of a performance modeling researcher, it is my
belief that he or she would benefit the most from having additional skills in Optimiza-
tion and, to a lesser extent, in Complexity Theory. Indeed, having a solid background in
Complexity Theory is often mandatory to clearly and accurately assess the complexity of
a model. On the other hand, Optimization routines (e.g., Linear programming, Combi-
natorial optimization, Stochastic programming, Dynamic programming) will find many
applications in the use of performance models and can greatly help to increase their value.

Conversely, in my opinion, many researchers and engineers would benefit from developing
skills in Performance Evaluation. And by that, I don’t necessarily mean getting a sharp
knowledge of Markov chains, queueing theory, stochastic processing or renewal theory.
Despite a commonly held opinion, I think that Performance Evaluation does not restrict
to these theoretical aspects. In fact, it also includes more practical aspects such as double
checking results with Little’s law [A16], differentiating transient and stationary regimes,
estimating proper averages for a given performance parameter, running discrete-event
simulations, that can prove helpful in many other research works. For instance, while
discrete-event simulations are widely used to validate new solutions for computer net-
works, some researchers have shown that they are not always properly used [A15, A18],
likely due to insufficient knowledge in performance evaluation.

1.4 Studied Topics

Over the last ten years, my research activities have covered various topics. I attempt to
exhaustively list them here from the least recent to the most recent: Higher-order distribu-
tional properties in queueing systems [G5],[H18, H12],[I4]; Efficient solution to queueing
systems [G7, G8, G9, G1, G10, G12, G11], [H19, H20, H21, H11], [I5]; WiMAX per-
formance modeling [H23]; Admission control [H5, H4, H7, H6, H8],[I1, I2]; VoD buzz
workload [G13], [H22, H29], [I8]; Multi-constrained routing [H27]; IEEE 802.11 net-
works [G4, G15], [H28, H3, H1, H2, H30]; High-Level modeling [H13]; Estimator for
the end-to-end delay [H24, H25, H26]; DPDK-based virtual switches [G2],[H9, H32, H31];
vehicular networks [G14],[H10, H16]. Note that associated publications are listed in Chap-
ter 6 (pages 95 - 100). [G3, G6] [H15, H14, H17] [I3, I7, I6]

To give another perspective on the studied topics, Figure 1.1 depicts a word cloud of the
most recurring words in the 450 pages of publications I co-authored since the end of my
Ph.D. in 2008.

This relatively large number of studied topics is mostly the result of the numerous op-
portunities that I was given since the end of my Ph.D. Indeed, following my PostDoc, I
joined the RESO team (LIP lab, France) whose main focus was on wired networks. I was
fortunate to get immediately involved in several existing national (MISSION, RESCUE)
and European (SAIL) projects that covered different topics. A couple of years later,
I integrated the Dante team (resulting from the merger of RESO with another team)
whose main concerns are dynamic networks. I contributed to the setting and completion
of two scientific projects (DISCO and Reflexion) that explored new aspects of computer
networks. Furthermore, since the end of my Ph.D., I have maintained long-lasting col-
laborations with Pr. Alexandre Brandwajn (UCSC, USA) and Ass. Pr. Bruno Baynat
(UPMC, France). I also developed new collaborations with colleagues of my team: Pr.

8

Figure 1.1: Word cloud created from the content of all my publications since 2008.

Isabelle Guérin Lassous, Pr. Anthony Busson and DR Paulo Gonçalves, as well as with
colleagues abroad such as Pr. Azzedine Boukerche (uOttawa, Canada) and researchers
from UPC, Spain. Last but not least, this large number of topics was also fuelled by my
desire (or at least, by the lack of refusal) to renew my research topics and to develop new
technical skills (the latest being the study of Vehicular Networks and the field of Graph
Signal Processing).

The common thread running through all the topics I studied during these years holds in
the scientific approach used to address any of them. This approach proceeds in a series
of stages as follows: (i) understanding the system under study; (ii) modeling the system
performance of interest; (iii) validating the accuracy of the model against simulation or
better yet real-life experiences, otherwise return to stage (ii); (iv) applying the model on
several use cases to demonstrate the abilities of the model. Another common aspect to all
my contributions is that I always avoided the use of complex mathematics, and instead
looked for simpler yet sensible ways to circumvent the complexity of a problem. I discuss
this point in more detail in the Conclusions of this thesis (Chapter 5).

1.5 Selected Contributions

This thesis highlights a selection of my scientific contributions to the field of Perfor-
mance Modeling of Computer Networks. This selection includes the following three topics:
DPDK-based virtual switches; IEEE 802.11 networks; Reduced state description.

Therefore, some contributions - such as Higher-order distributional properties in queueing
systems; Admission control; VoD buzz workload; Estimator for the end-to-end delay;
and Vehicular networks - are not discussed in this Thesis. I picked out the presented
contributions mostly based on three factors: their degree of matureness, their investment
in time and energy, and their potential impact on the community.

9

1.6 Outline of the Thesis

In the next chapter, I discuss my contribution to the performance modeling of DPDK-
based virtual switches. Chapter 3 deals with the issue of modeling IEEE 802.11-based
wireless networks. In Chapter 4, I present a new way of addressing the inherent complexity
of some queueing systems using a reduced state description. Chapter 5 concludes this
thesis. All my co-authored publications are listed in Chapter 6.

References for Chapter 1

[A1] F. Baccelli, F. Karpelevich, M. Y. Kelbert, A. Puhalskii, A. Rybko, and Y. M. Suhov.
A mean-field limit for a class of queueing networks. Journal of Statistical Physics,
66(3-4):803–825, 1992.

[A2] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open, closed, and mixed
networks of queues with different classes of customers. J. ACM, 22(2):248–260, 1975.

[A3] M. Benaim and J.-Y. Le Boudec. A class of mean field interaction models for
computer and communication systems. Performance Evaluation, 65(11-12):823–838,
2008.

[A4] A. Bobbio, M. Gribaudo, and M. Telek. Analysis of large scale interacting systems
by mean field method. In IEEE QEST, 2008.

[A5] G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi. Queueing networks and Markov
chains: modeling and performance evaluation with computer science applications.
John Wiley & Sons, 2006.

[A6] A. Brandwajn and T. Begin. Reduced complexity in M/Ph/c/N queues. Perfor-
mance Evaluation, 78:42–54, 2014.

[A7] J. P. Buzen. Queuing Network Models of Multiprogramming Ph. D. PhD thesis,
Thesis, Harvard University, Cambridge, MA, 1971.

[A8] J. P. Buzen. From the Central Server Model to BEST/1 c©. In Performance Evalu-
ation: Origins and Directions, pages 485–489. Springer, 2000.

[A9] A. Feldmann and W. Whitt. Fitting mixtures of exponentials to long-tail distribu-
tions to analyze network performance models. Performance Evaluation, 31(3-4):245–
279, 1998.

[A10] D. R. Figueiredo, B. Liu, V. Misra, and D. Towsley. On the autocorrelation struc-
ture of TCP traffic. Computer Networks, 40(3):339–361, 2002.

[A11] W. J. Gordon and G. F. Newell. Closed queuing systems with exponential servers.
Operations Research, 15(2):254–265, 1967.

[A12] J. R. Jackson. Networks of waiting lines. Operations Research, 5(4):518–521, 1957.

[A13] J. R. Jackson. Jobshop-like queueing systems. Management Science, 10(1):131–142,
1963.

[A14] L. Kleinrock. Message delay in communication nets with storage. PhD thesis,
Massachusetts Institute of Technology, 1963.

10

[A15] S. Kurkowski, T. Camp, and M. Colagrosso. MANET simulation studies: the
incredibles. SIGMOBILE Mob. Comput. Commun. Rev., 9(4):50–61, 2005.

[A16] J. D. Little. A proof for the queuing formula: L= λ w. Operations Research,
9(3):383–387, 1961.

[A17] K. Park, G. Kim, and M. E. Crovella. Effect of traffic self-similarity on network
performance. In Performance and Control of Network Systems, volume 3231, pages
296–311. International Society for Optics and Photonics, 1997.

[A18] K. Pawlikowski, H.-D. J. Jeong, and J.-S. R. Lee. On credibility of simulation
studies of telecommunication networks. IEEE Communications magazine, 40(1):132–
139, 2002.

[A19] V. Paxson and S. Floyd. Wide area traffic: the failure of Poisson modeling.
IEEE/ACM Transactions on Networking (TON), 3(3):226–244, 1995.

[A20] W. J. Stewart. Introduction to the numerical solution of Markov chains. Princeton
University Press, 1994.

11

12

Chapter 2

Performance Modeling of DPDK-based
Virtual Switches

Contents
2.1 Research Context . 14

2.2 Outline . 15

2.3 Motivation . 15

2.4 Description of a vSwitch . 16

2.4.1 Context and definition . 16
2.4.2 DPDK library . 17
2.4.3 Scenarios . 19

2.5 Modeling a vSwitch as decoupled queues with server vacation 20

2.5.1 System notation . 20
2.5.2 Performance parameters of interest . 21
2.5.3 Decomposition principle . 22

2.6 Solution to the queues and their performance parameters 23

2.6.1 Markovian assumptions . 23
2.6.2 Markov chain model associated with each RX queue 23
2.6.3 Estimating the service rate µi . 24
2.6.4 Estimating the switch-over rate β . 25
2.6.5 Estimating the vacation rate αi . 25
2.6.6 Fixed-point solution . 26
2.6.7 Computing the performance parameters 26

2.7 Accuracy of the Proposed Approach . 27

2.8 Examples of Application . 29

2.9 Related Works . 31

2.10 Conclusions . 33

13

Abstract

With the development of the Network Function Virtualization (NFV) paradigm,
networking functions will gradually move from specialized and proprietary hard-
ware to open-source software run over a Virtual Machine (VM) deployed on
commodity hardware. Arguably, the foremost network service is packet switching.
In this regard, Open vSwitch (OVS) is the most prominent open-source solution
implementing a virtual switch (vSwitch), i.e., a software relaying packets. Besides,
DPDK (Data Plane Development Kit) is a set of specialized libraries to speed up the
packets processing. In particular, DPDK allows packets to be processed by batches.

In this chapter, we present an analytical queueing model to evaluate the perfor-
mance of a DPDK-based vSwitch. Such a virtual equipment is represented by a
complex polling system in which packets are processed by batches. To reduce the
complexity of the associated model, we develop a general framework that decou-
ples the polling system into several queueing subsystems, each one corresponding
to a given CPU core. We resort to servers with vacation to capture the interactions
between subsystems. Our model delivers performance metrics such as the buffer oc-
cupancy, the loss rate and the sojourn time of packets in RX queues. Our proposed
solution is conceptually simple, computationally efficient and generally accurate.
We illustrate how our model can help in determining an adequate setting of the
vSwitch parameters using several real-life case studies.

2.1 Research Context

In the wake of the ANR (French National Research Agency) funded DISCO1 project
that focused on Software-Defined Networking (SDN) issues, I was involved in another
ANR funded project, called Reflexion2 whose consortium included Thalès, Orange, Inria,
UPMC, 6WIND, ENS Lyon, and Telecom ParisTech. The project ran from 2015 until
2017 and I served as the site leader for ENS Lyon. Reflexion dealt with the hot topic of
Network Virtualization underpinned by the new paradigms of SDN and Network Function
Virtualization (NFV). Note that these two terms are defined in Section 2.3.

One major research axis in the Reflexion project was to study the performance of network
services run in a virtualized environment. Indeed, while companies like 6WIND sell NFV
solutions to customers (typically network operators), the actual performance of these so-
lutions, as well as their resource setup, are still raising some concerns. My contributions
to Reflexion essentially pertained to this axis of research and involves a tight collabo-
ration with UPMC and 6WIND. More precisely, they resulted from a joint work with
Bruno Baynat (UPMC) Guillaume Artero Gallardo (ENS Lyon), Zidong Su (ENS Lyon),
Vincent Jardin (6WIND), and to a lesser extent, with Thomas Delbono (6WIND), Amine
Kherbouche (6WIND), Thomas Monjalon (6WIND), and Tanguy Pomas (6WIND). As
part of the Reflexion project, I co-authored three conference papers [B1, B24, B25] and
one journal paper (recently accepted) [B2].

1http://anr-disco.ens-lyon.fr/
2http://anr-reflexion.telecom-paristech.fr/

14

2.2 Outline

The remainder of this chapter is organized as follows. In Section 2.3, we briefly discuss
the scientific context around this work as well as its motivations. Section 2.4 describes the
internal behavior of a DPDK-based vSwitch as well as the real-world inspired scenarios
that motivate our study. In Section 2.5, we present the main principles underlying our
modeling framework for a vSwitch. Section 2.6 details its solution in order to obtain the
vSwitch performance parameters. We study the accuracy of our models in Section 2.7
and we explore their potential applications in Section 2.8. We discuss the related works
in Section 2.9. Section 2.10 concludes this chapter.

2.3 Motivation

Server virtualization has become ubiquitous in the modern Information Technology (IT)
environment. Decoupling virtual servers from physical servers helps to leverage the com-
puting resources, and brings important gains in scalability and agility. More recently,
the virtualization of networks has attracted much attention. Scalability, agility, and
multi-tenancy (with the concept of network slicing) are the envisioned improvements that
virtualization will bring to traditional computer networks.

This trend towards more flexible networks, often known as “softwarization”, is driven by
two main paradigms: Software-Defined Networking (SDN) and Network Function Virtu-
alization (NFV). The former aims at removing all the decision-making networking func-
tions from network nodes and regrouping them into a (set of) controller(s). Thus, network
nodes, such as routers, switches, load-balancers, firewalls, etc. are replaced by appliances
receiving their instructions directly from the controller(s) (using a standard interface like
OpenFlow [B18]). On the other hand, NFV refers to the gradual move of network func-
tions from dedicated hardware to commodity hardware running specialized software. For
example, functions such as routing, switching, load-balancing, firewalling, etc. will be
run as software on standard x86 servers, and are thus referred to as Virtualized Network
Functions (VNFs). Note that VNFs may be executed directly by the hypervisor or within
a Virtual Machine (VM) (or a container). In any case, to allow communications between
the VMs (of a same physical server) and the rest of the physical network, the hypervisor
can create a virtual switch (aka vSwitch) that logically connects the VMs to the outside
world.

While software-based solutions are generally viewed as more flexible than their hardware
counterparts, the network softwarization raises concerns about its expected performance.
To address this issue, a consortium including companies like Intel and 6WIND has devised
Data Plane Development Kit (DPDK) [B3]. DPDK is an open-source project and works
as a specialized library for x86, ARM and PowerPC processors. In particular, it enables
vSwitches to accelerate the processing of incoming packets by (i) balancing the incoming
flow of packets over all the vSwitch CPU cores, (ii) avoiding unnecessary re-copy of the
packets, (iii) keeping all operations out of the OS kernel and, instead, within the user
space and (iv) processing packets by batches, thereby having a better use of the CPU
cache. While other libraries exist, DPDK has become a de facto standard for vSwitches.
Nonetheless, due to the relative novelty and complexity of virtual switches, their perfor-
mance modeling (e.g., to analytically derive estimates of throughput, loss rate, latency)
remains a challenging problem. We believe that an analytical model can provide some
helpful guidelines by suggesting adequate values for the large number of parameters that

15

can be adjusted in a virtual switch.

In this chapter, we investigate the performance of a virtual switch, i.e., a software relaying
packets (possibly after modifying their content) between the ports of VMs or containers
hosted on a same physical machine and the rest of the physical network. We assume
that the vSwitch is equipped with DPDK. We propose a conceptually simple and easy-
to-implement modeling approach for evaluating customary performance parameters of a
vSwitch such as its mean throughput, its mean latency, its loss rate as well as the level of
utilization of its CPU cores. We consider several examples inspired by real scenarios and
we assess our model accuracy by comparing its predictions with the actual values delivered
by a discrete-event simulator. To illustrate the application of our model, we explore
the effects of changing a vSwitch configuration (e.g., batch sizes) as well as adjusting
the vSwitch resources (number of allocated CPU cores) to satisfy a given Service Level
Agreement (SLA) policy (e.g., zero-loss).

2.4 Description of a vSwitch

2.4.1 Context and definition

Like traditional switches, a vSwitch commutes packets between its ports but, unlike them,
it operates as a software typically run by the hypervisor of the physical server. In general,
a vSwitch has access to a set of logical CPU cores and to a set of physical and logical ports.
Logical ports connect to ports of VMs hosted on the same physical machine while physical
ports are associated with existing ports on the physical server. An example is given in
Figure 2.1. For example, in a cloud computing context, a physical server may host several
VMs that are interconnected using a vSwitch, which itself is executed by the hypervisor. In
an SDN/NFV-based network, vSwitches (software running on commodity hardware) are
replacing specialized hardware devices such as switches, firewalls, load-balancers, routers,
and other middleboxes. In addition to commuting packets between their ports, vSwitches
may also perform other operations like filtering, header editing, content encrypting and
deep packet inspection. In fact, vSwitches may use all the headers from layer 2 up to layer
5 (and not just 2 as it is commonly the case for a traditional switch) so that they are also
referred to as virtual multi-layer switches. Note that the physical machine running the
vSwitch typically hosts VMs or containers so that the vSwitch has to share the physical
resources with them.

The two prominent solutions to create a vSwitch in a hypervisor are OVS [B19] and FD.io
VPP [B6]. Note that both are open-source projects and that VPP is the open-source
version of Cisco’s Vector Packet Processing. Aside from open-source implementations, a
couple of proprietary virtual switch solutions have been released; e.g., by Cisco (Nexus
1000V) and VMware (vSphere Distributed Switch).

A vSwitch mainly comprises three types of components: (i) network interface cards (NICs)
that altogether provide a total of N input/output (I/O) ports, (ii) a set of (logical) CPU
cores that are in charge of processing the packets coming from the different I/O ports,
and (iii) memory to store packets waiting for their processing, be it from the CPU cores
or from the NICs. As a side note, note that packets are moved across these components
through PCI buses.

16

Host machine

 1

VM 2
Server2

VM 3
vSwitch

VM 1
Server1

Logical ports

Physical ports

VM Virtual Machine

VM-vSwitch.pdf

VM 2 VM 3VM 1Logical Ports

Physical Ports

Physical M
achinevSwitch

{

Rest of the Network

Inspiré par slide 3 de
https://

www.slideshare.net/
teyenliu/the-basic-

introduction-of-open-
vswitch

Figure 2.1: vSwitch connecting three VMs with two physical ports.

2.4.2 DPDK library

To let vSwitches deal with high rates of packets, different techniques, e.g., Netmap [B22],
OpenOnload [B20], PacketShader [B21] and DPDK [B3], have been developed to provide
a faster packet processing. DPDK is an open-source project and works as a specialized
library for x86, ARM and PowerPC processors. It is developed by a consortium comprising
companies like Intel and 6WIND. Note that DPDK is integrated to the most prominent
vSwitch solutions, namely OVS and VPP, making it a de facto standard for vSwitches.
Hence, we focus our study on a vSwitch equipped with the DPDK library [B3]. DPDK
makes use of several means for accelerating the processing of packets.

No packets recopy

DPDK avoids the recopy of packets. Thanks to the use of a shared memory, CPU cores are
able to process packets without recopying them in their associate memory. For a deeper
understanding of these mechanisms, the reader can refer to the work of Scholz [B23].

Operations performed in the user space

Another means of DPDK for accelerating the packet processing is to run the associated
operations in the user space and not within the kernel as is done by default. By doing so,
DPDK avoids the overhead of CPU interrupts that result in additional delays in processing
packets.

Balancing the load across all the CPU cores

Although DPDK allows various configurations in the polling of the several vSwitch ports
by the multiple CPU cores, we consider here its standard configuration, using the so-called
“Poll Mode Driver”, which is known as the most versatile and efficient (unless in specific
scenarios). First, one CPU core, aka the “master” core, is entirely dedicated to the control
and management of the vSwitch while the other CPU cores are devoted to the packet
processing. Let C denote the number of CPU cores devoted to the packet processing,
i.e., not including the master core. Second, DPDK aims at uniformly distributing the
load originating from each port across the C CPU cores. Said differently, each CPU core
contributes to processing packets coming from each port. More precisely, modern NICs

17

perform load balancing by letting each of their ports dispatch incoming packets into C
separate logical queues, called RX queues. This dispatching step is typically carried out
through the application of a hash function on the packet headers (such as the Receive
Side Scaling (RSS) used in DPDK) and aims at ensuring an even balance of the incoming
packets among the RX queues as well as at accelerating packet processing by directing
packets belonging to the same flow to the same RX queue. As a result, each RX queue
is assigned to a single CPU core while each CPU core handles as many RX queues as
the total number of ports in the vSwitch. We denote by K the RX queue size, i.e., the
maximum number of packets that can be queued simultaneously in it. Then, once a
CPU core ends up processing a packet, the packet is (logically) forwarded from its RX
queue to a TX queue associated to the appropriate output port. At this stage, the packet
is pending for transmission on the next link and does not need any further CPU core
processing resource. Figure 2.2 illustrates this mapping between CPU cores, ports and
RX queues.

RX queues TX queuesCPU cores

1

2

port 1

port 2

port N

port 1

port 2

port N

Figure 2.2: Internal architecture of a vSwitch with N I/O ports and C CPU cores.

Processing packets by batches

CPU cores poll their associated RX queues in a cyclic order (i.e., in a round-robin fashion).
However, for the sake of performance, DPDK enables CPU cores to serve a batch of packets
on the same RX queue before switching to the next RX queue. We denote by TS the mean
switch-over time taken by a core to switch from its current RX queue to the next one,
and by M the maximum size of the batch. When the batch size is set to M , a CPU core
can prefetch up to M packets on one RX queue and then it processes them in a run-to-
completion manner. Note that packets that enter the RX queue while the CPU core has
already started its service are not served in this round, and they have to wait until the

18

core revisits this queue. In the queueing theory literature, this discipline is known as a
gated M -limited policy [B16].

Batching packets by groups of M packets tends to increase the overall efficiency of a
vSwitch. Indeed, when a CPU core handles packets belonging to the same batch, chances
are that the needed instructions are found in the CPU cache, which lowers the average
processing time of a packet. We denote by TH and TM the average time needed by a CPU
core to process a packet when the set of instructions is found (cache Hit), respectively
not found (cache Miss), in the cache. Note that TH is typically significantly smaller than
TM , say around an order of magnitude or so. Let TR indicate the average time needed
by the CPU core to forward a packet from an RX queue to a TX queue over a PCI bus
(once the CPU core processing has ended). As a result, the total time needed by a core
to serve a given packet is either TM + TR (in case of a cache miss) or TH + TR (in case of
a cache hit). In general, the former case is more likely to occur if the considered packet is
among the first packets of a batch (the cache is likely to be “cold”) whereas the latter has
more chances to happen for the subsequent packets of a batch as they will benefit from
the cache information. In addition, processing packets by batches also increases efficiency
by reducing the total number of switch-over times (as a CPU core does not switch to a
different RX queue upon the completion of a single packet processing).

Despite the enhancements brought by DPDK, vSwitches are subject to performance issues,
in particular if the incoming load is too large. Given the transmission speed of lines
and the current transfer rates of PCI buses and memory (SDRAM), the bottleneck of a
vSwitch, if any, is likely to occur during the processing of packets in RX queues due to the
limited CPU resources. Therefore, we concentrate our modeling efforts on the interactions
between the CPU cores, the RX queues and the ports.

2.4.3 Scenarios

Throughout this chapter, we consider three scenarios inspired by features of real vSwitches
to demonstrate the accuracy and the abilities of our modeling approach. For the sake
of simplicity and without loss of generality, we assume that the considered vSwitches
comprise CPU cores running each at 3GHz, that RX queues are set to store up toK = 128
packets, that the mean packet size is 1000 bytes, and that the switch-over times TS are
equal to 1ns. We also assume that the dispatching function performed on incoming packets
at the ports is well-behaved (see Section 2.4.2) so that every CPU core undergoes the same
performance allowing us to restrict our analysis to only one of them. Note that this last
assumption does not mean that ports are equally loaded. Note also that all the numerical
values used to specify our three scenarios are derived from real-life experiments conducted
in 6WIND lab.

Scenario 1 - Simple forwarding

In our first scenario, we consider a case where a vSwitch is simply forwarding incoming
packets between its ports based on their link layer headers and does not provide any further
services. Said differently, the vSwitch behaves similarly to a regular switch. We assume
that the vSwitch operates on a small-scale network so that its flow table is relatively
small. More precisely, we assume that there is a total of N = 4 ports and that 80 CPU
cycles are enough for processing packets (i.e., looking up entries in the flow table) while
10 additional CPU cycles (resp. 200) are needed to access the information if the vSwitch

19

experiences a cache hit (resp. cache miss). Overall, given the speed of the CPU cores
(3GHz), we have: TH = (80 + 10)/3 = 30ns and TM = (80 + 200)/3 = 93.3ns. We also
assume that the batch size M is set to 4 packets and that PCI buses sustain 16 GBps
so that TR = 1000/16 = 62.5ns. Finally, we assume that ports are unevenly loaded as
follows: Port 1 receives 15% of the whole traffic, Port 2 receives 20%, Port 3 receives 25%
and Port 4 receives 40%.

Scenario 2 - Complex routing

Our second scenario pertains to a vSwitch whose flow table is large featuring numerous
rules to handle different types of traffic with various destinations. Such a situation can
occur for routers located in the core (backbone) network of a network operator. Here,
we assume that, because of the size of the flow table, 800 CPU cycles are needed for
the lookup operation while 10 additional CPU cycles (resp. 200) are needed to access
the information if the vSwitch experiences a cache hit (resp. cache miss). Therefore, we
obtain: TH = (800 + 10)/3 = 270ns and TM = (800 + 200)/3 ' 333ns. We choose a larger
size of packet batch with M = 8 and we assume that PCI buses work at 32 GBps so that
TR = 31.25ns. Finally, we assume a total of N = 5 ports that are irregularly loaded as
follows: Port 1 receives 10% of the whole traffic, Port 2 receives 15%, Port 3 receives 20%,
Port 4 receives 25% and Port 5 receives 30%.

Scenario 3 - IPsec

In our last scenario, we consider a vSwitch applying IPsec encryption operations on in-
coming packets. Network architects typically deploy IPsec tunnels to provide security
for data communication between pairs of distant nodes. The packets are encrypted at
the ingress of the tunnel and decrypted at its egress using computationally intensive en-
cryption algorithms implemented in IPsec. We assume that 8,000 CPU cycles are spent
to perform the encryption process and that 10 additional CPU cycles (resp. 200) are
needed to access the information if the vSwitch experiences a cache hit (resp. cache
miss). Given the speed of CPU cores (3GHz), this leads to TH = (8000 + 10)/3 = 2670ns
and TM = (8000 + 200)/3 = 2733.3ns. The size of batches is set to M = 16 packets. The
speed of PCI bus is fixed to 8 GBps so that TR = 125ns. The total number of ports is
set to N = 8 ports that are unevenly loaded as follows: Port 1 receives 5% of the whole
traffic, Port 2 receives 10%, Port 3 receives 15%, Port 4 receives 18%, Port 5 receives 22%
and Port 6 receives 30%.

2.5 Modeling a vSwitch as decoupled queues with server vacation

2.5.1 System notation

We start this section by reminding the notation introduced so far. As stated in Sec-
tion 2.4, C denotes the total number of CPU cores devoted to the packet processing and
N represents the number of ports attached to the vSwitch. As a results, the total number
of RX queues of the vSwitch is equal to N × C. Each RX queue has a finite capacity
expressed as a maximum of K packets. Each CPU core cyclically polls its associated RX
queues and processes at mostM packets from each RX queue before switching to the next
one. M is referred to as the batch size. Let us also recall that the average time needed

20

Table 2.1: Principal notation.

Symbol Description
C Number of CPU cores devoted to the packet processing
N Number of ports
K Capacity of the RX queues
M Size of packet batches
TH Average time needed by a CPU core to process a packet in case of a hit in the cache
TM Average time needed by a CPU core to process a packet in case of a miss in the

cache
TR Average time needed by a CPU core to forward a packet to a TX queue
TS Average time needed by a CPU core to switch to the next RX queue
β Switch-over rate
Λi Packet arrival rate on port i, i = 1, . . . , N

λji Packet arrival rate dispatched to the j-th RX queue of port i, j = 1, . . . , C and
i = 1, . . . , N

Λj Packet rate bound to the j-th CPU core, regardless of their incoming port (j =
1, . . . , C)

µj
i Service rate of the j-th CPU core when it is serving the i-th RX queue, j = 1, . . . , C

and i = 1, . . . , N

U j Utilization rate of the j-th CPU core, j = 1, . . . , C

Bi Blocking probability at port i, i = 1, . . . , N

bi Loss rate at the entrance of queue i, i = 1, . . . , N

q̄i Average number of packets in queue i, i = 1, . . . , N

r̄i Average sojourn time in queue i, i = 1, . . . , N

by a CPU core to process a packet is denoted by TH in case of a hit in the cache, and by
TM in case of a miss. We use TR to refer to the average time needed by a CPU core to
forward a packet to a TX queue while we use TS to denote the average time taken by a
CPU core to switch from its current RX queue to the next one.

We use Λi to denote the packet arrival rate on port i (i = 1, . . . , N) while λji refers to the
rate of packets dispatched to the j-th RX queue of port i, and hence handled by the j-th
core (j = 1, . . . , C). This is illustrated by Figure 2.2. It follows that Λi =

∑C
j=1 λ

j
i and,

assuming the hash function dispatches equally across the RX queues, we have: λji = Λi

C
.

Finally, we denote by Λj the total rate of packets bound to the j-th core CPU core,
regardless of their incoming port (j = 1, . . . , C) so that Λj =

∑N
i=1 λ

j
i .

For the sake of our modeling framework we let µj
i denote the service rate of the j-th core

when it is serving the i-th RX queue, while β denotes the switch-over rate. Note that by
definition, we have, β = 1/TS. We detail later how µj

i can be derived from TH , TM and
TR.

Table 2.1 summarizes the principal notation used in this chapter.

2.5.2 Performance parameters of interest

The objective of this chapter is to develop an accurate and scalable modeling framework
to derive performance parameters of the vSwitch. These metrics may pertain to the RX
queues or to the whole system itself. As for the i-th RX queue (i = 1, . . . , N) attached to
the j-th CPU core (j = 1, . . . , C), performance parameters of interest include the blocking

21

Figure 2.3: Illustration of a subsystem involving a single CPU core that polls N RX queues with
a size of batch of M = 2. Blue packets are being processed while red packets are waiting for
their turn.

probability (i.e., the loss rate) denoted by bji , the mean sojourn time of a packet denoted
by r̄ji , as well as the buffer occupancy denoted by q̄ji . Besides, for each CPU core j, we
use U j to indicate its utilization rate. Finally, the global performance of a vSwitch often
derive from the former inner parameters. Thus, the global CPU core utilization rate,
denoted by U , can simply be expressed as:

U =

∑C
j=1 U

j

C
(2.1)

Similarly, the packet blocking probability at port i, referred to as Bi, can be computed
as:

Bi =

∑C
j=1 b

j
iλ

j
i∑C

j=1 λ
j
i

=

∑C
j=1 b

j
iλ

j
i

Λi

(2.2)

Note that the global CPU utilization and blocking probability are performance parameters
that capture and summarize the overall level of congestion in a vSwitch, and therefore
represent metrics of direct interest for network operators.

2.5.3 Decomposition principle

The first step of the modeling framework is to break down the general switch architecture
into C independent subsystems, each of them consisting of one CPU core that polls N
independent RX queues. Recall that, as stated at the end of Section 2.4.2, we focus on
the interactions between the CPU cores, the RX queues and the ports, and as a result we
exclude from the model the transmission part of packets in TX queues. Every subsystem
is identified with a distinct color in Figure 2.2 and is simply referred to as a polling system.
In the rest of the chapter we only consider the model associated with a given CPU core
j and its N related RX queues. Therefore, for the sake of clarity, we drop superscript
j in all subsequent notations and equations. Figure 2.3 represents the polling system
associated with the considered CPU core having a service rate µi when serving its i-th
RX queue, and a switch-over rate β.

The second step of the general modeling framework consists in replacing each polling
system with a set of N decoupled queues with server vacations. This decomposition step
is illustrated in Figure 2.4. The buffer of queue i in the decomposed model represents the
i-th RX queue associated with the considered CPU core. The server of the i-th queue
in the decomposed model aims at reproducing the way packets of the i-th RX queue are

22

Figure 2.4: Decomposition of a subsystem into N separate queues with a size of batch of M = 2.
Blue vacations are active while the red vacation is inactive.

processed by the CPU core. Because the core polls all its RX queues in-between the
processing of two successive batches of (at most M) packets at a given queue i, there is
an in-between time that corresponds to the processing of one batch of packets for all the
other non-empty queues and N switch-over times. In the model, this total time will be
referred to as a vacation time. As an illustration, in Figure 2.4, the server of queue i is in
process, meaning that the CPU core is currently processing a packet of the current batch
in RX queue i, and all other queues are in vacation. In this particular example, when
queue i ends its processing, it goes in vacation, the remaining packets of queue i are put
on a hold, and, at the same time, the switch-over time between RX queue i and RX queue
i+ 1 starts. It is only after the completion of this switch-over time that queue i+ 1 ends
its vacation and starts the processing of its first M in-line packets

2.6 Solution to the queues and their performance parameters

Having reformulated the initial problem of a polling system with N queues into a set of
N separate queues with vacation time, we focus now on each of these queues.

2.6.1 Markovian assumptions

In order to derive tractable models, we make the following Markovian assumptions. We
assume that the arrival of packets at the entrance of queue i follows a Poisson process
of rate λi. We also assume that the processing time of one packet from queue i, the
switch-over time, and the vacation times, are all exponentially distributed, respectively
with rate µi, β and αi.

2.6.2 Markov chain model associated with each RX queue

Under the markovian assumptions, we can associate with each queue i of the decomposed
model, the continuous-time Markov chain depicted in Figure 2.5. The chosen state de-
scription has two dimensions and thus is made of two parts (k,CPU state). The left-hand
side corresponds to the current number of packets in the queue, k = 1, . . . , K, while the

23

right-hand side specifies if the CPU core is currently processing this queue (P), switch-
ing from this queue to the next one (S), or otherwise processing another RX queue or
switching between the other RX queues (V).

1,P 2,P 3,P

0,S 1,S 2,S

0,V 1,V 2,V

K-1,P K,P

K-1,S

K-1,V

K,S

K,V

λi

λi

λi

λi

λi

λi

λi

λi

λi

μi μi μi μi

αi αi αi αiαi ββ β β β

...

...

Figure 2.5: Continuous-Time Markov Chain associated with queue i.

In order to solve this chain corresponding to a particular queue i, we need to estimate
three parameters, namely µi, β, and αi (the other parameters λi and K are supposed to
be known). Note that if all these parameters were to be known, then we can quickly and
easily obtain the stationary probabilities of this Markov chain without resorting to any
numerical technique (see [B2] for more details).

2.6.3 Estimating the service rate µi

In order to explain how we estimate the service rate at each RX queue µi (or equivalently,
its mean processing time 1/µi), we take an example of a vSwitch having N = 4 ports
and processing packets by batch of size M = 16. Let us consider that the CPU core at
a particular round has to process a batch of 16 packets from RX queue 1 that is made
of 4 packets destined to port 2, 7 packets destined to port 3, and 5 packets destined to
port 4. We can reasonably assume that for the first packet destined to a given port, the
information necessary for its processing (typically contained in the forwarding table) has
to be fetched from the RAM, whereas for the subsequent packets destined to the same
port, the information is present in the cache. If we make this assumption, the total time
necessary to process all packets of the considered batch is thus 3TM + 13TH + 16TR, and
the average processing time by packet is 3TM+13TH+16TR

16
.

By generalizing this result, we first proposed in [B25] to estimate the average processing
time of the considered CPU core when serving a packet from its i-th RX queue by the
following simple equation:

1

µi

=

{
N−1
M
TM + M−(N−1)

M
TH + TR if M ≥ N − 1

TM + TR if M < N − 1
(2.3)

This estimation is realistic whenM >> N and when the system is heavily loaded. Indeed
in this case there is a high chance that the CPU core processes full batches, i.e., batches
made of M packets, and that in each batch there is at least one packet destined to each
of the possible N − 1 output ports. In this case, the processing time of the whole batch
is (N − 1)TM + (M − (N − 1))TH +MTR and Eq. (2.3) becomes exact.

Note that in the special case where batches are of sizeM = 1, CPU cores are very unlikely
to process consecutive packets belonging to the same flow, thereby essentially precluding
any benefit from the cache. As a result Eq. (2.3) becomes simply:

1

µi

= TM + TR. (2.4)

24

V

S β

μi

αi

Figure 2.6: Representing the vacation times in our model.

In our work [B2], we refine the calculation of µi given by Eq. (2.3) to obtain a better
estimate, especially when M is small or when the load is low.

2.6.4 Estimating the switch-over rate β

As for the switch-over rate, given a vSwitch with with batch size ofM , we simply calculate
β by spreading the delay incurred by the switch-over time TS over the M packets that
may compose the current batch. Therefore, we have:

β =
M

TS
. (2.5)

Note that if batches are of size M = 1, Eq. (2.5) turns to:

β =
1

TS
. (2.6)

2.6.5 Estimating the vacation rate αi

We represent the vacation time as the sequence of the first switch-over time and aggre-
gate all the remaining phases (including switch-over and processing times at the other
RX queues). As shown in [B24], by doing this we drastically reduce the complexity of
the model without significantly deteriorating its accuracy. This idea is illustrated in Fig-
ure 2.6. Following the processing stage of the server, the vacation starts by a switch-over
time between RX queue i and RX queue i+1. The remaining of the vacation time is then
aggregated into a single exponential phase with a given rate αi (i.e., with a given mean
duration 1/αi), that has to be accurately estimated.

To estimate the value of αi, we consider its inverse 1/αi. This latter corresponds to the
mean time between the end of switching from i-th to (i + 1)-th RX queue (marking the
time when the core is leaving queue i) and the end of switching from (i − 1)-th to i-th
RX queue (marking the time when the core is returning to queue i). Therefore, this time
includes N − 1 switch-over times, but also includes the processing of one packet for all
non-empty RX queue j different from i. It follows that:

1

αi

= (N − 1)× 1

β
+
∑
j 6=i

(1− Ej)×
1

µj

. (2.7)

In this expression, Ej represents the probability that RX queue j is empty when the core is
returning to it, i.e., at the particular instant when the switch-over time from (j− 1)-th to
j-th RX queue ends. This parameters can be extracted from the Markov chain associated
with RX queue j (equivalent to the one represented in Figure 2.5 but where i is replaced

25

by j). Indeed, Ej can be expressed as the ratio between the number of transitions from
state (0, V) to state (0, S) by unit of time, and the total number of transitions from red
states by unit of time, each of them correspondonding to the end of a vacation for RX
queue j. Therefore, we have:

Ej =
πj(0, V)αj∑K
k=0 πj(k, V)αj

=
πj(0, V)∑K
k=0 πj(k, V)

, (2.8)

where the πj are the stationary probabilities of the j-th Markov chain.

2.6.6 Fixed-point solution

As expected, the parameters of a Markov chain associated with a given queue i depend
on the stationary solution of the other Markov chains (through Eq. (2.7) and (2.8)).
As a result, the resolution of the model relies on a fixed-point iterative technique that
is summarized by Algorithm 1. The main loop of the algorithm is repeated until a
given convergence criterion is reached, e.g., the maximum relative difference of varying
parameters between two successive iterations is very small (say less that 10−7).

Algorithm 1: Fixed-point iterative technique
Input : System parameters K, µi, λi, β for each queue i
Output : Stationary probabilities πi and performance metrics for each queue i
Initialize πi, Ei for each queue i;
while convergence criterion not satisfied do

foreach queue i ∈ [[1, N]] do
Compute αi using Eq. (2.7);
Solve the Markov chain associated with queue i and compute the stationary probabilities
πi;

Compute Ei using Eq. (2.8);
end

end
Compute all performance metrics of interest from Eq. (2.9) to (2.11);

2.6.7 Computing the performance parameters

After convergence of our algorithm, we can derive the system performance parameters
from the stationary probabilities of the Markov chains as follows. The average number of
packets in queue i is given by:

q̄i =
K∑
k=1

k × (πi(k, P) + πi(k, S) + πi(k, V)). (2.9)

We can compute the loss rate at the entrance of queue i as:

bi = πi(K,P) + πi(K,S) + πi(K,V). (2.10)

The average sojourn time of an accepted packet in queue i is then obtained using Little’s
law:

r̄i =
q̄i

λi(1− bi)
. (2.11)

Note that once with these quantities are known, it is straightforward to obtain the per-
formance for the vSwitch as a whole using Eq. (2.1) and (2.2).

26

2.7 Accuracy of the Proposed Approach

To study the accuracy of our modeling approach, we explore the three scenarios described
in Section 2.4.3. We compare the results of our model to those of a home-made discrete-
event simulator written in Java, whose code is made available [B4].

Unlike our model, the simulator precisely implements the behavior of a vSwitch as de-
scribed in Section 2.4: i) Packets queued on an RX queue are processed by batches; ii)
The time to process a packet is closely related to the presence or absence of the corre-
sponding instructions in the cache, and not only averaged as this is the case in the model;
iii) After processing a batch of packets on a given RX queue, the CPU core is assigned
to the next RX queue. As such, the simulator does not proceed, as the model does, with
a decomposition of the vSwitch architecture into decoupled queueing subsystems with
vacation time.

Furthermore, we provide a brief validation of our simulator against real-life measurements
to demonstrate its relevancy. For a given scenario, we compare the results provided by our
discrete-event simulator [B4] that implements the behavior of a vSwitch as described in
Section 2.4 with those collected on a real-life vSwitch implementing DPDK. The scenario
is defined as follows. We consider a vSwitch with a total of N = 32 ports (equally loaded),
RX queues of capacity K = 128 packets, CPU cores running at 2.3 GHz, a switch-over
times TS of 1ns, packet batch of size M = 8 and an average packet processing time of
178 CPU cycles corresponding to 77.43ns. The real-life vSwitch implements OVS with
6WINDGate and DPDK running on Ubuntu Linux with Intel Core i7 CPUs and Intel
ixgbe NICs. Packets of 64 bytes were generated using IXIA. Figure 3.5 represents the
corresponding results for the loss rate and the average queue size for a wide range of values
of load. We observe that the results delivered by our simulator are in fair agreement with
the experimental measurements.

10 11 12 13 14 15
Load (Mpps)

0

20

40

60

80

100

120

140

A
v
e
ra

g
e
 Q

u
e
u
e
 S

iz
e

Exp.

Simu.

(a) Average queue size.

10 11 12 13 14 15
Load (Mpps)

0.00

0.05

0.10

0.15

0.20

Lo
ss

 R
a
te

Exp.

Simu.

(b) Loss rate.

Figure 2.7: Simulator results against real-life measurements.

To validate the accuracy of our model, we run the simulator using seven independent
replications of 50,000,000 packets completions each. The obtained estimated confidence
intervals at 95 percent confidence level are so small that we use only the mid-point in our
validation. In each scenario, we consider a wide range of values for the packet arrival rate,
varying from a very low level of load up to a high level corresponding to a full saturation
of the vSwitch.

Numerical results for Scenario 1, in which we consider the case of a simple forwarding

27

with N = 4 ports and batches of M = 4 packets, are presented in Figure 2.8. Refer to
Section 2.4.3 for a complete list of the parameters. Figure 2.8a represents the average
queue size (number of packets being buffered in RX queues) as a function of the load.
We first notice that possible values of the average queue size vary from 0 for a low level
of load up to 128 (corresponding to the capacity K of RX queues) when the load is high.
As expected, we observe that the most loaded port, namely port 4 (receiving 40% of the
total load), is the first to saturate when the load increases. For example, at a level of
load of 8 Mpp, the queue associated with port 4 is almost full (i.e., close to 128 packets)
while the queues associated with the three other ports are almost empty. Note also that
the curves are significantly steep denoting a high sensibility to the actual level of load. In
Figure 2.8b, we consider the loss rate (i.e., blocking probability) experienced by each port
as a function of the load. We note that the most loaded port is again the first to undergo
losses as soon as the load exceeds 7 Mpps. Finally, we study the evolution of the average
sojourn time spent by a packet in an RX queue in Figure 2.8c. At heavy levels of load, the
value found for each port converges to a common asymptotic value (corresponding to the
average time necessary to process 128 packets of a given RX queue). Overall, Figure 2.8
shows the close agreement between the proposed model and simulation.

4 6 8 10 12 14 16 18 20

Load (Mpps)

0

20

40

60

80

100

120

140

A
ve

ra
ge

Q
u

eu
e

S
iz

e

Port 1

Port 2

Port 3

Port 4

Model

Simu

(a) Average queue size.

4 6 8 10 12 14 16 18 20

Load (Mpps)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L
os

s
R

at
e

Port 1

Port 2

Port 3

Port 4

Model

Simu

(b) Loss rate.

4 6 8 10 12 14 16 18 20

Load (Mpps)

0

10

20

30

40

50

60

70

A
ve

ra
ge

S
o

jo
u

rn
T

im
e

(µ
s)

Port 1

Port 2

Port 3

Port 4

Model

Simu

(c) Average sojourn time.

Figure 2.8: Accuracy of our approach on Scenario 1 - Simple forwarding.

Scenario 2 deals with the case of a vSwitch whose flow table is much larger and complex.
Let us recall that, in this scenario, the number of ports is set to N = 5 while the size
of batches equals M = 8 packets. Figure 2.9 presents the associated results. Figure 2.9c
shows that, in the case of the average sojourn time, the asymptotic value for large levels of
load differs from that found on Figure 2.8c. This gap results from the fact the mean time
to process a packet is significantly larger in our second scenario. Here too, the performance
parameters returned by our model closely match those delivered by the simulator.

2 4 6 8 10 12

Load (Mpps)

0

20

40

60

80

100

120

140

A
ve

ra
ge

Q
u

eu
e

S
iz

e

Port 1

Port 2

Port 3

Port 4

Port 5

Model

Simu

(a) Average queue size.

2 4 6 8 10 12

Load (Mpps)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L
os

s
R

at
e

Port 1

Port 2

Port 3

Port 4

Port 5

Model

Simu

(b) Loss rate.

2 4 6 8 10 12

Load (Mpps)

0

50

100

150

200

250

A
ve

ra
ge

S
o

jo
u

rn
T

im
e

(µ
s)

Port 1

Port 2

Port 3

Port 4

Port 5

Model

Simu

(c) Average sojourn time.

Figure 2.9: Accuracy of our approach on Scenario 2 - Complex routing.

Finally, Scenario 3, which addresses the case of a vSwtich performing IPsec functions
and featuring N = 6 ports with a size of batches set to M = 16 packets, is handled in

28

Figure 2.10. We again observe that the performance obtained from our model are close
to those delivered from the simulator at any level of load.

0.0 0.5 1.0 1.5 2.0

Load (Mpps)

0

20

40

60

80

100

120

140

A
ve

ra
ge

Q
u

eu
e

S
iz

e

Port 1

Port 2

Port 3

Port 4

Port 5

Port 6

Model

Simu

(a) Average queue size.

0.0 0.5 1.0 1.5 2.0

Load (Mpps)

0.0

0.2

0.4

0.6

0.8

1.0

L
os

s
R

at
e

Port 1

Port 2

Port 3

Port 4

Port 5

Port 6

Model

Simu

(b) Loss rate.

0.0 0.5 1.0 1.5 2.0

Load (Mpps)

0

500

1000

1500

2000

2500

A
ve

ra
ge

S
o

jo
u

rn
T

im
e

(µ
s)

Port 1

Port 2

Port 3

Port 4

Port 5

Port 6

Model

Simu

(c) Average sojourn time.

Figure 2.10: Accuracy of our approach on Scenario 3 - IPsec.

2.8 Examples of Application

Influence of switch-over time

We begin by studying the impact of the switch-over time on the average size of RX queues.
We use parameters close to those of Scenario 2 and let TS vary so that it ranges from
a very low overhead (i.e., representing 0.1% of the average packet processing time), all
the way to a massive overhead (i.e., 100%). Then, based on our model, we compute the
average number of packets buffered in the RX queue of the most loaded port for different
levels of load. The associated results are reported in Figure 2.11a. First, we notice that
the relationship between TS and the average queue size is far from being linear. Indeed,
the deviation between an overhead of 100% and 50% is approximately twice smaller than
that between 50% and 0.1%. Second, starting from a switch-over time representing ap-
proximately 2% of the packet processing time, all curves for subsequent smaller values
tend to coincide. From a practical point of view, this suggests that, whenever the switch-
over time represents an overhead less than, say 1% or 2%, they can be neglected in the
performance analysis of a vSwitch.

Load

(a) On the average size of an RX queue for Sce-
nario 2 for various levels of load.

20 40 60 80 100
Switch-over Time (% of packet processing time)

0.5

0.6

0.7

0.8

0.9

1.0

L
oa

d
(M

p
p

s)

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

(b) On the loss rate experienced at an RX queue for
Scenario 2 for various levels of load.

Figure 2.11: Influence of the switch-over time.

29

We continue this study by examining simultaneously the influence of the switch-over time
and of the load, on the loss rate of an RX queue. Figure 2.11b shows the corresponding
results with a varying switch-over time on the X-axis and a varying load on the Y-axis.
As shown by the figure, when the load is low (under 0.5-0.6 Mpps), the value of the
switch-over time overhead has virtually no influence on the loss rate that remains totally
negligible, whereas when the load is high (close to 1 Mpps), the switch-over time overhead
has a large impact on the loss rate.

Influence of batch size

In our second example, we investigate the influence of the size of packet batchesM on the
performance of a vSwitch. We begin our study by considering Scenario 1. We let M vary
from a value of 1, in which at most one packet of each RX queue is processed before the
CPU core moves to the next RX queue, up to a value of 32. We restrict our analysis on
the loss rate experienced by the most loaded port, namely port 4. Figure 2.12a shows the
corresponding results. We observe that there is a substantial gain in increasing the size
of packet batches as the onset of packet losses is postponed from a load of 6.5 Mpps for
M = 1 to a load of almost 10 Mpps forM = 32, which represents an improvement of more
than 50%. In the same way, while a load of 9 Mpps results into a severe congestion for a
vSwitch parameterized with M = 1 (with a loss probability approaching 0.55), setting M
to 32 leads to virtually no packets being lost. It is worth noting that the marginal gain
of incrementing the size of batches decreases quite rapidly with growing values of M .

4 6 8 10 12 14 16 18 20

Load (Mpps)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L
os

s
R

at
e

M=1

M=2

M=4

M=8

M=16

M=32

(a) On the loss rate experienced at an RX queue for
Scenario 1.

2 4 6 8 10 12

Load (Mpps)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L
os

s
R

at
e

M=1

M=2

M=4

M=8

M=16

M=32

(b) On the loss rate experienced at an RX queue for
Scenario 2.

Figure 2.12: Influence of the size of batches.

To develop a better understanding of the effect of M on the behavior of a vSwitch, we
switch to Scenario 2 and we re-run our experiment. Let us recall that in this scenario
the time for processing a packet varies much less between a cache hit and a cache miss.
We represent the obtained results in Figure 2.12b. As is shown, the size of the packet
batches does not affect much the values obtained for the loss rates. Indeed, the gain
obtained by increasing M from 1 to 32 barely reaches 10%. This is in stark contrast with
Scenario 1. This difference stems from the nature of the load. Indeed, unlike Scenario 1,
here incoming packets belonging to the same batch are quite unlikely to access the same
information in the CPU cache, and hence there is little benefit in batching their services.

Based on these two examples, it appears that increasing the size of packet batches may

30

significantly improve the performance of a vSwitch. However, the magnitude of the gain
may vary widely depending on the characteristics of the packet processing times. Signif-
icant gains are expected when the average time needed to process a packet in case of a
cache hit is significantly less than in the case of a cache miss.

Ensuring zero-loss policy

To illustrate the potential application of our model, we consider the problem of determin-
ing the proper number of CPU cores to meet a given QoS criterion. Operators often aim
to size their networking devices so that packets exchanged over these devices are (almost)
never dropped. We now describe how our model can help achieve this so-called “zero-loss”
policy on a vSwitch.

We consider a vSwitch parameterized closely to that described in Scenario 3 but with
M = 1. However, we let the number of allocated CPU cores, C, unspecified as it varies
from 1 to 20. Then, for increasing values of the load submitted to the vSwitch, we compute
the total loss rate experienced over all RX queues. Figure 2.13 shows the corresponding
results. We observe that for a load of 8 Mpps, a minimum of C = 10 cores is required
to ensure the zero-loss policy. This number grows to C = 17 cores if the load gets to
14 Mpps.

Load

Figure 2.13: Ensuring zero-loss policy by adequately determining the number of allocated CPU
cores.

Dimensioning curves, analogous to those depicted in Figure 2.13, are easily and quickly
delivered by our model. We believe that the knowledge conveyed by these curves can
provide useful information in order to avoid the under- or over-provisioning of networking
devices.

2.9 Related Works

Many works have concentrated their efforts on evaluating the performance of DPDK-
based vSwitch, either by conducting measurements or by using modeling techniques. In
the following, we first present the approach adopted by DPDK’s contributors to address
this topic from an experimental point of view. We then review modeling attempts of
vSwitch systems and, because polling is a key feature of DPDK systems, we study the
related works of polling models.

31

Experimental approach

With the objective of achieving the best software switching performance, engineers con-
tributing to the DPDK library developed internal performance measurement tools similar
to monitoring probes. This approach has the advantage of giving a localized and pre-
cise analysis of low-level performance of a DPDK system, thus allowing developers to
benchmark and validate any novel implementation or algorithmic optimization.

Nonetheless, the fact of reading and updating values in the system, typically when han-
dling a counter, blocks the CPU cores for a while and so, reduces the overall system
performance. About this, Vyatta/Brocade principal software architect stated during the
2015 Dublin DPDK Userspace forum that the act of “observing performance slows it
down” [B8] To overcome this issue the performances of DPDK-based switching solutions
are mainly assessed experimentally using dedicated test software such as the TestPMD ap-
plication provided by Intel [B9]. Such applications are for instance used by Intel to publish
bi-annual DPDK performance reports [B10]. Several works also attempted to experimen-
tally characterize the open vSwitch performance. Most of them conducted measurements
on an experimental testbed to demonstrate the enhancement provided by DPDK [B5].
They also measured the impact of the number of NIC, the offered load, and the packet size
[B30]. Other works investigated the impact of active flow monitoring [B17], that might
simply consist in sampling packets being forwarded across the vSwitch. Again, increasing
the sampling rate to gain accuracy keeps consuming CPU resources, and in turn degrades
the overall performance.

Modeling approach

By being non-intrusive in nature, modeling approaches can be used to overcome these
measurement constraints and help in the performance evaluation of a DPDK system.

Non-DPDK-specific vSwitch modeling

Modeling the performance of vSwitch systems has been addressed for non-DPDK-specific
systems. For instance, a model for estimating the packet loss probability and the aver-
age sojourn time of OpenFlow architectures is provided in [B11]. This model assumes
that all the packets arrive at the same queue before being forwarded to the switch. Suk-
somboon et al. presented an optimal configuration selection algorithm for Linux-based
software routers relying on an Erlang-k-based packet latency prediction model [B26]. Such
prediction model uses measurements performed on two different router configurations to
accurately predict the performance of all the configurations. It considers the case of
systems with only a single CPU core.

These works cannot capture the effect of more sophisticated processing strategies such as
polling used in the DPDK Poll Mode Driver or packet batch processing, that both highly
contributes to a vSwitch performance enhancement [B7].

Polling system modeling

As polling is a key feature of DPDK systems, we review the works done in this regard.
Reference surveys on polling models were published in the early 1990’s by Takagi to
provide a classification of polling systems and related research advances [B27], [B28].

32

Polling systems can be classified according to service policies, that might be exhaustive
or gated, and unlimited or M-limited. Exhaustive: Once the server polls a given queue,
it serves the queue until its complete exhaustion, and then it switches to the next queue.
This implies that any request arriving in a queue while the server is currently processing
another request of the same queue will be served before the server moves to the next
queue. Gated: Unlike the exhaustive policy, the server does not process (in the current
round) requests that may enter the queue while the server is already serving this same
queue. Additionally, for both aforementioned policies, one can set an upper limit on the
number of requests that the server can process for the same queue before switching to
the next one. M-Limited: On each turn, the server can serve at most M requests for each
queue. This corresponds to the case studied in this chapter. Unfortunately, the general
solution to polling systems is not known. However, their analysis is no less important, and
therefore, several approximations have been developed. Tran-Gia proposed an analytical
framework for computing the performance of a gated 1-limited polling system with non-
zero switch-over time [B29]. The modeling approach consists of solving a fixed-point
problem to evaluate the state probabilities of an embedded Markov chain. It requires
the computation of Laplace-Stieltjes transforms as well as the use of Laplace inversion
procedures or two-moment approximation techniques. As stated by the authors, such
model is accurate only for large switch-over times and small values of the queue capacities
(less than 10 requests). The fixed-point approach developed by Tran-Gia has then been
extended to the case of exhaustive M-limited systems in [B13]. In this work, the authors
leverage the techniques provided by Lee to study M/G/1/K queues with server vacation
[B14], [B15]. It consists in decomposing the polling system in individualM/G/1/K queues
with server vacation. Each queue is then studied at polling instants. To reduce the number
of modeling assumptions introduced in the previous works, a more general framework
is presented in [B12]. When conducting the analysis of each queue, it eliminates the
hypothesis that the busy period, i.e., the time the server is not on vacation and that
the vacation times are independent. This approach relies on solving a system of several
numerical equations. However, as stated by the author, the complexity of the involved
expressions may require the use of a symbolic computation software.

In conclusion, most of these approaches address a different policy than that implemented
in vSwitches, and/or they involve complex arithmetic operations that may not scale with
the number of queues or with their capacity. Hence, they seem to be of little help when
evaluating the performance of a DPDK-based vSwitch system.

2.10 Conclusions

Summary of Contributions

In this chapter, we present an analytical queueing model to evaluate the performance of a
DPDK-based virtual switch with several CPU cores and network interface cards. Polling
systems, in which a set of servers sequentially poll packets from a set of queues, with batch
services, in which several packets are processed simultaneously, arises as an appropriate
representation for modeling the behavior of a vSwitch. To circumvent the combinatorial
growth of the state space associated with these models and their inherent complexity,
we decouple the polling system associated with each CPU into several queues and we
resort to servers with vacation to capture the interactions between queues. Our proposed
solution is conceptually simple, easy to implement and computationally efficient.

33

We conduct tens of examples to assess the accuracy of our proposed model for various
performance parameters such as the attained throughput, the packet latency, the buffer
occupancy and the packet loss rate under various levels of loads. Comparisons against
a discrete-event simulator show that our models typically deliver accurate estimates of
the performance parameters. We illustrate how our models can help in determining an
adequate setting of the vSwitch parameters using three real-life case studies, and derive
some qualitative conclusions. For example, we find that increasing the size of packet
batches may significantly improve the performance of a vSwitch, but only if a cache miss
implies a much larger access time than a cache hit.

Encountered Difficulties

The main difficulty faced during this work was probably the lack of a technical documenta-
tion describing the inner workings of a DPDK-based vSwitch. Fortunately, we managed
to collect all the required information thanks to 6WIND which brought us a sufficient
understanding of the system to carry out our performance modeling. However, this learn-
ing process took time (almost two years) and implied many meetings, discussions, and
exchanges of emails with 6WIND, as well as our own search for information on the web.

Strengths and Limitations

In my opinion, the main strength of our model is its simplicity. It is conceptually simple,
scalable with the number of CPUs and NICs, easily implementable and its execution is
fast.

On the other hand, the main limitation of our work probably lies in the lack of exper-
imental data. Although we managed to describe realistic scenarios and to validate our
simulator against real-life measurements, additional empirical study would probably have
reinforced this work. Unfortunately, we relied on 6WIND to obtain real-life measurements
and this proved to be more complex than they initially thought.

Possible Extensions

So far, we only investigated the performance of a DPDK-based vSwitch when setup in its
standard configuration (known as the Poll Mode Driver). In this mode, each CPU core
(with the exception of the master) contributes to processing packets from all the existing
NICs. Other configurations, where a subset of CPU cores are devoted to a subset of NICs,
could be worth exploring.

Potential Impact

As far as we know, we were the first to address the issue of performance modeling for
DPDK-based vSwitches. Thus, our work may stimulate further research in this direction.
As for potential impacts in the industry, our model may help engineers to better set up the
resources and the parameters of vSwitches (e.g., number of allocated CPU cores and size of
batches) before deploying them. Finally, the model can help in identifying the bottleneck
limiting the performance of DPDK, and hence indicate where DPDK developers should
focus their effort to overcome it.

34

Learned Experiences

Because of the inherent complexity of DPDK-based vSwitches and the many factors rul-
ing their behavior, we adopted an incremental approach. Indeed, in our first attempt at
modeling [B1], we neglected both the effects of packet batching and switch-over times.
Then, we introduced the possibility of having switch-over times [B24], and the possibil-
ity of having packet batches [B25]. Finally, our last contribution [B2] includes realistic
scenarios derived from real-life situations and experimental validations against real-life
experiments. More generally, I believe that, in many cases, an incremental approach is
an effective way of conducting research.

Additionally, this work also emphasized the importance of regularly writing progress re-
ports and archiving all materials. Indeed, to address a reviewer request in our latest
work [B2], we relied to measurements that we received from 6WIND two years earlier.

References for Chapter 2

[B1] G. Artero Gallardo, B. Baynat, and T. Begin. Performance modeling of virtual
switching systems. In IEEE MASCOTS, 2016.

[B2] T. Begin, B. Baynat, G. Artero Gallardo, and V. Jardin. An accurate and effi-
cient modeling framework for the performance evaluation of DPDK-based virtual
switches. IEEE Transactions on Network and Service Management, 2018.

[B3] Data Plane Development Kit (DPDK). http://dpdk.org, 2017. Intel, 6WIND, etc.

[B4] DPDKSim - A simulator for DPDK-based Virtual Switches.
https://github.com/garterog/DPDKSim, 2018.

[B5] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle. Performance characteristics
of virtual switching. In IEEE CloudNet, 2014.

[B6] Fast data – Input/Output - Vector Packet Processing. https://wiki.fd.io/, 2017.

[B7] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle. Comparison
of frameworks for high-performance packet io. In ACM/IEEE ANCS, 2015.

[B8] S. Hemminger. DPDK performance, Lessons learned in vRouter. In DPDK Summit,
Userspace 2015, https://dpdksummit.com/Archive/pdf/2015Userspace/DPDK-
Userspace2015-StephenHemminger-Performance.pdf, 2015.

[B9] Intel DPDK. The TestPMD Application. In
http://dpdk.org/doc/guides/testpmd_app_ug/index.html.

[B10] Intel DPDK Validation team. DPDK Intel NIC Per-
formance Report Release 18.02, March 2018. In
http://fast.dpdk.org/doc/perf/DPDK_18_02_Intel_NIC_performance_report.pdf.

[B11] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia. Modeling
and performance evaluation of an openflow architecture. In ACM/IEEE ITC, 2011.

[B12] D. Kofman. Block probabilities, throughput and waiting time in finite capacity
polling systems. Queueing Systems, 1993.

35

[B13] M. Lang and M. Bosch. Performance analysis of finite capacity polling systems
with limited-m service. In ACM/IEEE ITC, 1991.

[B14] T. T. Lee. M/G/1/N queue with vacation time and exhaustive service discipline.
Operations Research, 32(4):774–784, 1984.

[B15] T. T. Lee. M/G/1/N queue with vacation time and limited service discipline.
Performance Evaluation, 9(3):181–190, 1989.

[B16] H. Levy and M. Sidi. Polling systems: applications, modeling, and optimization.
IEEE Transactions on Communications, 38(10), 1990.

[B17] V. Mann, A. Vishnoi, and S. Bidkar. Living on the edge: Monitoring network flows
at the edge in cloud data centers. In IEEE COMSNETS, 2013.

[B18] N. McKeown, T. Anderson, H. Balakrishnan, G. M. Parulkar, L. L. Peterson,
J. Rexford, S. Shenker, and J. S. Turner. OpenFlow: enabling innovation in campus
networks. Computer Communication Review, 38(2), 2008.

[B19] Open vSwitch - An Open Virtual Switch. http://www.openvswitch.org, 2017.

[B20] OpenOnload. http://www.openload.org, 2017. Solarflare.

[B21] PacketShader. http://shader.kaist.edu/packetshader/, February 2011.

[B22] L. Rizzo. netmap: A novel framework for fast packet I/O. In USENIX ATC, 2012.

[B23] D. Scholz. A Look at Intel’s Dataplane Development Kit. Network, 115, 2014.

[B24] Z. Su, B. Baynat, and T. Begin. A new model for DPDK-based virtual switches.
In IEEE NetSoft, 2017.

[B25] Z. Su, T. Begin, and B. Baynat. Towards including batch services in models for
DPDK-based virtual switches. In IEEE GIIS, 2017.

[B26] K. Suksomboon, N. Matsumoto, S. Okamoto, M. Hayashi, and Y. Ji. Erlang-k-based
packet latency prediction model for optimal configuration of software routers. In
IEEE NetSoft, 2017.

[B27] H. Takagi. Queuing analysis of polling models. ACM Comput. Surv., 20(1):5–28,
1988.

[B28] H. Takagi. Analysis of finite-capacity polling systems. Advances in Applied Proba-
bility, 1991.

[B29] P. Tran-Gia and T. Raith. Performance analysis of finite capacity polling systems
with nonexhaustive service. Performance Evaluation, 9(1):1 – 16, 1988.

[B30] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen. Scalable, high
performance ethernet forwarding with cuckooswitch. In ACM CoNEXT, 2013.

36

Chapter 3

Conflict graph-based modeling of IEEE
802.11 networks

Contents
3.1 Research Context . 38

3.2 Outline . 39

3.3 Motivations . 39

3.4 State of the Art . 40

3.5 System Description . 41

3.6 Model and its Solution . 44

3.6.1 Decomposing into subnetworks . 44
3.6.2 Solving each subnetwork as one or more Markov chain(s) 45
3.6.3 Combining subnetwork solutions . 49

3.7 Numerical Results . 50

3.7.1 Model validation . 50
3.7.2 Modeling complexity . 54
3.7.3 Possible application: Channel assignment 54

3.8 Conclusions . 57

37

Abstract

WLANs (Wireless Local Area Networks) based on the IEEE 802.11 standard have
become ubiquitous in our daily lives. To extend their coverage and transmission
capacity, network operators typically augment the number of APs (Access Points)
composing the WLAN. This leads to network densification, which in turn demands
some form of coordination between APs so as to avoid potential misconfigurations.

In this chapter, we describe a performance modeling method that can provide guid-
ance for configuring WLANs and be used as a decision-support tool by a network ar-
chitect, or as an algorithm embedded within a WLAN controller. The proposed ap-
proach estimates the attained throughput of each AP, as a function of the WLAN’s
conflict graph, the AP loads, the frame sizes, and the link transmission rates. Our
modeling approach employs a Divide-and-Conquer strategy that breaks down the
original problem into multiple sub-problems, whose solutions are then combined to
provide the solution to the original problem. We conducted extensive simulation
experiments using the ns-3 simulator that show the model’s accuracy is generally
good with relative errors typically less than 10%. We then explore the issue of
assigning channels to APs when configuring a WLAN.

3.1 Research Context

During the 2010-2013 period, I was involved in an ANR (French National Research
Agency) funded project called RESCUE. This project focused on wireless-based substi-
tution networks [C29, C3]. As part of this project, we developed a modeling frame-
work to theoretically evaluate the performance of multi-hop IEEE 802.11-based net-
works [C1, C2, C4]. In practice, we model each node belonging to a chain (or routing
path) by a single server queue so that the full chain was modeled as a set of queues in
series. The difficulty lied in adequately setting the values of the service times on each
server. Indeed, the service time at each queue is a function of many factors, including
the frame sizes, the link transmission rates, the collision probabilities, the throughputs of
neighbor nodes, etc. We managed to come up with a closed-form expression for the service
times in the case of small-scale multi-hop chains (up to 4 nodes). However, although our
ultimate goal was to enable our approach to deal with large chains of networks (say 8
or 10), we realized that the tuning of some of the model parameters (e.g., the collision
probability) will hinder the scalability of our approach.

A couple of years later, as part of a Master internship (co-supervized with Anthony
Busson) that evolved into a Ph.D. that I am currently supervizing, I tackled again the
issue of modeling IEEE 802.11 networks. Although the studied topic was not exactly
the same (we were no more considering substitution networks), it had much in common.
Therefore, based on my prior experience on IEEE 802.11, I really made sure that, since
the very beginning and during the whole modeling process, we will design models that
can scale up easily with the number of nodes.

This chapter details this contribution, which pertains to the modeling of IEEE 802.11-
based wireless networks. It results from a joint-effort together with Anthony Busson
(UCBL) and Marija Stojanova (UCBL). So far, it led to the publication of one conference
paper [C31] as well as one journal paper (currently in revision) [C32].

38

3.2 Outline

The remainder of this chapter is organized as follows. In Section 3.3 we discuss the
scientific context around this work as well as its motivations. Section 3.4 provides a
review of the related works. In Section 3.5, we describe the considered system and the
performance metrics of interest. Our modeling framework for IEEE 802.11-based WLANs
is detailed in Section 3.6. In Section 3.7, we present the numerical evaluation of our model
as well as a possible application to the configuration of a WLAN. Section 3.8 concludes
this chapter.

3.3 Motivations

WLANs (Wireless Local Area Networks) have become ubiquitous and part of our daily
lives. They are frequently offered in public places such as cafes, restaurants, hotels,
shopping malls, museums, metro and train stations, airports, and often available in places
like trains, planes, workplaces, domestic houses, educational institutions, etc. As for the
devices connected to an Access Point (AP) of a WLAN, their variety has greatly expanded,
comprising desktop and laptop computers, IP phones, smartphones, digital media players,
etc.

WLANs are typically based on the IEEE 802.11 standard [C16] (commercially known as
WiFi). In order to meet the increasing needs of WLAN users, IEEE 802.11 has under-
gone several amendments, mostly aimed at strengthening its performance and security. In
particular, MAC (Medium Access Control) and PHY (Physical) functions have been en-
hanced. Indeed, transmission technologies, defining the PHY layer of IEEE 802.11, have
significantly evolved over the years using e.g., wider channels, higher-order modulations,
multiple-input multiple-output antennas (MIMO). Maybe to a lesser extent, the MAC
layer has also undergone some transformations with the possibility of using the Request
to Send / Clear to Send mechanism (RTS/CTS), smaller mandatory waiting periods be-
fore transmissions, as well as frame aggregation and block acknowledgment in the latest
amendments of IEEE 802.11.

In order to extend the coverage and the available transmission capacity of WLANs, net-
work architects may augment the number of APs within a WLAN. This network densifica-
tion comes with a growing complexity in the WLAN management. Indeed, a WLAN with
several APs requires some form of coordination between its APs so as to avoid potential
misconfigurations that could lead to an inefficient use of radio resources, poor performance
and/or unfairness between users. For instance, coordination efforts can pertain to the se-
lection of a radio channel for each AP (for mitigating interferences from neighboring APs)
as well as to the association of user devices with the APs (for balancing the load among
APs). Some proprietary and commercial solutions implement such mechanisms. Among
others, CAPWAP and 802.11v protocols, issued by IETF and IEEE respectively, enable
APs (within the same WLAN) to exchange information about the network topology and
radio environment to a central controller. However, the algorithms run by the controller
and exploiting this knowledge are yet to be designed. Indeed, unlike PHY and MAC
layers, coordinating the APs of a WLAN has attracted little attention so far.

In this chapter, we describe a performance modeling method that can provide guidance for
configuring an IEEE 802.11-based WLAN composed of multiple APs. The method can be
used as a decision-support tool by a network architect or as an algorithm embedded within

39

a WLAN controller. The proposed approach offers estimates of the attained throughput
of each AP. These estimates are obtained in return for a WLAN description including
its conflict graph, the AP loads, the frame sizes, and the link transmission rates. Our
modeling approach employs a Divide-and-Conquer strategy in which we break down the
complexity of the original problem by considering multiple sub-problems, whose solutions
are then combined to provide the solution to the original problem. The proposed solution
is conceptually simple, easily implementable, and can be fully automated. We conducted
extensive simulation experiments using the ns-3 simulator to evaluate the accuracy of our
solution. Numerical results show that its accuracy is generally good with relative errors
typically less than 10%.

3.4 State of the Art

The different models that evaluate the performance of IEEE 802.11-based WLANs range
over a wide spectrum of levels of abstraction. Bianchi [C5] as well as Cali, Conti, and
Gregori [C8] model the network at a very fine level of abstraction. Both models take
into account the behavior of every single frame transmission. In [C8] the authors analyze
the ratio of the average frame size and its average transmission time in order to study
the utilization of the network’s capacity. Bianchi’s seminal work [C5] introduced a model
based on a two dimensional Markov chain. The Markov chain models the backoff process
that takes place before every Distributed Coordination Function (DCF) frame transmis-
sion while the network is assumed to be fully-connected, i.e., all nodes are neighbors. A
property shared by both models is that the networks they consider are saturated, meaning
all nodes constantly have frames waiting to be sent.

Because the saturation assumption can be deemed too restrictive in some cases, many
subsequent works are centered on relaxing it. Kosek-Szott [C20] as well as Gupta and
Rai [C14] circumvent this barrier by adding one more state to the Markov chain proposed
by Bianchi [C5]. This new state represents a node that has no frames to be sent. Note
that both works deal only with fully-connected networks.

Another solution is proposed by Felemban and Ekici [C12], who have removed the condi-
tion of saturation by introducing the probability that a node has a frame waiting to be
sent. They do so by creating a second Markov chain, embedded into Bianchi’s original
Markov chain. The embedded chain describes the current state of the channel, which can
be either idle, in collision, or in successful transmission. The solution to their model is
found by successively iterating between the two chains. Upon convergence, the found so-
lution delivers the steady state transmission probability for each node, which can then be
used to evaluate the network’s performance. However, like Bianchi’s original model [C5],
the focus of this work is restricted to fully-connected networks.

To overcome the inherent complexity tied to a fine level of abstraction when the network
grows in size, other works have developed modeling approaches that incorporate both a
fine-level and a high-level of abstraction. Two such models are given in [C30] and [C4].
Both models analyze non-saturated multi-hop networks. In a multi-hop network, a packet
from node A travels across relay nodes before arriving at its destination node B (as opposed
to single-hop networks, where A and B directly exchange packets). Both papers present
two-level modeling approaches of unsaturated multi-hop wireless networks, in which the
low-level model is a version of Bianchi’s original Markov chain, while the high-level model
aims at capturing the inter-node dependencies in the network. In [C4], the high-level
model consists of a set of M/M/1/K queues, where each queue represents a given node

40

of the network. Although their modeling framework is designed to handle any number of
nodes, setting the parameters of the models become a complex matter when the network
comprises more than 4 nodes. In [C30], the high-level model is a separate Markov chain
describing the channel’s behavior. In practice, their analytical model leads to a large state
space as the number of nodes increases, making it intractable for networks with more than
7 or 8 nodes.

Finally, at the other extreme of the spectrum, there are the modeling approaches that
analyze the network from a high level of abstraction. These models do not take into
account the behavior of every frame transmission, and instead, deal with the behavior
of the entire network as a whole. In [C22, C11, C18], Markov chains are used to model
a network based on its topology. The states of the chain describe the set of nodes that
are transmitting in the current network state. Nardeli and Knightly [E17] rely on a
Markov chain to derive a model that takes into account the errors due to collisions and
hidden terminals for a single-hop network. The authors derive a closed-form expression
for the throughput. Although the model accurately captures the behavior of CSMA/CA
networks, it only deals with saturated networks. In [C11], a similar Markov chain is used
to evaluate the fairness and spatial reuse in multi-hop, saturated networks with different
carrier sensing and reception zones. More particularly, the authors study the spatial
reuse in line-networks to show that CSMA/CA achieves maximal spatial reutilization as
traffic intensity increases, at the cost of creating starvation in certain links. In [C7, C34]
CSMA/CA networks are modeled as Markov chains and the model is then used to study
the fairness of the network.

A novel approach in the modeling of non-saturated networks is introduced in [C19]
and [C21], where the authors have chosen to map the idle time of a node to a longer
backoff period. This approach keeps the simplicity of a saturated network model by not
explicitly representing idle states, and yet allows the study of unsaturated nodes. Kai and
Zhang [C19] propose a model that calculates the throughput of non-saturated CSMA/CA
networks with arbitrary topologies. Laufer and Kleinrock [C21] use a similar model to
estimate the throughput of a node in a fully-connected CSMA/CA network using the
ratio between the transmitting and the backoff periods of that node, its probability of
successful transmission, and the channel capacity. The result is then used in the analysis
of a network’s capacity region, based on nodes’ throughputs, under stability conditions.

In this chapter, we study unsaturated, not fully-connected IEEE 802.11 wireless net-
works. We present a conflict graph-based modeling approach to discover the attainable
throughput of each node. We apply a Divide-and-Conquer approach resulting in a series
of Markov chains that together describe, at a high-level of abstraction, the current state
of the entire wireless network. The conceptual simplicity of our model allowed us to fully
automatize the procedure and to test it on networks of different sizes and topologies.

3.5 System Description

The system we consider is a Wireless Local Area Network (WLAN). Here, WLAN refers
to any wireless network that implements the IEEE 802.11 standard in the Physical (PHY)
and Medium Access Control (MAC) layers. IEEE 802.11 standards are accompanied by
a series of amendments. Each amendment serves as an addition to the IEEE 802.11
standard and is developed to either modify the standard’s PHY and MAC characteristics
or offer additional functionalities not implemented in the basic standard. Examples of

41

these are the IEEE 802.11g that enhances the physical layer of the standard (and preceding
amendments), and the IEEE 802.11i which offers additional security features.

In terms of the physical layer, every IEEE 802.11 standard amendment has a set of trans-
mission rates that represent the physical rates at which a node can send data over the
channel. The wireless channel is generally imperfect and highly affected by its environ-
ment. Therefore, when a transmission rate is chosen for a communication between two
nodes the goal is to have the highest possible transmission rate while keeping a low error
rate [C6]. A node can also choose which wireless channel it wishes to use. IEEE 802.11
standard amendments generally use two distinct frequency bands: the 2.4GHz and the
5GHz [C33]. In the 2.4GHz band, a node can choose from up to 14 wireless channels. Out
of those 14 channels, only three occupy non-overlapping frequencies i.e., can be used si-
multaneously without collisions. In the 5GHz band, there can be up to 24 non-overlapping
channels, meaning that as many as 24 transmissions can happen simultaneously in close
proximity.

WLANs use the DCF in the MAC layer. DCF makes sure that a node that wishes to
start a transmission senses an idle medium before the beginning of that transmission. This
procedure is employed with the help of the Carrier-Sense Multiple Access with Collision
Avoidance (CSMA/CA) mechanism in two distinct steps. First, before every transmis-
sion a node must sense the medium idle for the duration of a DIFS period whose length
depends on the IEEE 802.11 standard amendment. Then, the node starts a countdown
timer called the backoff period. The backoff has a random duration that helps desyn-
chronize the beginnings of transmissions of neighboring nodes. Nevertheless, its average
duration depends on the IEEE 802.11 amendment in use and we denote it by Tbackoff .
Additionally, for unicast frames only, DCF uses a short silent period called SIFS followed
by an acknowledgment frame sent by the destination, serving as a confirmation that a
frame was correctly received. Additional details on DCF can be found in the Appendix
of [C32].

Each WLAN is composed of N nodes representing the Access Points (APs) and the user
stations. A node’s Carrier-Sensing (CS) zone contains all other nodes whose transmis-
sions can be detected and a fortiori belong to the same channel. DCF, through its carrier
sensing and backoff mechanisms, attempts to ensure that two nodes that belong to each
others’ CS zones do not simultaneously transmit, and instead, have to share the avail-
able transmission capacity. Nevertheless, collisions occur whenever two such nodes are
simultaneously transmitting, potentially resulting in the loss of one or both transmissions.
More precisely, a collision happens whenever the backoff countdowns of the two nodes fin-
ish (approximately) at the same time. CS zones play an important role in evaluating the
WLAN’s global transmitting capacity as they determine with whom and how nodes have
to share the medium/channel capacity. Therefore, we can use the CS zones to represent
a WLAN as a conflict graph in which two vertices share an edge if the corresponding net-
work nodes belong to each others’ CS zones. Although nodes can interfere even beyond
their CS zones, Padhye et al. [C27] showed that the major source of collisions (interfer-
ence) are nodes that belong to the CS zone. Note that the same authors also developed a
pairwise interference measurement that can be used to discover a WLAN’s conflict graph.

We refer to nodes that share a link in the conflict graph as neighbors. We denote by vn
the set of n’s neighboring nodes (excluding n), referred to as n’s neighborhood. In our
work, we assume that the CS zones are symmetrical, meaning that if node m belongs
to node n’s CS zone, then node n belongs to node m’s CS zone. Figure 3.1 shows the
conflict graph of a four-node network. We notice that in this network nodes 1 and 4 can

42

simultaneously transmit as they do not detect each other transmissions. On the other
hand, nodes 1 and 2 cannot transmit at the same time without causing a collision resulting
in a potential loss of frame(s).

22

11 33 44

Figure 3.1: Conflict graph of a four-node network.

Note that, like in [C13], only network’s APs are considered in the conflict graphs (user
stations are not). Because of the traffic asymmetry where downloads from APs vastly
outweigh uploads [C10], the set of APs provides a convenient, though approximate, de-
scription of a WLAN. We tested the validity of this assumption through simulations. Our
results suggest that user stations can be disregarded in the conflict graph at the cost of
a limited loss of accuracy (say around than 5%). For example, Fig. 3.1 may describe
a network in which four APs are transmitting traffic to some user stations, which are
mostly receiving traffic rather than generating traffic so that they can be dismissed from
the graph.

Note also that a conflict graph involves only nodes that belong to the same channel.
As a result, an average WLAN working in the 2.4GHz band (with three non-overlapping
channels) is typically represented by three conflict graphs, each containing roughly a third
of the total number of APs in the WLAN. With a maximal number of 24 non-overlapping
channels in the 5GHz band, the corresponding conflict graphs would be even smaller.

We use xn to denote the normalized input rate of node n. The higher xn, the larger the
demand of node n for throughput. On the other hand, we let yn indicate the normalized
output rate of node n. By definition, we have: xn ≤ 1 and yn ≤ 1, and, because in the
long run the output rate of a node cannot exceed its input rate, it follows: yn ≤ xn. Note
that yn = 0 indicates that node n never gets access to the channel (i.e., a starving node),
while yn = 1 signifies that the node permanently occupies the channel (be it in active
transmission or with DCF overhead). Note also that yn can be easily derived from the
actual average throughput of a node (typically expressed in Mbps) by simply normalizing
the latter by the maximum throughput achievable by the node (i.e., when all its neighbor
nodes are silent). More precisely, we have:

yn =
tn

tn,max

, (3.1)

where tn denotes the throughput achieved by node n, and tn,max is the maximum through-
put node n can achieve, calculated as:

tn,max =
L× 8

Tbackoff + TDIFS + TPHY + TFRAME + TSIFS + TPHY + TACK

. (3.2)

In Eq. (3.2) TPHY is the duration of the physical layer’s header, L is the mean payload
length, TFRAME is the total frame transmission time, including all headers brought by
the MAC, Network, and Transport layers, Tbackoff , TDIFS, TSIFS, TACK are all overhead
times present in DCF. Note that the maximum throughput depends on the standard
amendment, mean payload length, and transmission rate, while being independent of the
network’s topology or nodes’ input rates.

43

System
N Total number of nodes
vn Node n’s neighborhood
xn Input rate of n-th node, xn ∈ [0, 1]

yn Output rate of n-th node, yn ∈ [0, 1]

L Mean payload length (in bytes)
tn,max Maximal throughput node n can achieve if all its neighbors are silent (in Mbps)
tn Achieved throughput of node n (in Mbps)

Model
B Set of possible subnetworks, B = {1, 0}N
bi i-th subnetwork, bi ∈ B
bi(n) Regime of the n-th node in subnetwork bi, bi(n) ∈ {ON,OFF}
βi Occurrence probability of the i-th subnetwork
S Set of possible sending states, S ⊆ {0,1}N
Si Set of sending states associated to subnetwork bi, Si ⊆ S
sk k-th sending state, sk ∈ S
sk(n) State of the n-th node in sending state sk, sk(n) ∈ {1,0}
Pk,` Probability of the transition from sending state sk to s`
wn Restricted set of neighbors of node n with blocked nodes removed
Mi Number of irreducible Markov chains for the subnetwork bi
cmi m-th irreducible Markov chain of subnetwork bi
Sm
i Set of sending states associated to cmi , Sm

i ⊆ Si

πm
i Steady-state probability distribution of cmi
πi Steady-state probability distribution of subnetwork bi
ωm
i Occurrence probability of cmi

Table 3.1: Principal notation.

3.6 Model and its Solution

For the sake of clarity, when presenting our modeling framework, we resort to the sample
network depicted in Fig. 3.1 to show its step by step execution.

3.6.1 Decomposing into subnetworks

In any network, nodes typically alternate their activity between ON and OFF periods.
When in the ON regime, a given node n (n = 1, . . . N) has at least one frame to send,
and thus has a non-empty buffer. In other words, an ON node is either transmitting
or wishing to start a transmission. In the OFF regime, a node’s buffer is empty. We
consider that the nodes’ regimes, and consequently their input rates, are independent of
each other. In practice, a node may postpone the transmission of a frame because of
the activity of its neighbors, thus extending its ON period. In order to keep the model
tractable, we decided to omit the potential dependencies among the nodes’ ON periods.

At any time, the state of the network activity can be described by a vector of length N ,
where the n-th element expresses the current regime of node n (be it ON or OFF). Thus,
for a network with N nodes, there are 2N such vectors that correspond to all the possible
combinations of the two regimes over the N nodes.

44

In our work, we apply a Divide-and-Conquer approach by choosing to analyze the network
not as a single complex network in which any node can alternate between ON and OFF ,
but rather as a collection of 2N simpler networks in which every node is eitherON orOFF .
We refer to these new networks as the subnetworks and we denote them by b1, b2, ..., b2N .
Hence bi(n) indicates the regime of node n in subnetwork bi. We use B to designate the
set that contains all subnetworks.

For the sample network of Fig. 3.1, as well as for any other four-node network, there is a
total of 16 such subnetworks:

B =

b1

b2

...
b16

=

OFF OFF OFF OFF

OFF OFF OFF ON
...

...
...

...
ON ON ON ON

(3.3)

We refer to the probability that the current state of the network is subnetwork bi as
the occurrence probability of bi and we denote it by βi (i = 1, . . . , 2N). Note that a
subnetwork’s occurrence probability depends only on the nodes’ input rates and can be
calculated as:

βi =
∏

n|bi(n)=ON

xn
∏

m|bi(m)=OFF

(1− xm) . (3.4)

For example, in our four-node network, one of the possible subnetworks is b14 = [ON ON OFF ON].
This subnetwork represents the case when nodes 1, 2, and 4 are in transmission or have
a frame waiting to be sent, while node 3 has an empty buffer. Its occurrence probability
is calculated as:

β14 = x1x2(1− x3)x4. (3.5)

Figure 3.2 shows a schematic representation of the entire solution where Stage 1 corre-
sponds to breaking down the network into several subnetworks. We will now show how to
solve each of the subnetworks separately and independently of the rest of the subnetworks.

3.6.2 Solving each subnetwork as one or more Markov chain(s)

We now detail how we analyze the behavior of each subnetwork using Markov chains.
We start by defining the possible states and transitions of the corresponding Markov
chains. Note that, in this subsection, the subject of study is any of the subnetworks bi
(i = 1, . . . , 2N) resulting from the network decomposition (see discussed above).

Defining the possible states for the subnetwork

While the regime (ON or OFF) of each node is set and fixed (for the considered subnet-
work bi), knowing the regime is not sufficient to determine if a node is currently sending a
frame or not. Indeed, an ON node can be either transmitting or waiting for the medium
to become idle. We eliminate this ambiguity by introducing the notion of sending states.

Like a subnetwork, a sending state is a vector of length N whose n-th element refers to
the activity of the n-th node. However, unlike a subnetwork, a sending state indicates for

45

11 33 44

22

1 0 0 1

0 1 0 1

0 0 1 0

0 0 1 0

1 0 0 0 0 1 0 0

0 0 0 0

1 0 0 1 0 0 1 00 1 0 10 0 0 0

 Stage 3:
Markov Chains

Original
network

 Stage 2:
Sending states

 Stage 1:
 Subnetworks

ω16(1) ω16(2)

β1 β15 β16
...

...

... 1 0 0 0 0 0 1 00 1 0 0

...

 Stage 4:
 Recombine Calculate output rates (y

1
,y

2
 ,y

3
 and y

4
) and throughputs (t

1
,t

2
 ,t

3
 and t

4
)

by combining all Markov chains' solutions

Figure 3.2: Schematic representation of the proposed solution.

each node n if the node is transmitting (marked 1) or not (marked 0). Let sk denote the
k-th sending state (with k = 1, . . . ,). Thus, if node n is currently transmitting we have
sk(n) = 1 , and sk(n) = 0 otherwise, for n = 1, . . . , N . Note that sk(n) = 0 means that
node n is either OFF , or ON but waiting access for transmission. While in theory, the
total number of sending states for each subnetwork is equal to 2N , in practice this number
is much smaller as we consider only a fraction of them to be possible. Let S denote the set
of all possible sending states over all existing subnetworks. Each possible sending state
must comply with a common property of CSMA/CA: neighboring nodes cannot transmit
successfully at the same time, i.e., if the conflict graph contains an edge between nodes
n and n + 1, then sk(n) and sk(n + 1) cannot both be equal to 1 . Next, we designate
by Si the set of possible sending states associated to the subnetwork bi. Note that we
can easily determine Si since Si is a subset of S whose elements satisfy the following
properties: (i) if bi(n) = ON and node n has no transmitting neighbors, then sk(n) = 1 ;
(ii) if bi(n) = OFF , then sk(n) = 0 . Note that the rationale behind the second property
is quite straightforward: a node that has no frames to be sent cannot be sending. The
first property derives from a phenomenon studied in [C11]: CSMA/CA networks tend to
increase the spacial reutilization of the medium by maximizing the number of simultaneous

46

transmissions. As a result, in our model, we enforce any node that is ON and senses an
idle medium to be in transmission.

In the case of our sample network, the subnetwork b16 = [ON ON ON ON] has three
possible sending states, s1 = [1 0 0 1], s2 = [0 1 0 1], and s3 = [0 0 1 0]. Note
that other sending states may exist but we consider them to be negligible in b16. For
example, the sending state [1 1 0 1] breaks the CSMA/CA condition, as nodes 1 and 2
are neighbors and cannot be simultaneously transmitting. The sending state [1 0 0 0]
is deemed not possible since node 4 breaks the first condition. Indeed, b16 indicates that
node 4 is ON , and because it has no sending neighbors, it should be sending its frames.
This step of determining the sending state is illustrated by Stage 2 of Fig. 3.2.

Determining the possible transitions

The set of sending states found for the subnetwork bi, namely Si, will serve as the states
of a Markov chain. We now detail how we decide which transitions are possible between
those sending states. Our reasoning is based on the idea that, in a CSMA/CA network,
the probability of two nodes starting (or ending) their transmission at the exact same
time is negligibly small. We translate this CSMA/CA property into the following rule for
our modeling purpose. Let sk and s` be two possible sending states of Si. The transition
from sending state sk to s` is deemed possible if and only if sk and s` both verify that:

1. no more than one node alters from 1 in sk to 0 in s`, and

2. no more than one node alters from 0 in sk to 1 in s`.

Note that a self-transition on a given sending state sk is always possible, as it implies no
changes in the sending state.

For example, in our four-node network it is possible to go from sending state [1 0 0 1] to
[0 1 0 1], as in this transition node 1 ends and node 2 starts a transmission. However, it
is not possible to go from network state [1 0 0 1] to [0 0 1 0], as it implies both nodes 1
and 4 ending their transmissions at the exact same time. Figure 3.3 shows the existing
transitions in our modeling framework between the possible sending states associated to
the subnetwork b16.

1 0 0 1

0 1 0 1

0 0 1 0

Figure 3.3: Possible sending states and corresponding existing transitions associated to the
subnetwork b16 = [ON ON ON ON].

Calculating the transition probabilities

We now explain how we determine the probability of the transitions between the possible
sending states sk composing our Markov chain. Note that non-possible transitions have

47

zero probability. To evaluate the non-zero transition probabilities, we need to introduce
our definition of a blocked node. A node having at least one of its neighbors currently
transmitting is said to be blocked as it is unable to start a collision-free transmission. For
example, in the four-node network, node 3 can be blocked by the transmissions of any of
the other three nodes.

We can now calculate Pk,`, the probability of the transition from sending state sk to s`,
as:

Pk,` = C
∏

n|s`(n)=1

1

1 +
∑

m∈wn

1bi(m)=ON

, (3.6)

where C is a normalizing constant such that
∑

`≥1 Pk,` = 1, and wn defined as wn = {m ∈
vn\{n} | m is not blocked in s` by a node ∈ vm/{n}} is the restricted neighborhood of
node n, i.e., wn contains all neighbors of n that are not blocked by some node different
from node n. As an example, in the subnetwork b16 = [ON ON ON ON] and the sending
state [1 0 0 1], the restricted neighborhood of node 1 contains only node 2, as node 3 is
blocked by node 4.

Note that the indicator function 1bi(m)=ON returns 1 if bi(m) = ON , and 0 otherwise.
The underlying logic behind Eq. (3.6) is that all nodes that are ON (whether they are
sending or not) compete with their neighbors for accessing the medium. We also consider
them equally likely to gain the medium access. On the other hand, nodes that are OFF
do not affect the transition probability because they do not compete for medium access.

For instance, when node 3 of the subnetwork b16 in Fig. 3.2 competes with nodes 1, 2,
and 4, it has a 1

4
chance of gaining the medium. However, in this same scenario node 4

competes with only one neighbor, so its chance of gaining access would be 1
2
.

Calculating the steady-state probabilities

At this stage, the Markov chain associated to subnetwork bi is fully characterized and
we can calculate its steady-state probabilities. Let us remind that a Markov chain is
irreducible if from any of its states there is a way to reach any other state. Depend-
ing on the setting of the subnetwork under study, the corresponding Markov chain may
or may not be irreducible. Should the Markov chain not be irreducible, we consider
each irreducible Markov chain separately. We denote by Mi the number of irreducible
Markov chains in subnetwork bi. For example, as shown by Fig. 3.3, the subnetwork
b16 = [ON ON ON ON] contains two irreducible chains, i.e., M16 = 2 (since it is not
possible to go from the sending state [0 0 1 0] to the other two sending states). We
use cmi , m ∈ [1, ...,Mi], to denote the m-th irreducible chain of subnetwork bi. Hence the
left-hand chain of Fig. 3.3 is denoted by c1

16 and the right-hand chain is c2
16.

We compute the steady-state probabilities of each irreducible chain cmi for the subnetwork
bi and we denote by πm

i the vector containing the corresponding values. Note that we
use Sm

i to refer to the set of sending states in chain cmi (while, as defined previously,
Si denotes the set of possible sending states associated to bi). If the subnetwork has
a single irreducible Markov chain (Mi = 1), then it follows that S1

i = Si. Thus, the
steady-state probabilities of the subnetwork’s sending states are equivalent to those of the
Markov chain c1

i and we have πi = π1
i , where πi is the vector containing the steady-state

probabilities of subnetwork bi. In this case, we can skip the end of this section and directly
proceed to Section 3.6.3.

48

Combining several irreducible Markov Chains

For subnetworks that contain more than one irreducible Markov chain, we need to combine
the steady-state probabilities found for each Markov chain into the steady-state proba-
bilities for the whole subnetwork bi. We introduce a weighting factor, denoted by ωm

i , to
express the probability that this particular irreducible Markov chain cmi is initially chosen.
For the sake of conciseness, we omit the calculation of these weighting factor (see [C32]
for their computations).

To obtain the πi (steady-state probabilities of the subnetwork bi) from the πm
i ’s (steady-

state probabilities found for each of the Mi irreducible Markov chains associated with bi)
we simply proceed as follows:

πi = [π1
i × ω1

i , ..., π
Mi
i × ωMi

i]. (3.7)

In other words, πi is obtained as a weighted sum of πm
i ’s.

Adjusting to the IEEE 802.11 parameters

To account for the value of the mean length of frames sent over the network, the trans-
mission rates of wireless channels, as well as the particular amendment of IEEE 802.11 in
use, we refine the computation of the weighting factors wm

i . Although we skip this part
here, we refer the reader to [C32] for its complete description.

3.6.3 Combining subnetwork solutions

So far we have divided the network into subnetworks and solved each one of them sepa-
rately. The last phase of the model consists in combining the results obtained for different
subnetworks and calculating the nodes’ output rates. A node’s output rate represents the
portion of time when the node is occupying the medium, including the frame transmission
itself and all the necessary DCF overhead. Thus, we calculate node n’s output rate, yn,
as:

yn =

|B|∑
i=1

1bi(n)=ON × βi ×
Mi∑
m=1

(
ωm
i ×

∑
k|sk∈Sm

i

(
1sk(n)=1 × πm

i (k)
)) , (3.8)

Eq. (3.8) gives the sum of the stationary probabilities of all the sending states in which
node n is sending, times the occurrence probabilities of all the irreducible Markov chains in
which those states appear, times the occurrence probabilities of the subnetwork to which
those chains belong. Otherwise stated, it is simply the sum product of the probabilities
of all the subnetwork × Markov chain × sending state combinations in which node n is
sending.

We can now transform node n’s output rate into its obtained throughput, tn. When all the
network nodes use the same standard amendment, transmission rate, and mean payload
length, then all nodes have an equal maximum achievable throughput, tn,max, and we can
calculate the throughput of node n as:

tn = yn × tn,max . (3.9)

Note that when nodes have different maximum achievable throughput, tn,max, Eq. (3.9)
needs to be slightly readjusted. The exact formula can be found in [C32].

49

3.7 Numerical Results

We start this section by assessing the accuracy of the proposed modeling approach by
comparing the model outcomes with those delivered by a discrete-event simulator under
various scenarios. Then, we study the computational complexity of the modeling approach
as a function of the network topology. At last, we explore a possible application of the
model relating to the configuration and performance improvement of a WLAN.

3.7.1 Model validation

To evaluate the accuracy of the proposed model, we explore several scenarios with different
values of various network parameters, such as the IEEE 802.11 standard, the mean frame
length, the transmission rate, the topology and size of the network, and we compare
the model’s estimations to the simulation results delivered by the discrete-event network
simulator ns-3 [C25].

Various network topologies and standard amendments

We begin by examining the proposed model’s accuracy under different topologies. We
consider two topologies: the six-node network depicted in Fig. 3.4a, and the ten-node
network of Fig. 3.5a. Recall that the nodes of a conflict graph represents only the access
points (APs) that belong to the same communication channel. Typically, the original
WLAN contains several other APs operating on other channels. Besides, as discussed in
Section 3.5, only APs (and not user stations receiving traffic from APs) appear in conflict
graphs. Nonetheless, in the simulator, APs transmits traffic to associated user stations.

To account for the intrinsic uncertainty of the measured quantities in a simulator, we
replicate each simulation 20 times and we calculate the 95% confidence intervals. However,
given the length of the simulation runs and the number of replications, the computed
confidence intervals are virtually indistinguishable from their mean values and we decided
to not represent them in the following figures.

Scenario x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Six-node 0.5 0.4 0.6 0.3 0.7 0.9 / / / /
Ten-node 0.3 0.6 0.8 0.4 0.7 0.3 0.5 0.4 0.9 0.7

Table 3.2: Input rates of nodes by default in scenarios.

Six-node network Our first scenario deals with a network composed of 6 nodes and
the IEEE 802.11n amendment whose transmission rate is set to 65Mbps. The network
topology is depicted in Fig. 3.4a. Figure 3.4b shows the throughputs attained by each of
the six nodes as the input rate of node 6 gradually increases from 0 to 1. Note that the
input rates of the other nodes are given in Table 3.2.

Not surprisingly, we observe in Fig. 3.4b that the throughputs of nodes 4, 5, and 6 are
the most affected by the increasing input rate of node 6, as all three belong to the same
clique. Node 6 increases its throughput mostly at the expense of node 5, that loses more
than a third of its original throughput. Node 4’s throughput decays to a lesser extent,
however its already small throughput is even further decreased. We also notice that nodes

50

1, 2, and 3 are not directly affected by node 6 and they keep an almost steady throughput
regardless of the value of x6.

33

55

66

22

11 44

(a) Conflict graph.

0

5

10

15

20

0 5 10 15 20

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Input rate of node 6 in Mbps

N1 model
N1 simu

N2 model
N2 simu

N3 model
N3 simu

N4 model
N4 simu

N5 model
N5 simu

N6 model
N6 simu

(b) Accuracy: varying the input rate of node 6, x6.

Figure 3.4: Six-node network.

For the sake of completeness, we repeat the same scenario five other times but each time
we keep x6 steady to its default value (see Table 3.2) and we let the input rates of one of
the other nodes vary from 0 to 1 by step of 0.05. This gives us a total of 21× 6× 4 = 756
points, out of which we derived the statistics on the relative error shown in Table 3.3. We
notice that in over 90% of the samples the relative error is less than 20% and that the
mean relative error of less than 10%.

Scenario Mean Median <5% <10% <20% <30% >30%
Six-node 9.80% 9.77% 21.10% 54.91% 97.75% 99.20% 0.80%
Ten-node 9.11% 7.47% 27.78% 68.12% 88.77% 99.36% 0.64%

Table 3.3: Distribution of the relative error for the throughput, tn.

Ten-node network Our second scenario involves a network of 10 nodes (see Fig. 3.5a)
using IEEE 802.11n. We study the throughput attained by all nodes as a function of
node 4’s input rate. Again, the input rates of the other nodes are given in Table 3.2.

Figure 3.5b shows the corresponding results. In order to keep the figure legible, we
represent the attained throughput only for a subset of nodes. First, we observe that the
variation of node 4’s input rate causes its throughput to increase from 0 to approximately
20Mbps. On the other hand, as x4 grows, the throughput of node 3 decays significantly
(nearly halved). This agrees with the fact that node 3 is the only neighbor of node 4
(see Fig. 3.5a). Because of node 3’s declining throughput, nodes 1 and 2 experience a
slight gain in their throughput as x4 grows. As for the nodes far from node 4 such as
nodes 8 and 10, their attained throughput is almost not influenced by the variations in
x4. Finally, Fig. 3.5b shows that our model manages to capture all these behaviors with a
good level of precision. Like in the two former scenarios, we repeat the same experiences
letting the input rate of each node in lieu of x4 vary from 0 to 1. This leads to a total

51

of 2100 samples that we use to compute the statistics shown in Table 3.3. Here also, we
observe that the mean and median relative errors are both less than 10%. In the vast
majority of examples (almost 90% of cases), the relative error made by our model is less
than 20%.

22

11 33 55 88 1010

44

66 77

99

(a) Conflict graph.

0

5

10

15

20

25

0 5 10 15 20

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Input rate of node 4 in Mbps

N1 model
N1 simu

N2 model

N2 simu
N3 model

N3 simu

N4 model
N4 simu

N8 model

N8 simu
N10 model

N10 simu

(b) Accuracy: varying the input rate of node 4, x4.

Figure 3.5: Tend-node network.

Note that we obtain similar results on other common network topologies using different
IEEE standard amendments (see [C32]).

Heterogeneous transmission rates

We now study the case where network nodes are heterogeneous with regard to their
transmission rates. To do that, we reconsider the six-node node network but we assign a
different transmission rate to every node as indicated by Table 3.4. Note that under these
settings, node 2 has a transmission rate that is five times that of node 5. Analogously to
the former scenarios, we let the input rate of each node vary from 0 to 1 while keeping
the input rates of the other nodes to their default values (see Table 3.2). This gives us a
total of 756 cases on which we calculated the estimated throughputs using our model and
compare these values to those delivered by the simulator.

Scenario N1 N2 N3 N4 N5 N6
Six-node 18 Mbps 54 Mbps 24 Mbps 12 Mbps 9 Mbps 12 Mbps

Table 3.4: Transmission rates for the nodes of the six-node network in Fig. 3.4a.

Table 3.5 presents the corresponding results. We notice that despite having nodes with
significantly different transmission rates, our model is still able to deliver accurate esti-
mations for the throughput. More precisely, the mean relative error of the model is 9%
with 94% of the samples having an error less than 20%.

52

Scenario Mean Median <5% <10% <20% <30% >30%
Six-node 9.31% 6.98% 20.29% 68.49% 94.13% 97.73% 2.27%

Table 3.5: Heteregenous transmission rates: distribution of the relative error for the throughput,
tn.

Frame aggregation in IEEE 802.11n

In our last scenario, we study the model’s precision when the nodes implement the ag-
gregation feature. When frame aggregation is enabled, multiples frames are concatenated
into a single large frame before being transmitted. This tends to diminish the cost of the
overhead introduced by the MAC protocol, thereby increasing the maximal achievable
throughput.

We consider again the six-node network of Fig. 3.4a with the input rates given in Table 3.2.
However, all six nodes now aggregate four MAC service data units (MSDUs) into a single
frame at each transmission. While the simulator actually implements the aggregation
features, in our model we simply extended by a factor of 4 the length of frames.

Figure 3.6 shows the attained throughputs of all nodes as a function of the input rate
of node 6. We can assess the influence of the frame aggregation feature on this scenario
by comparing Fig. 3.4b and Fig. 3.6. Although the trends exhibited by the throughputs
are still comparable, we observe that the frame aggregation feature significantly increases
(almost doubles) the attained throughput. Finally, we included in Table 3.6 the mean,
median, and distribution of the relative error when we let another node than node 6 vary
its input rate. Figure 3.6 along with Table 3.6 show that our modeling approach can
successfully handle the frame aggregation and capture its effects.

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40

O
u

tp
u

t
ra

te
s,

 y
i

Input rate of node 1, x1

N1 model
N1 simu

N2 model
N2 simu

N3 model
N3 simu

N4 model
N4 simu

N5 model
N5 simu

N6 model
N6 simu

Figure 3.6: Frame aggregation on six-node network: varying the input rate of node 6.

Scenario Mean Median <5% <10% <20% <30% >30%
Six-node 6.04% 5.07% 49.06% 92.03% 98.28% 99.22% 0.78%

Table 3.6: Frame aggregation: distribution of the relative error for the throughput, tn.

53

3.7.2 Modeling complexity

In this section, we explore how the computational complexity of our modeling framework
increases as the size of the WLAN under study grows. Unlike many existing modeling
approaches [E17, C11, C19, C13] that make use of a single Markov chain to describe the
whole network behavior, ours revolves around a Divide-and-Conquer approach. Indeed,
our approach breaks the original problem into a set of smaller problems, each being solved
individually thanks to the solution of a smaller Markov chain.

Unfortunately, we were not able to derive a closed-form expression (nor a tight upper
bound) for the number of states in the Markov chains involved in our modeling approach.
This exercise is made difficult as the exact value of the number of states depends signif-
icantly not only on the number of nodes in the network, N , but also on the network’s
density, aka the average node degree. We nonetheless provide an empirical study.

We randomly generate thousands of conflict graphs with size varying from N = 5 up to
N = 14. We sort them into five groups based on their density: average node degree of less
than 3, between 3 and 4, between 4 and 5, between 5 and 6, and between 6 and 7. Then,
for each interval of network density, we calculate the mean number of (sending) states
per Markov chain. Figure 3.7 shows the corresponding results for a number of nodes in
the network varying from N = 5 to N = 14. As expected, the average number of sending
states per subnetwork grows with increasing values of N . However, even for N = 14,
the mean number of states per Markov chain tends to lie around 8, meaning that most
involved Markov chains are very small.

Finally, for the sake of comparison, we included as a subplot in Fig. 3.7 the number of
states in the Markov chain if one uses a classical description such as [E17, C11, C19, C13].
The actual number values were found using a previous work of ours [C31] that relies on a
single large Markov chain to describe the whole network behavior. As expected, the mean
number of states for the Markov chain is significantly larger (say two orders of magnitude)
when using a single Markov chain as opposed to a series of smaller Markov chains, and
can lead up to several hundreds of states when the number of nodes closes 14. Hence, we
chose to have a large number of smaller Markov chains, keeping in mind that the last stage
of our approach, aiming to combine the solutions found for each subnetwork, is a simple
summation of the stationary probability distributions over all the subnetworks using the
law of total probability [D18].

Overall, by splitting the original problem into many smaller problems, whose solutions can
be easily parallelized, our Divide-and-Conquer strategy circumvents the dimensionality
curse associated to large Markov chain for conflict graphs having up to a dozen or so
nodes. In practice, with a non-optimized implementation, models are typically solved at
a click-speed for N around 4 or 5, and within a couple of seconds for N near to 10. We
remind that our conflict graphs contain only APs belonging to the same channel, and
that, depending on the IEEE 802.11 standard amendment in use, there can be from three
to 24 non-overlapping channels.

3.7.3 Possible application: Channel assignment

We illustrate a potential application of our model by studying the well-known issue of
channel assignment in an IEEE 802.11 WLAN. In IEEE 802.11n and 802.11g networks,
each AP can choose its channel among 14 different wireless channels in the 2.4GHz fre-
quency range. However, out of these 14 channels, at most three can be chosen in a

54

0

2

4

6

8

10

4 6 8 10 12 14

A
v

er
ag

e
n

u
m

b
er

 o
f

se
n

d
in

g
 s

ta
te

s
p

er
 s

u
b

n
et

w
o

rk

Number of nodes, N

av.dens. < 3
av.dens. 3 to 4
av.dens. 4 to 5

av.dens. 5 to 6
av.dens. 6 to 7

0

100

200

300

400

500

4 6 8 10 12 14

Figure 3.7: Number of (sending) states per Markov chain (subnetwork) as a function of the
network’s size and density.

manner that no channels have overlapping frequencies [C33]. Obviously, given the way
APs share the channel, the choice of channel assignment considerably affects the network’s
performance.

We consider the 12-node network (N = 12) depicted in Fig. 3.8a with three non-overlapping
channels. The input rates of nodes are given in Table 3.7. and low-demanding nodes whose
input rates are below 0.5. Let a be a vector of length N that represents one possible al-
location of the three channels among the N APs. We denote by y(a) = {y1, y2, . . . , yN}
the set of output rates obtained when implementing the channel assignment a. Remind
that yi can be viewed as a measure of the normalized throughput attained by node i.

We consider four different performance metrics to evaluate the performance of the network:

1. The global satisfaction rate, GSR, or the proportion of the network’s general through-

put demand that has been met, calculated as: GSR(y(a)) =

N∑
n=1

yn

N∑
n=1

xn

.

2. The Jain’s fairness index [C17], J , that measures how fairly the throughput was
divided among the nodes. Jain’s index is a quantity in the interval [0, 1], where 1
represents the highest fairness, meaning all nodes get an equal share. It is calcu-

lated as: J(y(a)) =

(
N∑

n=1
yn

)2

N∑
n=1

y2n

Additionally, we can calculate the Normalized Jain’s

index, NJ . The normalization refers to accounting for the nodes’ input rates when

calculating Jain’s index: NJ(y(a)) =

(
N∑

n=1

yn
xn

)2

N∑
n=1

yn
xn

2
.

3. The proportional fairness, PF , that is a trade-off between GSR and J as it tries to
maximize both fairness and throughput by giving more throughput to nodes with

higher demands: PF (y(a)) =
N∑

n=1

log yn
xn
.

55

Scenario x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

12-node 0.2 0.4 0.9 0.7 0.8 0.9 0.1 0.3 0.2 0.6 0.8 0.3

Table 3.7: Input rates of the 12-node network in Fig. 3.8a.

In practice, our model could be used jointly with existing solutions in the field of channel
allocation, such as [C9, C28]. A classical way of finding (sub)optimal channel allocations
is to start from a given allocation, and then iteratively improve it with regard to some
network performance parameters until convergence is found. In this regard, our model
could be used to quickly evaluate the performance parameters of interest at each iteration
(rather than relying on long simulations). However, for the sake of simplicity and given the
size of the network, we choose to explore all of the 312 ' 530, 000 possible allocations and
retain the ones maximizing one of the criteria given above. Figures 3.8b, 3.8c, and 3.8d
illustrate the channel assignment that maximize GSR, J , and PF , respectively. For each
of these three channel assignments, we also indicated in Table 3.8 their score over the
other performance metrics.

22

11

3388

77

 66 44

1111

991212 55

1010

(a) Original

22

11

3388

77

 66
44

1111

991212 55

1010

(b) Maximize global satisfaction rate

22

11

3388

77

 66
44

1111

991212 55

1010

(c) Maximize Jain’s fairness index

22

11

3388

77

 66
44

1111

991212 55

1010

(d) Maximize proportional fairness

Figure 3.8: Different channel allocations for a randomly-generated 12-node network.

Performance metric GSR J NJ PF

Fig. 3.8b Maximize GSR 96% 0.725 0.983 -1.27
Fig. 3.8c Maximize J 73% 0.796 0.955 -3.30
Fig. 3.8d Maximize PF 95% 0.735 0.987 -1.08

Table 3.8: Evaluation of the proposed channel allocations.

When maximizing the global satisfaction rate, GSR, the retained solution maximizes the
overall throughput obtained in the network and leads a GSR of 96%. Interestingly, we
notice in Fig. 3.8b that all the high-demanding nodes (whose input rate is over 0.5) do
not share the channel with any other node, thereby enabling them to obtain the highest
possible throughput. On the other hand, when maximizing Jain’s index, we observe in

56

Fig. 3.8c that almost all nodes have a neighbor with whom they share the medium. In
fact, with the exception of the pair of nodes 6 and 2, all the other pairs involves two
nodes belonging to the same class (be it low-demanding or high-demanding nodes). As
a consequence high-demanding nodes get lower output rates, as they have to share the
medium with other high-demanding nodes. The optimal solution for the Jain’s index
increases its score from 0.725 to 0.796, at the expense of over 20% loss in the GSR. The
last optimal solution maximizes the proportional fairness, PF . In Fig. 3.8d we observe
that the only difference between the PF solution and the GSR solution lies in the selected
channel of node 8. This similarity can be understood by the fact that proportional fairness,
unlike Jain’s fairness index, takes into consideration not only the output rate of each node
but also its input rate. Overall, in this example, the optimal solution for Proportional
fairness coincides with the optimal solution for Normalized Jain’s index, and appears as a
good trade-off between maximizing throughput or fairness, as it offers both a GSR value
and J value that are remarkably close to their optimal values.

3.8 Conclusions

Summary of Contributions

We have presented a modeling framework for IEEE 802.11-based WLANs. Our approach
accounts for WLANs composed of multiple APs assuming their conflict graph is known.
Our framework assumes any levels of load in the APs, arbitrary sizes for frames and
arbitrary transmission rates for links, as well as recent amendments to IEEE 802.11 such
as 802.11n. The proposed solution revolves around a Divide-and-Conquer approach to
split the initial problem into many sub-problems, each being of much lower complexity.

We studied several hundreds of examples to assess the accuracy of our modeling framework
comparing its results with those delivered by the ns-3 simulator. We considered several
network topologies with the number of APs ranging from 3 to 10, different amendments
of IEEE 802.11, various levels of the load on each AP, different transmission rates on the
APs, as well as examples where APs implement the aggregation feature so that multiples
frames are concatenated into a single large frame before being transmitted. Overall, in our
examples, our model was able to forecast with a reasonable degree of precision (typically
within 10% of relative errors) the mean throughput attained by each AP of the network.

Encountered Difficulties

Our progress in the development of our approach has been hampered by a peculiar dif-
ficulty regarding the use of a discrete-event simulator. To validate a theoretical model
for IEEE 802.11-based networks, one commonly relies on performance comparisons with
a discrete-event simulator such as ns-2 [C24], ns-3 [C25], OMNeT++ [C26], and Net-
Sim [C23]. Although discrete-event simulators cannot capture the whole complexity of a
real-life IEEE 802.11-based network, they appear as a good alternative to real-life exper-
iments. Simulations are easier to handle, less expensive, reproducible and often regarded
as accurate.

Our initial choice was to use the simulator ns-2 because its use seemed quicker than
that of the other simulators. As we made progress in our research, we realized that ns-2
had some limitations, in particular relating to newer amendments of IEEE 802.11 and
the properties of the physical and MAC layers. In particular, ns-2 does not natively

57

support IEEE 802.11g or n. More importantly, it poorly implements phenomena like
the capture effect that, in reality, enables a node receiving two signals simultaneously
to often demodulate successfully the stronger of the two signals. In ns-2, this feature
is not realistically implemented, and the node will often undergo a collision for each
transmission.

In order to assess the potential impact of this omission, we compared the results delivered
by ns-2 with those of ns-3, which implements the capture effect. Our results show that, in
many scenarios, neglecting the capture effect may significantly bias the performance of a
network. Therefore, we made the decision to abandon ns-2 and to move to ns-3. To give
an idea of how wide the gap may be, we represent in Figure 3.9 the achieved throughput
by a node in a simple three-node topology as predicted by ns-2 and ns-3, respectively.
The difference may be close to zero when the node has a moderate demand for load but
it may grow up to 20% for higher level of loads.

0 5 10 15 20 25

Demanded Throughput, Mbps

6

8

10

12

14

16

18

20

22

A
c
h
ie

v
e
d
 T

h
ro

u
g
h
p
u
t,
 M

b
p
s

ns-3

ns-2

Figure 3.9: Potential discrepancy between ns-2 and ns-3 for the achieved throughput of a node
in a three-node topology.

Another faced obstacle is that the performance of an IEEE 802.11-based network are
very sensitive to its underlying conflict graph and to its node activities. Thus, even two
seemingly similar networks may lead to significantly different behavior. This sensitivity
has hardened the step of validating our model accuracy as we had to go through many
examples to gain a statistically meaningful metrics of accuracy.

Strengths and Limitations

I believe that a key strength of our model is found in its simplicity. In fact, not only does
its “Divide-and-Conquer” approach facilitates its scalability with the number of nodes in
a WLAN, but it also makes it a good candidate for parallelization as any sub-problems
are independent of each others. Another of its strengths is its readability (traceability)
that provides insights on the many relationships and dependencies that exist among the
various elements composing an IEEE 802.11-based WLAN.

In my opinion, the main limitation to our model approach is that we were not able to
clearly evaluate its computational complexity. While the number of state in each Markov
chain is probably a relevant metric to its complexity, we were not able to derive a closed-
form expression of it. The derivation of such an expression does not appear easy as the
number of states is deeply tied to the particular conflict graph underlying the considered

58

wireless network. Therefore, instead of a theoretical complexity analysis, we relied on a
much less convincing empirical study.

Possible Extensions

I envision mostly two extensions for our work. First, to better account for frames with
different lengths and links with different transmission rates, we could replace the use of
discrete-time Markov chains by continuous-time Markov chains. Continuous-time Markov
chains would offer a natural way of having different time transmission at each node.

Second, we validated our model against the discrete-event simulator ns-3. Although this
latter aims at capturing most effects taking place in a real WLAN and is often described
as a realistic simulator, an experimental validation using real-life measurements is still a
missing piece to our work. However, the lack of time and adequate equipment and the
complexity have postponed our efforts in this direction. I discuss these aspects in further
details in Chapter 5.

Potential Impact

With the increasing size of WLANs, some form of coordination among their APs is desired
to improve the WLAN overall behavior. A case in point is the issue of allocating radio
channel to each AP. The search for the optimal solution is NP-hard and existing tools
often rely on iterative heuristics. They start from a given allocation scheme, and then
iteratively improve it (with regard to some network performance parameters such as the
overall throughput, the fairness, the channel utilization) until convergence is found. In
this regard, our model can help the heuristics by providing quick and fair estimates of the
current setting of the WLAN at each iteration (rather than relying on long simulations).

Learned Experiences

Because of their seemingly complexity, simulators may appear as trustworthy at first
glance. However, as discussed above in this section (see Encountered difficulties), this
complexity does not prove, by any means, that the simulator delivers realistic and accurate
results for a given scenario. I could sum up my experience in this regard as Don’t trust a
simulator blindly unless you know all its details!

References for Chapter 3

[C1] T. Abreu, B. Baynat, T. Begin, and I. Guérin Lassous. Hierarchical modeling of
IEEE 802.11 multi-hop wireless networks. In ACM MSWIM, 2013.

[C2] T. Abreu, B. Baynat, T. Begin, I. Guérin Lassous, and H.-N. Nguyen. Modeling of
IEEE 802.11 multi-hop wireless chains with hidden nodes. In ACM MSWIM, 2014.

[C3] T. Abreu, N. Nguyen, T. Begin, I. Guérin Lassous, and B. Baynat. Substitution
Networks: Performance Collapse due to Overhead in Communication Times. In
AdhocNets, 2012.

59

[C4] T. Begin, B. Baynat, I. Guérin Lassous, and T. Abreu. Performance analysis of
multi-hop flows in IEEE 802.11 networks: A flexible and accurate modeling frame-
work. Performance Evaluation, 96:12–32, 2016.

[C5] G. Bianchi. Performance analysis of the IEEE 802.11 distributed coordination
function. IEEE Journal on Selected Areas in Communications, 18(3):535–547, 2000.

[C6] S. Biaz and S. Wu. Rate adaptation algorithms for IEEE 802.11 networks: A survey
and comparison. In IEEE ISCC, 2008.

[C7] R. Boorstyn, A. Kershenbaum, B. Maglaris, and V. Sahin. Throughput analysis in
multihop CSMA packet radio networks. IEEE Transactions on Communications,
35(3):267–274, 1987.

[C8] F. Cali, M. Conti, and E. Gregori. IEEE 802.11 wireless LAN: Capacity analysis
and protocol enhancement. In IEEE INFOCOM, 1998.

[C9] S. Chieochan, E. Hossain, and J. Diamond. Channel assignment schemes for
infrastructure-based 802.11 WLANs: A survey. IEEE Communications Surveys
& Tutorials, 12(1):124–136, 2010.

[C10] Cisco Visual Netwotking Index. https://www.cisco.com/c/en/us/solutions/
service-provider/visual-networking-index-vni/index.html.

[C11] M. Durvy, O. Dousse, and P. Thiran. Self-organization properties of CSMA/CA
systems and their consequences on fairness. IEEE Transactions on Information
Theory, 55(3):931–943, 2009.

[C12] E. Felemban and E. Ekici. Single hop IEEE 802.11 DCF analysis revisited: Accurate
modeling of channel access delay and throughput for saturated and unsaturated
traffic cases. IEEE Transactions on Wireless Communications, 10(10):3256–3266,
2011.

[C13] M. Garetto, T. Salonidis, and E. W. Knightly. Modeling per-flow throughput and
capturing starvation in CSMA multi-hop wireless networks. In IEEE INFOCOM,
2006.

[C14] N. Gupta and C. Rai. New analytical model for non-saturation throughput analysis
of IEEE 802.11 DCF. In CNC, 2014.

[C15] M. Harchol-Balter. Performance modeling and design of computer systems: queue-
ing theory in action. Cambridge University Press, 2013.

[C16] IEEE Computer Society LAN MAN Standards Committee and others. Wireless
LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE
Standard 802.11-2016, 2016.

[C17] R. Jain, D. M. Chiu, and W. R. Hawe. A quantitative measure of fairness and
discrimination for resource allocation in shared computer system. Digital Equipment
Corporation, 1984.

[C18] L. Jiang and J. Walrand. A distributed CSMA algorithm for throughput and
utility maximization in wireless networks. IEEE/ACM Transactions on Networking,
18(3):960–972, 2010.

60

[C19] C. Kai and S. Zhang. Throughput analysis of CSMA wireless networks with finite
offered-load. In IEEE ICC, 2013.

[C20] K. Kosek-Szott. A comprehensive analysis of IEEE 802.11 DCF heterogeneous
traffic sources. Ad Hoc Networks, 16:165–181, 2014.

[C21] R. Laufer and L. Kleinrock. The capacity of wireless CSMA/CA networks. IEEE
transactions on Networking, 2015.

[C22] B. Nardelli and E. W. Knightly. Closed-form throughput expressions for CSMA
networks with collisions and hidden terminals. In IEEE INFOCOM, 2012.

[C23] NetSim - Network Simulator & Emulator. https://www.tetcos.com/.

[C24] The Network Simulator ns-2. http://www.isi.edu/nsnam/ns/.

[C25] The Network Simulator ns-3. https://www.nsnam.org/.

[C26] OMNeT++ Discrete Event Simulator. https://www.omnetpp.org/.

[C27] J. Padhye, S. Agarwal, V. N. Padmanabhan, L. Qiu, A. Rao, and B. Zill. Estimation
of link interference in static multi-hop wireless networks. In ACM SIGCOMM, 2005.

[C28] C. Peng, H. Zheng, and B. Y. Zhao. Utilization and fairness in spectrum assignment
for opportunistic spectrum access. Mobile Networks and Applications, 11(4):555–
576, 2006.

[C29] T. Razafindralambo, T. Begin, M. Dias De Amorim, I. Guérin Lassous, N. Mitton,
and D. Simplot-Ryl. Promoting quality of service in substitution networks with
controlled mobility. In AdHocNow, 2011.

[C30] Z. Shi, C. Beard, and K. Mitchell. Analytical models for understanding space, back-
off, and flow correlation in CSMA wireless networks. Wireless Networks, 19(3):393–
409, 2013.

[C31] M. Stojanova, T. Begin, and A. Busson. Conflict graph-based Markovian model to
estimate throughput in unsaturated IEEE 802.11 networks. In IEEE WiOpt, 2017.

[C32] M. Stojanova, T. Begin, and A. Busson. Conflict graph-based model for IEEE
802.11 networks: A Divide-and-Conquer approach. Performance Evaluation, 2018.

[C33] L. Verma, M. Fakharzadeh, and S. Choi. WiFi on steroids: 802.11 ac and 802.11
ad. IEEE Wireless Communications, 20(6):30–35, 2013.

[C34] X. Wang and K. Kar. Throughput modelling and fairness issues in CSMA/CA
based ad-hoc networks. In IEEE INFOCOM, 2005.

61

62

Chapter 4

Reduced State Description

Contents
4.1 Research Context . 64

4.2 Outline . 65

4.3 Motivation and Related Work . 65

4.4 Model with Infinite Buffer . 67

4.5 Model with Finite Buffer and State Dependencies 69

4.6 Numerical results . 71

4.6.1 Accuracy for the Mean Number in the queue 72
4.6.2 Loss Probability with finite buffers . 73
4.6.3 Wait Probability . 74
4.6.4 Speed of Asymptotic Convergence for queues with unrestricted buffer . 75
4.6.5 Speed of Convergence of the Fixed-Point Iterative Solution 75
4.6.6 Model with State Dependencies . 75
4.6.7 Computational Complexity . 76
4.6.8 Example of comparison with simple approximations 77

4.7 Conclusions . 78

4.8 Appendix . 82

63

Abstract

Ph/Ph/c and Ph/Ph/c/N queues can be viewed as a common model of multi-
server facilities. We propose a simple approximate solution for the equilibrium
probabilities in such queues based on a reduced state description in order to
circumvent the well-known and dreaded combinatorial growth of the number of
states inherent in the classical state description. The number of equations to solve
in our approach increases linearly with the number of servers and phases in the
service time distribution. A simple fixed-point iteration is used to solve these
equations. Our approach applies both to open models with unrestricted buffer size
and to queues with finite-size buffers.

The results of a large number of empirical studies indicate that the overall accuracy
of the proposed approximation appears very good. For instance, the median relative
error for the mean number in the queue over thousands of examples is below 0.1%
and the relative error exceeds 5% in less than 1.5% of cases explored. The accuracy
of the proposed approximation becomes particularly good for systems with more
than 8 servers, and tends to become excellent as the number of servers increases.

4.1 Research Context

For years I established a regular scientific collaboration with Pr. Alexandre Brandwajn
(UCSC, USA). I visit his lab every year for a couple of weeks, and vice versa. Together we
have explored several research topics such as the influence of distributional properties of
inter-arrival and service times on the performance of queueing systems, the development
of a high-level modeling approach, as well as the design of simple and computationally
efficient solutions for queueing systems.

Our joint-interest in simple and computationally efficient solutions for queueing systems
started in 2009, when, for the sake of another work (high-level modeling), we were in
need of a fast and scalable solution to queues with multiple servers and non-exponential
service times. Unfortunately, with the exception of very particular cases, it is a complex
problem and existing solutions tend to be either inaccurate, or complex and unscalable
with the number of servers (these aspects are discussed in detail in Section 4.3). Thus,
we developed a new solution for queues with multiple servers where the arrival process
can be regarded as general (namely, an arbitrary Coxian distribution [D14]) whereas the
service process at each server is restricted to a specific subclass of distribution (namely, a
two-stage Coxian distribution). Although this solution filled our need, it never got fully
published per se. Nonetheless, it stirred our interest in this domain, and in the following
years, we proposed solutions to various queueing systems including single server queues
with general service and inter-arrival times [D9, D10] as well as an accuracy study for
several existing approximations for multi-server queues [D3]. However, it was not until
2014 that, following Alexandre Brandwajn proposal, we managed to develop an original
approach that differs from the state-of-the-art solutions by its simplicity and scalability.
In essence, our solution makes a clever use of the assumption of dealing with homogeneous
servers (i.e., statistically identical). We applied this idea to two classes of queues with
multiple servers and general service times. First, in the case of Poisson arrivals [D11], and
then with general inter-arrivals times [D12]. In this chapter, I present the latter since it
includes the particular case of Poisson arrivals.

64

4.2 Outline

This chapter is organized as follows. The next section discusses the motivation for this
approximation and the related work. Section 4.4 is devoted to the approximate solu-
tion of the Ph/Ph/c queue with an infinite buffer. In Section 4.5 we consider a queue
with a finite buffer and state-dependent distributions of interarrival times and service
times. Section 4.6 presents numerical results to illustrate the accuracy of the proposed
approximation. Finally, Section 4.7 concludes this chapter.

4.3 Motivation and Related Work

A number of areas of computer applications and systems offer examples of multi-servers
facilities. For instance, many-core CPUs with 32 or more cores are around the corner [D8].
Parallel Access Volumes in mainframe storage [D23] provide a potentially large number
of “exposures” for simultaneous access to information. Call centers with hundreds of
agents [D16] are an element of everyday life. The number of Virtual Machines hosted
on Physical Machines can easily exceed 16. In the area of fiber optical cables, WDM
multiplexing allows over a hundred simultaneous signals on a single fiber.

Such systems can be naturally represented as multi-server queues in which requests arrive,
queue for service if all servers are found busy, and eventually leave the system after
receiving service from one of the servers. Unfortunately, if one realistically assumes general
distributions of times between request arrivals and general service times, the resulting
G/G/c queueing model does not possess a known analytical solution except in some
special cases [D19, D15, D4, D1]. Additionally, under higher loads, realistic models must
account for finite buffer space (queueing room) which may prevent requests from joining
the queue when the buffer is full.

A common approach is then to replace the “general” distributions by so-called “phase-
type” distributions [D27, D6, D24] as any distribution can be approximated arbitrarily
closely by a phase-type distribution (e.g., [D27]). This has the distinct advantage of
leading to a system that, in steady-state, can be described by familiar balance equations.
Generally speaking, these balance equations can be obtained using one of two possible
state descriptions involving the current number of requests in the system, the current
phase of the arrival process and a vector to represent the state of the servers. The first
one uses the vector of the current number of servers in each phase of the service process.
In the second possible description, the vector is that of the current phases for each server
(note that the servers are assumed to be homogenous but they are not synchronized).
This latter state description is generally less thrifty than the first one and rarely, if ever,
used. Both descriptions exhibit combinatorial growth as the number of phases and the
number of servers grow. We discuss this point further in Section 4.6.7. In queueing terms,
the G/G/c queue is replaced by the Ph/Ph/c queue. The latter can be solved numerically
using a direct iteration [D26] or matrix geometric methods [D25, D22, D5]. This approach
works great as long as the number of servers and/or phases in the arrival and especially
service process is not too large. However, as mentioned above, the number of servers in
many realistic examples varies from several tens to many hundreds, and the traditional
phase-type approach is known to suffer from the “dimensionality curse” in that the number
of states (and, hence, equations to solve in the linear system) grows combinatorially as the
number of servers and /or phases increases. This precludes the direct use of this approach
in many interesting and important areas.

65

In the area of approximate solutions to such systems, several authors attempt to sum-
marize the properties of general distributions in G/G/c queues by their first 2 (rarely, 3)
moments [D18]. Although the resulting approximations are usually simple to implement
and their execution is fast, unfortunately, they fail to account for the intrinsic dependence
of the G/G/c queue on higher-order properties of the distributions involved [D17, D3].
We provide an example in Section 4.6.8. Fluid queues represent another avenue for ap-
proximation based on the fact that, as the number of requests in a queueing system tends
to infinity, one can consider the flow of discrete requests as a continuous flow and hence
apply fluid mechanics equations to describe the system. These methods have been applied,
for example, to represent call centers [D21, D16] and the G/G/c/N queue [D29]. By their
principle, these approximations appear best suited for the study of limiting processing
capacities of such queues.

In the particular case when the arrivals can be treated as generated by a Poisson or quasi-
Poisson source, there has been recent progress in obtaining computationally manageable
approximations applicable to systems with hundreds of servers. Khazaei et al. [D20]
propose to use an adaptation of the embedded Markov Chain method in the case of a
pure Poisson arrival process. They show the good accuracy of their numerical results
for service time coefficients of variation not exceeding 1.4. The finite buffer size in their
numerical results is relatively small and kept at less than half the number of servers.
Their approach does not seem easy to apply to systems with state dependencies or more
general arrival processes. In this regard, our contribution with Prof. Brandwajn [D11]
introduces an approximation based on a reduced state description and demonstrate the
accuracy of their approach for much larger range of coefficients of variation of the service
time distribution (up to 7) and buffer sizes.

Clearly, in many situations the arrival process cannot be viewed as Poisson or quasi-
Poisson. Therefore, in this chapter we present an approximate solution based on the
reduced state description that deals with systems having phase-type distributions for the
time between arrivals. The proposed approximation works both for open queues (i.e.,
queues with unlimited buffer size) and queues with finite buffer. While no human-made
system possesses a truly unrestricted buffer size, such models are of practical interest
when the physical buffer size is relatively large and the server utilization is not too close
to saturation. In such cases the use of an open model may result in computational saving
over a finite-buffer-size model. Interestingly, in open queues, our approximation happens
to tend to the correct asymptotic rates of request arrivals and service rates as the number
of requests tends to infinity.

To avoid arbitrary truncation in the open model, we transform the balance equations for
the reduced state into equations for the conditional probabilities of the state of the arrival
process and the reduced state of the service given the current number of requests. We
then exploit the convergence of such conditional probabilities to their asymptotic values
so as to enumerate the states only up to the practical asymptotic convergence point.

The use of conditional probabilities partitions the state space into independently normal-
ized subspaces, which may contribute to numerical stability, and we employ them also in
the case of finite buffers. We propose a simple fixed-point iteration to solve the condi-
tional probability equations. Although we do not have a theoretical proof of convergence
to a unique solution, the proposed iteration has never failed in the large number of cases
explored.

66

4.4 Open Model (Infinite Buffer) and its Solution

We start by considering a classical Ph/Ph/c queue with an infinite buffer [D18]. We
assume that the c servers are homogeneous, i.e., statistically identical, but not synchro-
nized. As shown in Figure 4.1, the distribution of the times between arrivals comprises a
exponential phases and the service time distribution has b exponential phases. We denote
by σi the probability that service starts in phase i, by µi the completion rate for phase
i (i = 1, . . . , b) of the service process, and by q̂i the probability that the service process
completes after phase i. We denote by τj, λj and r̂j the corresponding quantities for phase
j (j = 1, . . . , a) of the arrival process.

€

τ 2
€

λ1

€

ˆ r 1

€

τ 1

€

τ a

€

λa
€

λ2

€

ˆ r a

€

ˆ r 2
€

r12

€

r1a …

€

σ 2

€

µ1

€

ˆ q 1

€

σ 1

€

σ b

€

µ b

€

µ 2

€

ˆ q b

€

ˆ q 2
€

q12

€

q1b …

The Ph/Ph/c queue

c servers

The phase distribution with b
phases for service times

The phase distribution with a
phases for inter-arrival times

Figure 4.1: Ph/Ph/c queue with unrestricted buffer.

The classical approach to derive the steady-state probability of the number of requests
(customers) in such a system is to consider a state description that includes the current
number of requests in the system (n), the current phase of the arrival process (j), and
the vector of the current number of requests in each phase of the service process (−→m =
m1, . . . ,mb). It is clear that (for each value of n) such a full state description results
in a combinatorial explosion of the number of balance equations one has to solve as the
number of servers and service phases increases, compounded by the number of arrival
phases (see Section 4.6.7 for more details).

As we are focusing on systems with large numbers of servers, to escape this issue, we use
a reduced state description comprising the current number of users (n), the current phase
of the arrival process (j) and the current phase of the service process for an arbitrarily
selected server (i). Since for n < c the selected server may be idle, we use the value
i = 0 to denote its idle state. Let p(n, j, i) be the corresponding steady-state probability
where n = 0, 1, . . . , j = 1, . . . , a, i = 0, . . . , b. Denote by p(n) the steady-state probability
that there are n requests in the system, and by p(j, i|n) the conditional probability of the
current phase of the arrival process and the current service phase for the selected server
given the current number of requests in the system. For n = 0, all servers are idle and
only the arrival phase j = 1, . . . , a is of significance.

Using this reduced state description, it is a straightforward matter to obtain the balance
equations for the probabilities p(n, j, i). These equations involve the parameters of the
arrival process and of the service distribution, as well as the conditional rate of completions

67

of requests by servers other than the chosen server given the retained state description,
which we denote by ν(n, j, i). Note that these balance equations, whose form is illustrated
by Eq. (4.12) in Appendix, are exact in the sense that their solution would produce the
exact steady-state probabilities p(n, j, i) if we knew the exact values for ν(n, j, i). This
latter quantity, however, is not known explicitly and will be evaluated only approximately.
Therein lies the approximation of our proposed solution.

The conditional rate of request completions by the selected server given the current
number in the system can be expressed as

ψ(n) =
a∑

j=1

b∑
i=0

p(j, i|n)µiq̂i. (4.1)

Since the c severs are homogeneous, the overall conditional rate of request completions
given n is simply

u(n) = cψ(n). (4.2)

Let m = min(n, c) be the number of busy servers with n customers in the system. To
obtain an approximation for the unknown conditional rate of completions by other servers
ν(n, j, i) we assume that the latter depends primarily on the current number of requests in
the system n and not on the current phase of the arrival process or service at the selected
server, when it is active, so that we have

ν(n, j, i) ' m− 1

m
u(n) = (c− c

m
)ψ(n) for j = 1, . . . , a and i = 1, . . . , b. (4.3)

For n < c and i = 0, i.e., when the selected server is not active, we use simply

ν(n, j, 0) ' u(n) = cψ(n). (4.4)

This is the main approximation in our approach. In essence, we neglect the dependence on
the current state of the arrival and service process in ν(n, j, i) so that the latter becomes a
function only of the current number of requests in the system n. Intuitively, the neglected
state information matters most when the number of servers is small. With larger numbers
of servers, the knowledge of the current state of just one out of many servers or of the
current phase of the arrival process conveys little information about the state of other
servers. This is why we expect the approximation in formula (4.3) to improve as the
number of servers increases.

The conditional rate of request arrivals given the current number in the system can be
expressed as

w(n) =
a∑

j=1

b∑
i=0

p(j, i|n)λj r̂j. (4.5)

Hence, the steady-state probability that there are n requests in the system can be obtained
in terms of w(n) and u(n) as

p(n) =
1

G

n∏
k=1

w(k − 1)

u(k)
, n = 0, 1, . . . , (4.6)

where G is a normalizing constant.

68

Using the fact that p(n, j, i) = p(j, i|n)p(n) together with formula (4.6) in the balance
equations for p(n, j, i) we can transform the latter into equations for the conditional prob-
abilities p(j, i|n). We provide the corresponding equation for n > c (see Eq. (4.13) in
Appendix). Because the quantities w(n), u(n) and ν(n, j, i) are expressed in terms of
system parameters and of the probabilities p(j, i|n), we obtain a self-contained system of
equations for the conditional probabilities p(j, i|n). These probabilities must be normal-
ized for each value of n so that we must have

a∑
j=1

b∑
i=0

p(j, i|n) = 1, n = 0, 1, . . . (4.7)

With an unrestricted buffer size, the resulting system of equations is in theory infinite
since there is no upper bound on the value of the number of requests n. Assuming the
system is ergodic, the equations for p(j, i|n) must tend to a limit as n tends to infinity
limn→∞ p(j, i|n) = p̃(j, i) and similarly for the conditional rate of arrivals and completions
limn→∞w(n) = w̃ and limn→∞ u(n) = ũ (as well as limn→∞ ν(n, j, i) = ν̃(j, i)). This
is in agreement with the well-known result that the probability p(n) is asymptotically
geometric [D28]. We assume and our empirical results confirm that this is also the case
when using the approximation given by (4.3) and (4.4). Denote by ñ the value of n for
which p(j, i|n) and hence also w(n) and u(n) become sufficiently close to their respective
asymptotic values, i.e., |w(n)− w̃| < δ and |u(n)− ũ| < δ where δ > 0.

Thus, for n = 0, . . . , ñ − 1 we use the equations for p(j, i|n) and for n ≥ ñ we use the
corresponding equations for the asymptotic conditional probabilities p̃(j, i), i.e., the limit
for n → ∞ of the equations for p(j, i|n). Both sets of equations can be readily solved
using a simple fixed-point iteration (see [D12] for more details). Hence, we obtain the
values of w(n) and u(n) for n = 0, . . . , ñ− 1, and the asymptotic values w̃ and ũ, which
allows us to compute the steady-state probability p(n) using formula (4.6) as

p(n) =

{
1
G

∏n
k=1

w(k−1)
u(k−1)

, n < ñ
1
G

(∏ñ
k=1

w(k−1)
u(k−1)

)
.
(
w̃
ũ

)n−ñ
, n ≥ ñ

(4.8)

Clearly, for this approach to be of practical interest, such asymptotic convergence must
happen for values of ñ that are not excessively large. Fortunately, as shown by our nu-
merical results, these values tend to be reasonable. Note that the value of ñ is determined
dynamically in our method. In a practical implementation, we dimension the data struc-
tures to hold the quantities p(j, i|n), w(n) and u(n) according to the results presented in
Section 4.6.4, and we monitor dynamically the iteration process for asymptotic conver-
gence so that the enumeration of values of the number of requests in the system n can be
stopped. Note also that our approximation produces the correct values for the asymptotic
arrival and service rates w̃ and ũ. The next section is devoted to a model with finite buffer
space and state dependencies.

Table 4.1 summarizes the principal notation used in this chapter.

4.5 Model with Finite Buffer and State Dependencies

In this section we consider a model with a finite buffer and possible state dependencies.
We denote by N the maximum number of requests (including those in service) that can

69

Table 4.1: Principal notation.

Symbol Description
c Number of servers
N Buffer size, i.e., maximum of requests in the system (queued and in service)
n Total current number of requests in the system
b Number of phases for the service time distribution
σi Probability that service of a request starts in phase i, i = 1, . . . , b

µi Completion rate for phase i of service process, i = 1, . . . , b

qil Probability that service process continues in phase l upon completion of phase i,
i, l = 1, . . . , b

q̂i Probability that service process ends (request departs the system) upon completion
of phase i, i = 1, . . . , b

a Number of phases for the inter-arrivals distribution
τj Probability that arrival of a request starts in phase j, j = 1, . . . , a

λj Completion rate for phase j of arrival process, j = 1, . . . , a

rjk Probability that arrival process continues in phase k upon completion of phase j,
j, k = 1, . . . , a

r̂j Probability that arrival process ends (request enters the system) upon completion
of phase j, j = 1, . . . , a

p(n, j, i) Probability that there are n requests in the system, the current phase of the arrival
process is j, and the current phase of the service process at the selected server is i

ψ(n) Conditional rate of request completions by the selected server given the current
number in the system is n

u(n) Overall departure rate from the set of c servers given that the current number in the
system is n

ν(n, j, i) Conditional rate of completions of requests by servers other than the chosen server
given that the current number in the system is n, the current phase of the arrival
process is j, and the current phase of the service process at the selected server is i

w(n) Conditional rate of request arrivals given the current number in the system is n
p(n) Marginal probability that there are n requests in the system

be present in the system at any time. As before, we assume that the distribution of the
times between arrivals comprises a exponential phases and the service time distribution
has b exponential phases. The completion rates (intensities) of these exponential phases,
as well as the probabilities of initial phase selection, moving from phase to phase and
of completing after a phase may depend on the current number of users in the system,
n ≤ N . Thus, we let µi(n) be the completion rate for phase i (i = 1, . . . , b) of the service
process, and q̂i(n) the probability that the service process completes after phase i. We
also let λj(n) and r̂j(n) be the corresponding quantities for phase j (j = 1, . . . , a) of the
arrival process.

As before, we use a reduced state description p(n, j, i) where n is the current number of
users in the system, j is the current phase of the arrival process and i is the current phase
of the service process for an arbitrarily selected server. We denote by p(n) the steady-
state probability that there are n requests in the system, and by p(j, i|n) the conditional
probability for the current phase of the arrival process and of the service process at the
selected server given n.

With state-dependent phase intensities and transition probabilities, the conditional rate
of request completions by the selected server given the current number in the system

70

becomes

ψ(n) =
a∑

j=1

b∑
i=0

p(j, i|n)µi(n)q̂i(n). (4.9)

Similarly, the conditional rate of request arrivals given n becomes

w(n) =
a∑

j=1

b∑
i=0

p(j, i|n)λj(n)r̂j(n). (4.10)

As before, the overall conditional rate of request completions given n is u(n) = cψ(n) and
we use approximation (4.3) and (4.4) for the unknown conditional rate of completions by
other servers. The steady-state probability that there are n requests in the system can be
computed from formula (4.6) once we have obtained the conditional rates of arrivals and
of completions w(n) and u(n). To compute these two quantities, just like previously, we
use the identity p(n, j, i) = p(j, i|n)p(n) and (4.6) in the balance equations for p(n, j, i) to
transform the latter into equations for the conditional probabilities p(j, i|n).

However, unlike in the case of an open queue (unrestricted buffer space), the number
of values of n to consider is finite (and thus there is no asymptotic convergence), and
we have a particular equation for n = N . There are several ways in which a physical
system may behave when the buffer space is full, e.g. the source of arrivals may become
blocked until there is space in the buffer or the source may continue to generate requests
which are simply lost. We consider the latter case in this chapter although our method
can be readily adapted to handle the case of blocked arrivals as well. The corresponding
particular equation for n = N are given in [D12].

With this assumption on system behavior when the buffer is full, it is important in some
applications to determine the probability that an arriving request will be lost. This loss
probability can be expressed as

ploss =
w(N)p(N)∑N
n=0w(n)p(n)

(4.11)

and thus easily calculated once we have the conditional rates of arrivals w(n) and the
steady-state probabilities p(n).

The next section is devoted to the accuracy and other aspects of the numerical behavior
of the proposed approximation.

4.6 Numerical results

We study the accuracy of the proposed approach for a spectrum of values of system
parameters. We present results for the following numbers of servers: c=8,16,32,64,128 and
c = 256. (For numbers of servers below 8, exact numerical solutions using the full state
description [D25, D22, D5] are manageable and there is little need for approximations.)
The offered load per server, i.e., the ratio of the submitted traffic to the number of servers,
varies in steps of 0.1 from 0.5 to 0.9 for queues with unrestricted buffer, and from 0.5 to
1.5 for queues with finite buffer. We consider 5 buffer sizes for the latter, expressed in
relation to the number of servers as N = 1.5c, 2c, 2.5c, 3c and N = 4c (recall that N
is the maximum number of requests queued and in service that can be present in the

71

system). We use distributions of the times between arrivals and of service times with
four phases and coefficients of variation ranging from 0.5 to 4 in steps of 0.5. We utilize
the method proposed by Bobbio et al. [D6] to generate the four-phase distributions with
specified coefficients of variation. The behavior of the reduced state approximation with
exponential inter-arrival times (M/Ph/c queue) has been studied in prior work [D11]
and the proposed approach produces exact results in the case when the service time
distribution is exponential. Therefore, we skip the value 1 for the coefficient of variation
of both inter-arrival and service times.

Overall, we explored 1,470 examples for the open model, and 16,170 examples with finite
buffers. The performance measures considered include the mean number of requests in the
system, the wait probability (probability that an arriving request finds all servers busy),
as well as the loss probability in the case of a finite buffer. We use the absolute value of the
relative error (expressed as a percentage) between the exact and approximate values as
measure of approximation accuracy. The “exact” values come from a numerical solution
of the full balance equations for c = 8 and c = 16. For larger number of servers, we
use discrete-event simulation with 15 independent replications of 50,000,000 completions
each. Our choice of these simulation parameters, while somewhat arbitrary, is rooted in
the idea that with independent replications it may be worthwhile to have larger values for
the number of completions per replication to minimize “warm-up” effects. With the values
chosen, the estimated confidence intervals at 95% confidence level are generally so small
that we use only the mid-point value. Given the difficulty of estimating small quantities
in simulations, we only consider relative errors for wait and loss probabilities when the
“exact” values exceed 0.01. To summarize the accuracy of our approach, we consider the
distribution of relative errors, as well as the median error values.

We now describe the numerical results obtained for the quantities considered.

4.6.1 Accuracy for the Mean Number in the queue

We start by considering the accuracy of the method for the mean number of requests
in the system. Figure 4.2 shows the distribution of errors and the median error as a
function of the number of servers for queues with unrestricted buffer. We observe that
the percentage of cases in which the error exceeds 5% falls rapidly from 46% with 8 servers
to 6% with 64 servers and all the way to 0% with 256 servers. At the same time, the
percentage of observed errors exceeding 15% decreases from 25% with 8 servers down to
0.4% with 64 servers and 0% for 128 or more servers. It is worthwhile noting that errors
exceeding 15% observed with 8 servers tend to occur for larger values of the coefficient of
variation of the service time and higher server utilizations. Thus, as expected on intuitive
grounds, the accuracy of the proposed method increases rapidly as the number of servers
grows. The median error decreases from 4% with 8 servers to less than 0.4 % with 16 or
more servers.

Figure 4.3 summarizes the results obtained for the mean number of requests in the system
for queues with finite buffer. In the large set of examples explored (over 16,000) we found
virtually no cases in which the relative error exceeds 10%. We observe that the infrequent
larger errors tend to occur for smaller numbers of servers and when the coefficient of
variation of the time between arrivals is small and the coefficient of variation of the
service time is large. Overall, in some 99% of cases, the relative error remains below 5%.
The median error remains below 0.1% throughout all cases explored.

It is interesting to examine the accuracy of the proposed approximation as a function of

72

8 16 32 64 128 256
0

5

10

15

20

25

30

35

40

45

50

Number of servers

P
e

rc
e

n
ta

g
e

median

more than 5%

more than 10%

more than 15

Figure 4.2: Distribution of the percentage relative errors in the approximate solution for the
mean number of requests in a Ph/Ph/c queue.

8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of servers

P
e

rc
e

n
ta

g
e

median

more than 5%

more than 10%

more than 15

Figure 4.3: Distribution of the percentage relative errors in the approximate solution for the
mean number of requests in a Ph/Ph/c/N queue.

the offered load per server. As an example, we show in Figure 4.4 the results obtained
with servers and other parameters spanning the spectrum of values for the coefficients of
variations of the distributions of the time between arrivals and of the service time, as well
as buffer sizes for finite-buffer queues, described above. We observe that the mean relative
error for the mean number of requests in the system tends to peak when the offered load
per server is around 0.95 (we believe that queues with unrestricted buffer approach their
limit of practical validity when the load exceeds 0.9). In our results, for the open queue
with 64 servers, the mean relative error peaks at some 7%, while for queues with a finite
buffer the corresponding mean relative error peaks at less than 1%. The median values of
the relative error peak at around 4% for the open queue and less than 0.5% for finite-buffer
queues.

4.6.2 Loss Probability with finite buffers

Figure 4.5 illustrates the accuracy of the proposed approach for the loss probability in
the case of queues with finite buffers. We observe that the percentage of cases in which
the error exceeds 5% decreases from some 8% for 8 servers to 3% with 32 servers and all
the way to about 1% with 256 servers. The median error remains well below 0.5% in all
the cases studied.

73

0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

Offered load per server

P
e
rc

e
n
ta

g
e

mean

median

(a) Case of a Ph/Ph/c queue.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.5

1

1.5

2

Offered load per server

P
e
rc

e
n
ta

g
e

mean

median

(b) Case of a Ph/Ph/c/N queue.

Figure 4.4: Percentage relative errors in the approximate solution for the mean number of requests
with c=64 servers as a function of the offered load per server.

8 16 32 64 128 256
0

1

2

3

4

5

6

7

8

9

10

Number of servers

P
e

rc
e

n
ta

g
e

median

more than 5%

more than 10%

more than 15

Figure 4.5: Distribution of the percentage relative errors in the approximate solution for the loss
probability in a Ph/Ph/c/N queue.

4.6.3 Wait Probability

Table 4.2 summarizes the results obtained for the probability that an arriving request has
to wait in the case of queues with unrestricted buffer. In the over 1,400 examples studied,
the relative errors remain below 5% in over 96% of the cases explored. The mean error is
around 1% and the median error is below 0.5%.

Average Median <5% <10% <15% >15%
1.02% 0.22% 96.05% 98.33% 99.20% 0.80%

Table 4.2: Distribution of the percentage relative errors in the approximate solution for the wait
probability in a Ph/Ph/c queue.

Table 4.3 displays analogous results for queues with finite buffers. Here we observe that the
relative error remains below 5% in over 98% of the 16,170 cases studied. The mean error
is below 1% and the median error is less than 0.1% confirming the impressive accuracy of
the proposed approach in the case of finite buffer space.

74

Average Median <5% <10% <15% >15%
0.60% 0.08% 98.23% 99.5% 99.75% 0.25%

Table 4.3: Distribution of the percentage relative errors in the approximate solution for the wait
probability in a Ph/Ph/c/N queue.

4.6.4 Speed of Asymptotic Convergence for queues with unrestricted buffer

As discussed in Section 4.4, in the case of unrestricted buffer size our approximation relies
on the convergence of the conditional probabilities p(j, i|n) to their asymptotic values
p̃(j, i) in order to transform an infinite set of equations into a finite one without arbitrary
truncation. Table 4.4 shows the mean and the median values of the ratio ñ/c with a rather
stringent δ = 10−11. Recall that δ corresponds to the point at which we consider that
asymptotic convergence has been achieved for the conditional rates w(n) and u(n). We
observe that the mean and median values of ñ grow less than linearly as the number of
servers increases. Clearly, the value of ñ increases as the number of servers increases, but
relative to the number of servers, the rate of growth slows down markedly as c increases.

c = 8 c = 16 c = 32 c = 64 c = 128 c = 256

Mean 33.4 22.3 16.0 12.6 9.9 8.0
Median 35.9 22.4 15.9 12.8 9.9 8.2

Table 4.4: Mean and median values found for the ratio ñ/c.

4.6.5 Speed of Convergence of the Fixed-Point Iterative Solution

The proposed solution of the equations for p(j, i|n) (which is fully presented in [D12]) is
a rather straightforward fixed-point iteration, presented as a simple “proof of concept”.
Nonetheless, it may be interesting to examine the number of iterations required to attain
convergence. The latter varies with specific queue parameters but, on average, seems
to depend mostly on the number of servers in the system. Interestingly, the median
number of iterations needed is sufficiently close for queues with unrestricted and with finite
buffer that they can be displayed together. Table 4.5 summarizes the median number of
iterations relative to (i.e., divided by) the number of servers with ε = 10−8.

c = 8 c = 16 c = 32 c = 64 c = 128 c = 256

Median 143.1 143.3 136.3 127.6 118.2 109.5

Table 4.5: Median number of iterations before convergence is found.

We observe that, while the number of iterations clearly grows with the number of servers,
the rate of increase tends to be less than linear, especially for larger number of servers.

4.6.6 Model with State Dependencies

The good accuracy of the proposed approximation appears to extend to the case when the
intensity of the arrivals and the service phases depend on the current number of requests
in the system. As an example, Figure 4.6 compares the results obtained for the mean

75

number of request in the system using our approximation and using an exact numerical
solution of the full balance equations for several levels of the offered load in the queue.
This example corresponds to a system with c = 32 servers and a finite queueing room of
N = 128. The service process has a coefficient of variation cs = 3. The completion rate of
each service phase is a function of the current number of requests in the system such that
the service rate decreases linearly from full speed for a single user down to 50% of its full
speed as the number of users reaches full system capacity N . The arrival process is quasi-
Poisson with rate λ(n) = φ.(1 − n

3N
), i.e., it represents a set of 3N identical exponential

request sources. Figure 4.6 illustrates the good accuracy of the approximation for the
mean number of requests in the system as a function of the maximum offered load φ.

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

maximum offered load, φ

m
e
a
n
 n

u
m

b
e
r

o
f
re

q
u
e
s
ts

 i
n
 t
h
e
 s

y
s
te

m

exact

approximate

Figure 4.6: Mean number of requests in Ph/Ph/c/N queue with c = 32, N = 4c, cs = 3 and
state dependencies for the service process and the arrival process for various levels of workload.

Overall, in the many examples explored, the accuracy of the proposed method appears
excellent, especially for larger numbers of servers.

4.6.7 Computational Complexity

We now consider the issue of computational complexity of the proposed approach. As
mentioned in the introduction, there are essentially two possible full state descriptions
for an Ph/Ph/c/N queue. The first description consists of the number of requests, the
current phase of the arrival process and the vector of the current number of servers in
each phase of the service process. The total number of states for this description is given
by

a

(
1 +

c−1∑
n=1

(
b+ n− 1

n

)
+ (N − c+ 1)

(
b+ c− 1

c

))
.

The second description involves the current number of requests in the system, the current
phase of the arrival process and the vector of the current phases for each server. The total
number of states in this state description is given by

a

(
1 +

c−1∑
n=1

(
c

n

)
bn + (N − c+ 1)bc

)
.

As for our approximation, the number of states in the proposed reduced state description
is given by

a
(

1 + (c− 1)(b+ 1) + (N − c+ 1)b
)

= a(c+Nb).

76

0 20 40 60 80 100

Number of servers

102

103

104

105

106

107

108

109
N

u
m

b
e

r
o
f

s
ta

te
s

Full State description

Reduced State description

(a) As a function of the number of servers c given
b = 4 phases for the service time process.

2 4 6 8 10 12 14 16

Number of phases in the service process

102

104

106

108

1010

1012

1014

1016

1018

N
u
m

b
e
r

o
f
s
ta

te
s

Full State description

Reduced State description

(b) As a function of the number of phases in the
service process b given c = 64 servers.

Figure 4.7: Number of states induced by our reduced state description versus a full state de-
scription for a Ph/Ph/c/N queue with a buffer of size N = 5c + 20 and a number of phases in
the arrival process a = 2.

Figure 4.7 compares the computational complexity in the number of states between the
first full description and our reduced state description. We do not include the second full
state description in our figure since the number of states is systematically higher than
for the first one. It is obvious from Figure 4.7 that, as the number of servers and phases
increases, there is a difference of many orders of magnitude between the complexity of the
full state description and our proposed reduced state description. Even with a relatively
small number of phases in the service process (say 4) and only 64 servers, the complexity
of the full state description results in about 25,000,000 states while the reduced state
description involves less than 3,000 states (see Figure 4.7a). The difference gets even
more dramatic for larger numbers of phases. With 8 phases and 64 servers, there are
almost 1 trillion states in the full description compared with less than 5600 states for our
method, amounting to 8 orders of magnitude difference (see Figure 4.7b).

4.6.8 Example of comparison with simple approximations

As mentioned in the introduction, the few existing simple approximations fail to account
for potentially important distributional dependencies in the G/G/c queue. Figure 4.8
illustrates the resulting relative error for the mean number of requests in the system in
a queue with unrestricted buffer with c = 16 servers, the coefficient of variation of the
time between arrivals ca = 3 and the coefficient of variation of the service time cs = 0.5
for two simple approximations: the Allen-Cunneen approximation and the approximation
proposed by Kulbatzki [D7].

We observe that both simple approximations produce significant errors as the load per
server approaches 0.8 while the relative error in our approximation remains small. Similar
large errors occur in many other examples (e.g., see [D3]).

77

0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

Offered load per server

P
e

rc
e

n
ta

g
e

Our solution

Allen−Cunneen

Kulbatzki

Figure 4.8: Relative error in the mean number of requests in Ph/Ph/c queue with c = 16,
cs = 0.5, and ca = 3 for various levels of workload.

4.7 Conclusions

Summary of Contributions

We propose a simple approximate solution for Ph/Ph/c queues, which uses a reduced
state description in order to circumvent the combinatorial growth of the number of states
inherent in the classical state description used for such queueing systems. The number
of equations to solve in our approach grows only linearly with the number of servers and
phases in the distributions of times between arrivals and of service times. A simple fixed-
point iteration is used to solve these equations. Although we do not have a theoretical
proof of convergence of the fixed-point iteration, in the very many examples explored, it
never failed to converge within a reasonable number of iterations.

We used common performance indices such as the mean number of requests in the system,
the wait probability, as well as the loss probability in the case of queues with finite buffers
to assess the accuracy of our approximation. Our results indicate that the accuracy of
the approximation is generally very good for 8 or more servers and tends to improve
rapidly as the number of servers grows. The median relative error for the mean number
in the queue over the totality of examples considered (17,640 distinct scenarios) is below
0.1% and the relative error exceeds 5% in less than 1.5% of the scenarios considered. For
the wait probability and the loss probability, the median error is below 0.5% and the
observed errors exceed 5% in less than 4% of the cases explored. Overall, the accuracy of
the proposed approximation appears very good.

Encountered Difficulties

We encountered some difficulties in obtaining the numerical results. While the solution
to our approximation remained fast throughout all the explored examples, running the
discrete-event simulator on some examples proved to be very lengthy. In particular, the
simulator took several hours to run certain examples with a large number of servers (say
more than 64), a high or low variability of their service and arrival process (say a coefficient
of variation of less than 0.5, or above 3), and a relatively high offered load. Because we
explored thousands of examples in our validation, and while most of this exploration was
automatized and performed on computing servers, the overall process of validation still

78

took a couple of weeks (due to these lengthy simulations).

Strengths and Limitations

In my opinion, the use of the reduced state description provides two advantages to the
proposed approximation. First, it provides a fair (though partial) description of the
system, thereby limiting the loss of accuracy. Second, its complexity (number of states)
only grows linearly with the number of servers and phases in the service time and inter-
arrival distributions.

Like with any approximation, it is important to understand its accuracy and its domain
of applicability. Unfortunately, we have not been able to obtain theoretical bounds for
the errors of our approximation. This is why we undertook a systematic empirical study
of its behavior over a large spectrum of examples attempting to cover cases that tend to
cause problems.

Possible Extensions

In my opinion, the reduced state description that is the cornerstone of this approximation
could probably be applied, with some adjustments, to other systems, too. In particular,
systems of large dimensions in which many components can be viewed as homogeneous
(statistically identical) are natural candidates.

More generally, I believe that several classical problems in queueing theory, if addressed
using a full and exact system description, become so complex that their solution, if any,
requires approximations. In some cases, a better option may be to consider a possibly
approximate state description for which the solution can be found easily and involves
little or no approximation. Said differently, for certain systems, it might be preferable
to introduce a small modeling error that leads to a small solution error as opposed to
starting with an exact model whose approximate solution ensues significant errors or
limitations. In this regard, together with Pr. Brandwajn, we propose a new solution to
the multi-server queue with the First-Come-First-Serve discipline, based on an original
state description, that stands out by its simplicity (currently in revision) [D13].

Potential Impact

In order to promote the use of our work, we developed a website1 that allows anyone to run
our approximation on their own examples. This tool was presented at the conference [D2]
and it features the solutions to several classical queueing systems. It attracts each month
hundreds of visitors from all around the world.

In my opinion, our work on the design of simple and computationally efficient solutions
for queueing systems has attracted modest interest so far despite being favorably received
in well-established journals (e.g., Performance Evaluation, Computers & Operations Re-
search, Journal of Applied Probability). I believe that this relative lack of visibility has
to do with the relative “coldness” of the topic (see discussion in Section 1.3). Unlike
other research areas such as SDN, 5G, IoT, there seems to be less excitement around the
queueing theory at the moment. However, its impact may grow in the long run.

1http://queueing-systems.ens-lyon.fr/

79

Learned Experiences

Skill-wise, in addition to queueing theory, I improved my abilities in simulations. Espe-
cially when facing lengthy and complex ones, automation becomes mandatory but it must
come with a fine examination of the obtained results.

More generally, it surprised me that no ones ever made a full use of the fact that, in a multi-
server queue, servers are typically assumed to be homogeneous (statistically identical). In
other words, this works convinced me that Even on a long-standing and complex problem,
there may still be space for new approaches.

References for Chapter 4

[D1] S. Asmussen and J. R. Møller. Calculation of the steady state waiting time dis-
tribution in GI/PH/c and MAP/PH/c queues. Queueing Systems, 37(1-3):9–29,
2001.

[D2] T. Begin and A. Brandwajn. A tool for solving Ph/M/c and Ph/M/c/N queues.
In ACM QEST, 2012.

[D3] T. Begin and A. Brandwajn. A note on the accuracy of several existing approxi-
mations for M/Ph/m queues. In HSNCE, 2013.

[D4] D. Bertsimas. An analytic approach to a general class of G/G/s queueing systems.
Operations Research, 38(1):139–155, 1990.

[D5] D. A. Bini, G. Latouche, and B. Meini. Numerical methods for structured Markov
chains. Oxford University Press on Demand, 2005.

[D6] A. Bobbio, A. Horváth, and M. Telek. Matching three moments with minimal
acyclic phase type distributions. Stochastic Models, 21(2-3):303–326, 2005.

[D7] G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi. Queueing networks and Markov
chains: modeling and performance evaluation with computer science applications.
John Wiley & Sons, 2006.

[D8] S. Borkar and A. A. Chien. The future of microprocessors. Communications of the
ACM, 54(5):67–77, 2011.

[D9] A. Brandwajn and T. Begin. Performance evaluation of a single node with general
arrivals and service. In ASMTA. Springer, 2011.

[D10] A. Brandwajn and T. Begin. An approximate solution for Ph/Ph/1 and Ph/Ph/1/N
queues. In ACM/SPEC ICPE, 2012.

[D11] A. Brandwajn and T. Begin. Reduced complexity in M/Ph/c/N queues. Perfor-
mance Evaluation, 78:42–54, 2014.

[D12] A. Brandwajn and T. Begin. Breaking the dimensionality curse in multi-server
queues. Computers & Operations Research, 73:141–149, 2016.

[D13] A. Brandwajn and T. Begin. First-Come-First-Served Queues with Multiple Servers
and Customer Classes. Performance Evaluation, 2018.

80

[D14] D. R. Cox. A use of complex probabilities in the theory of stochastic processes.
In Mathematical Proceedings of the Cambridge Philosophical Society, volume 51,
pages 313–319. Cambridge University Press, 1955.

[D15] J. H. De Smit. The queue GI/M/s with customers of different types or the queue
GI/H m/s. Advances in Applied Probability, 15(2):392–419, 1983.

[D16] N. Gans, G. Koole, and A. Mandelbaum. Telephone call centers: Tutorial, review,
and research prospects. Manufacturing & Service Operations Management, 5(2):79–
141, 2003.

[D17] V. Gupta, M. Harchol-Balter, J. Dai, and B. Zwart. On the inapproximability
of M/G/K : why two moments of job size distribution are not enough. Queueing
Systems, 64(1):5–48, 2010.

[D18] M. Harchol-Balter. Performance modeling and design of computer systems: queue-
ing theory in action. Cambridge University Press, 2013.

[D19] A. Ishikawa. On the equilibrium solution for the queueing system GI/Ek/m. TRU
Mathematics, 15(1):47–66, 1979.

[D20] H. Khazaei, J. Misic, and V. B. Misic. Performance analysis of cloud computing
centers using M/G/m/m+ r queuing systems. IEEE Transactions on Parallel and
Distributed Systems, 23(5):936–943, 2012.

[D21] G. Koole and A. Mandelbaum. Queueing models of call centers: An introduction.
Annals of Operations Research, 113(1-4):41–59, 2002.

[D22] G. Latouche and V. Ramaswami. A logarithmic reduction algorithm for quasi-
birth-death processes. Journal of Applied Probability, 30(3):650–674, 1993.

[D23] A. S. Meritt, J. A. Staubi, K. M. Trowell, G. Whistance, and H. M. Yudenfriend.
z/OS support of the IBM TotalStorage enterprise storage server. IBM Systems
Journal, 42(2):280–301, 2003.

[D24] T. Osogami and M. Harchol-Balter. Closed form solutions for mapping general dis-
tributions to quasi-minimal PH distributions. Performance Evaluation, 63(6):524–
552, 2006.

[D25] V. Ramaswami and D. M. Lucantoni. Algorithms for the multi-server queue with
phase type service. Stochastic Models, 1(3):393–417, 1985.

[D26] L. Seelen. An algorithm for Ph/Ph/c queues. European Journal of Operational
Research, 23(1):118–127, 1986.

[D27] M. Taaffe and M. Johnson. The denseness of phase distributions. School of Indus-
trial Engineering Purdue University Research Memorandum, pages 88–20, 1988.

[D28] Y. Takahashi. Asymptotic exponentiality of the tail of the waiting-time distribution
in a Ph/Ph/c queue. Advances in Applied Probability, 13(3):619–630, 1981.

[D29] W. Whitt. A diffusion approximation for the G/GI/n/m queue. Operations Re-
search, 52(6):922–941, 2004.

81

4.8 Appendix

Balance Equations and Equations for Conditional Probabilities

Denote by rjk the probability that phase j of the arrival process is followed by phase k,
and by qil the probability that phase i of the service process is followed by phase l.

The balance equations for the reduced state description p(n, j, i) considered in this paper
have the following form. For n > c, j = 1, . . . , a, i = 1, . . . , b

p(n, j, i)[λj + µi + ν(n, j, i)] =
∑a

k=1 p(n− 1, k, i)λkr̂kτj +
∑b

l=1 p(n, j, l)µlqli

+
∑a

k=1 p(n, k, i)λkrkj + p(n+ 1, j, i)ν(n+ 1, j, i)

+
∑b

l=1 p(n+ 1, j, l)µlq̂lσi.

(4.12)

The corresponding balance equations for other values of n can be found in [D12]. Note
that these balance equations are exact in the sense that, if we knew the exact values for
the conditional completion rates ν(n, j, i), the solution of these balance equations would
produce the exact steady-state probabilities p(n, j, i). The approximation in our method
stems from the fact that we compute an approximate value for ν(n, j, i).

We present below the conditional probability equations used in the solution of the open
model. For n > c, j = 1, . . . , a, i = 1, . . . , b

p(j, i|n)[λj + µi + ν(n, j, i)] =
∑a

k=1 p(k, i|n− 1)λkr̂kτju(n)/w(n− 1)

+[p(j, i|n+ 1)ν(n+ 1, j, i) +
∑b

l=1 p(j, l|n+ 1)µlq̂lσi]w(n)/u(n+ 1)

+
∑b

l=1 p(j, l|n)µlqli + σa
k=1p(k, i|n)λkrkj .

(4.13)

Here also, the conditional probability equations for other values of n as well as for n = N
in the case of a finite buffer are given in [D12].

82

Chapter 5

Conclusions

Contents
5.1 “Missing” Contributions . 84

5.2 The Importance of Accuracy in Modeling . 85

5.3 Work methods and Good practices . 87

5.4 Scientific Challenges and Prospects for the Future 89

83

5.1 “Missing” Contributions

The last three chapters have attempted to provide a broad and critical overview of three
of my main contributions. I decided not to describe the other contributions for the sake of
conciseness. However, these latter have all been presented in publications (see Section 1.4
of Chapter 1 for a full list).

In this section, I would like to briefly discuss the contributions that I attempted to ob-
tain but unfortunately failed to. I refer to those as the “missing contributions”. Some
were caused by refusals to fund research projects. For example, a couple of years ago,
I participated in a project proposal introducing aspects of machine learning for the pa-
rameterization of wireless networks. The project was submitted to an international call
between Hong-Kong and France. Although the project was graded as “Excellent” by the
experts, it ultimately got refused two years in a row. This restrained us to tackle this
issue, which has now become a very hot topic for computer networks.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Frame Error Rate on Link 1 (in %)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

F
ra

m
e

 E
rr

o
r

R
a

te
 o

n
 L

in
k
 2

 (
in

 %
)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Figure 5.1: Maximum Attained Throughput (in Mbps) along an IEEE 802.11b Three-node Chain
with Transmission Rate at 1 Mbps as a function of the Frame Error Rates on both links.

Other missing contributions may be due to the lack of time and adequate equipment as
well as technical obstacles. In this regard, together with Pr. Guérin Lassous, we share this
ambition of validating theoretical models with real-life experiments (and not only with a
discrete-event simulator). Therefore, we developed and deployed an IEEE 802.11 testbed
in our lab using standard machines and coding our own scripts. Our pursued objective
was to collect performance measurements and to compare them with those delivered by
a priorly developed theoretical model [G4], [H1, H2]. Our efforts were hindered by many
difficulties including that our equipment was too old to support newer amendments of
IEEE 802.11 (potentially making the obtained results viewed as outdated), and that
the used machines had heterogeneous network interface card (NIC) causing unexpected
behaviors. We managed though to get measurements of performance parameters for an
IEEE 802.11 network in several configurations (using the 802.11b amendment with low
transmission rates). Figure 5.1 shows an excerpt of our results in which we measure the
maximum attained throughput of a flow routed along a chain made of three nodes and
two links. Note that x-axis (resp. y-axis) corresponds to the Frame Error Rate (FER)
experienced over the fist link (resp. second link). We observe that broadly speaking
the largest value of attained throughput are obtained for small values of FER on both
link. Unfortunately, it appears that we had trouble at evenly sampling the space of
FER combinations as many measurement points fall in the same areas. Overall, the

84

measurement process revealed to be technically complex and lengthy, and although we
spent much energy on it, we viewed the results as too incomplete to be included in a
publication.

As for the other missing contributions, I believe that they are mostly due to insufficient
skills in some fields. For example, although I had the opportunity to familiarize myself
with some optimization techniques (e.g., Derivative-Free Optimization technique), I often
met optimization issues that postponed or deviated my research direction.

5.2 Discussion on the Importance of Accuracy in Modeling

Since the introduction of my first theoretical models, I have faced the recurrent question
of their accuracy, often expressed as a concern by external referees. Although I do not
question their motives, I’d like to discuss some thoughts of mine on this matter.

How Accurate is Accurate?

Assessing the accuracy of a theoretical model is a complex matter. In fact, I find the
following questions hardly answerable: How accurate should be a model? Is an accuracy
of 1%, or 5%, or 10% enough? Or does it even matter? Before going any further in
this discussion, it is worth reconsidering what are the modeling motives. As discussed in
Chapter 1, a model can essentially help to explain a system behavior, to understand the
functionality of its components, and to forecast its performance. Additionally, a model
can provide qualitative or quantitative insights.

For instance, I don’t believe the Erlang C model [E11] was ever designed to closely fit
real call centers. However, it became famous and useful as it captures, in a very simple
way, the main phenomena taking place in a call center (e.g., call arrival rate, average call-
holding time, number of telephone lines). I believe that the same can be said for several
renowned models (e.g., central server model proposed by Buzen [E6], packet-switched
network model by Kleinrock [E15]). All these models would have been probably poorly
received if they had been evaluated solely by their level of accuracy. Indeed, in my opinion,
their value lies more in their qualitative abilities than in their quantitative predictions.

On the other hand, when quantitative purposes outweigh qualitative ones, the accuracy
level (namely, the relative error) becomes a much more relevant criterion for assessing a
model. But how accurate should it be? As far as I know, it seems that the desired (or
required) level of accuracy is generally higher from the academic point of views than from
practitioner’s. In fact, I was told a couple of times that, in the industry, an accuracy
of about 20% is generally viewed satisfactorily. On the other hand, in my experience,
academics tend to be more stringent, sometimes even expecting an accuracy below 5%1.
Unfortunately, I believe that such a requirement often comes at the expense of the model
simplicity. Additionally, one needs to keep in mind that the tool used for validation (be
it a simulator or real-life experiences) may not provide this level accuracy anyway.

Overall, in my opinion, when modeling a system, the ultimate goal is not necessarily
to come up with a very accurate model. Instead, the objective is to find an adequate
trade-off between simplicity and accuracy. Unfortunately, I don’t believe there is a simple
and general rule to determine a right level of accuracy as this latter greatly depends

1Note that relative errors may not be an adequate choice when values are close to 0.

85

on the actual uses of the model (i.e., mostly qualitative or quantitative). Nonetheless,
broadly speaking, I would tend to agree with practitioners who look favorably at a level
of accuracy around 10 or 20% for a quantitative model.

Ethical Considerations

The issue of validating a model accuracy also raises ethical questions. Indeed, given
the generally large size of the space of parameters, the accuracy of a model may widely
vary with the value of its parameters. For example, in the case of an IEEE 802.11-
based network, the number of parameters that can potentially affect its performance are
almost countless: the number of nodes, the node locations, the offered load at each node,
the channel transmission rates, the amendment of 802.11, the buffer sizes, the routing,
and the transport protocols to name a few. Therefore, regardless of the real value of a
proposed model or solution, I believe it would always be possible to find some parameter
combinations in which excellent results will be delivered. The same goes in queueing
theory where proposed approximations intended to work for general distributions of the
service or inter-arrival times are sometimes validated with not so variable distributions.
For example, if a value of barely 1.4 is used for the coefficient of variation of the service
time distributions, I believe that a solution consisting in simply replacing the actual
service time distribution by an exponential distribution will probably do just fine. Other
examples include cases where multi-server queues approximations have been validated
at utilization levels where basically all forms of queues behave similarly. Although I am
deeply convinced that researchers are overwhelmingly willing to be fair and critical in their
scientific advancements and contributions, the growing pressure for publishing rapidly and
continually, coined in the phrase Publish or perish, may lead to the over-representation of
successful cases.

Statistical Approaches and Benchmarking

Computer science is not the only scientific discipline to face issues related to the validation
of a model, a hypothesis or a solution. A case in point is polls and surveys where a limited
number of individuals are sampled from the whole population in order to estimate the
population opinion on a given issue. Although each sample taken separately does not
reveal much information on the population opinion, a well-chosen set of samples does.
Analogously, I believe that, in order to evaluate a model accuracy or a solution efficiency,
computer scientists would benefit from applying such statistical approaches. In practice,
a fair approach could consist of exploring numerous examples that together browse a large
range of values for the system parameters, including favorable and unfavorable examples.
Then, the obtained results can be presented as a distribution of the level of accuracy,
together with the mean and median values.

Another avenue to address the issue of validating a model accuracy could be benchmark-
ing. In the field of image processing, researchers have agreed to use a standard test image
introduced in 1973. This picture, referred to as the Lenna image, contains a nice mixture
of detail, flat regions, shading, and texture that make it well-suited for testing different
image processing algorithms. Since then, other test images have been included to form a
broader benchmark. Similarly, the numerical linear algebra community is using a large set
of sparse matrices known as the University of Florida Sparse Matrix Collection [E10] for
the development and performance evaluation of sparse matrix algorithms. In my opin-
ion, the computer network and queueing theory communities would both benefit from

86

defining analogous standard scenarios. These latter would not only help the validation
process but also enable clear comparisons of different solutions on a common ground. Of
course, defining these standard scenarios is not a simple task since many aspects must
be taken into account when setting them up. The other side of the coin is that an eval-
uation through standard scenarios may lead to tailor-made approximations and ad-hoc
solutions that may underperform when placed in other contexts. However, I believe that
a well-rounded set of scenarios can mitigate this risk.

Note that some elements in the computer network discipline may be viewed as steps in
this direction. For instance, in the case of the computer network community, the topology
suggested by Chen [E9] for representing the backbone of a North American network
operator has been subsequently re-used by a number of researchers including myself.
Another example is the set of anonymized Internet traces provided by CAIDA [E7].

5.3 Work methods and Good practices

In this section, I shortly discuss some work methods and good practices built up from my
own experience. By no means, I assume that these latter apply to anyone, but at least
they work for me.

A Rigorous Approach

Everyone would probably agree that rigor is a big asset, if not an absolute necessity, for
conducting scientific research. Indeed, any form of research requires extremely thorough
and careful analysis. I would also add that a rigorous approach can represent a signifi-
cant source of work efficiency. Although rigor may sometimes be viewed as a hindrance
to progress in the short-run, I believe that research is a long process that builds upon
convincing proofs and sound materials. In the long-run, a rigorous approach is the best
means to avoid repeating the same tasks (e.g., double-checking due to inconsistencies)
or to reuse materials from previous projects (as is often needed due the incremental na-
ture of research). Christopher Thompson formulated this idea in a funny way for coders:
Sometimes it pays to stay in bed on Monday, rather than spending the rest of the week
debugging Monday’s code.

Start Small and Test Extensively

When tackling issues such as modeling a system, implementing a simulator, or collecting
real-life measurements, I believe that a sensible approach is to start with a very simple
version, which does not involve all details, and to check its good operation right away.
This approach is analogous to the use of unit testing when developing large software
systems. More generally, I advocate incremental methods where additional complexity
is gradually introduced with systematic tests and validations. By doing so, insights and
experience will be progressively gained and, equally importantly, potential flaws or errors
will be detected at early stage saving time and effort. Lately, a colleague who was in
charge of collecting simulation results for a joint-work spent nearly 3 months designing
an elaborate simulator before testing it (upon our request). It turns out that, despite
its efforts, the simulator was unable to produce correct results on the simplest possible
example. Much time and energy were wasted on this work.

87

Stay Open-Minded

I believe that in general there are several effective ways to address a research problem.
Therefore, when discussing research activities (be it through a review process for a journal,
at a conference, in an office or at the coffee room), it is always worth paying great attention
to any feedback coming from colleagues. A critical assessment of a research work, even
if not stated in a constructive manner, may provide useful information. More generally,
I would advocate having numerous scientific exchanges, including with researchers in
different communities as they may provide a new outlook. In my experience, seemingly
trivial discussions may ultimately lead to original ideas for research.

Seek Simplicity

As discussed in Chapter 1, my research activities have in common that I seek simple
solutions for complex problems. In practice, as discussed above, I typically start with a
simple solution and build on that, introducing complexities only when I cannot find any
workaround. In my opinion, complexity may sometimes result from a wrong, or at least not
sharp enough, understanding of a problem. On the other hand, I believe that the simplicity
of some scientific contributions does not necessarily come easily. Indeed, in many cases,
once an easy solution has been found, the latter became obvious (e.g., reduced state
description where one only of the many homogeneous servers is fully described [E4, E5]).
This idea was nicely captured by Steve Jobs: Simple can be harder than complex: You
have to work hard to get your thinking clean to make it simple.

Helping Ph.D. students

So far I have co-supervized 4 Ph.D. students and I am currently supervizing the 5th.
Although each case is a different one, I have come to establish a certain set of practices
that can help Ph.D. students get through their research study. Clearly, these practices
are based on my own experience and they may not apply to anyone. I list here some of
the most important ones.

• Having regular meetings, say weekly;

• Asking for regular progress reports;

• Exchanging ideas and points of views (listening to students as much as talking to
them);

• Encouraging them to present their research activities whenever possible;

• Avoiding overloading and multi-tasking;

• Building a relationship of trust;

• Giving them enough autonomy and making them responsible;

• Informing them about the research community and career prospects.

88

5.4 Scientific Challenges and Prospects for the Future

I will now discuss how I envision my research activities for the next years to come. How-
ever, I would like first to add the following disclaimer. The content of this section is
largely a forecast and is only indicative. Who knows how it will turn out? In other words,
to paraphrase our politicians, I’d like to make it clear that: “Ces écrits n’engagent que
ceux qui les lisent”.

Machine Learning for Computer Networks

As Feamster, Rexford and Zegura explained in their 2013 paper [E12], computer networks
have become increasingly complex and difficult to manage. They involve many kinds of
equipment, from routers and switches to middleboxes such as firewalls, network address
translators, server load balancers, and intrusion-detection systems. Routers, switches and
access points typically run complex, distributed control software that is typically closed
and proprietary. Furthermore, communications between nodes involve several protocols
from different layers in the OSI model with potentially ineffective interactions. Because
of the large dimensions and undocumented aspects of computer networks, using a con-
structive approach for performance modeling has become significantly more complex over
the last years [E20].

On the other hand, remarkable progress has been achieved in the area of Artificial Intelli-
gence (AI) and Machine Learning (ML) but they have not yet fully percolated through the
networking community. The following quote is an excerpt from the website of the 2018
Workshop on AI in Networks (WAIN) jointly organized with IFIP WP Performance2:
AI and ML are currently being exploited in almost every scientific fields. However, com-
puter networks have still a limited development and deployment of these techniques. I
believe that computer networks may be a fruitful field for the application of ML tech-
niques. Indeed, these latter are particularly useful when addressing high-dimensional and
large-scale problems as is often the case in computer networks. While Supervised learning
techniques mostly aim at recognizing certain rules for correlating inputs to outputs based
on a training set (samples of data), Unsupervised learning provides tools to find struc-
tures and patterns in the data themself. Most existing works where ML techniques have
been applied to computer networks deal with issues such as node localization for indoor
wireless networks (e.g., [E13, E21]), the spectrum utilization in cognitive radios [E3], or
maybe to a lesser extent, the detection of intrusion (e.g., [E16]). As far I know little has
been done in the context of performance evaluation.

Overall Strategy and Planned Projects

In a nutshell, my plan is to use techniques of ML to help the design of performance
models for computer networks, or to guide the parameterization/configuration of existing
networking solutions (e.g., protocols). I started to get interested in this subject about 4 or
5 years ago. I enrolled and completed a couple of Massive Open Online Courses (MOOC)
dealing with AI and ML. This confirmed my desire to orient my research activities in this
direction. Besides, during my Ph.D. and the supervizion of a Ph.D. student I had the
opportunity to study nonlinear regression and techniques from unsupervized learning like
k-means clustering.

2https://performance2018.sciencesconf.org/page/wain

89

Aside fromML techniques for computer networks, I intend to keep working on performance
aspects of Network Function Virtualization (NFV) as well as on the design of simple and
computationally efficient solutions for queueing systems. Without further ado, I now
describe three planned projects that revolve around ML techniques.

A - Neural Network-based Performance Modeling of IEEE 802.11

Not only are IEEE 802.11 performance difficult to measure but they are hardly predictable.
Indeed, their value depends on a vast number of parameters such as the used amendment
of 802.11, the channel transmission rate, the number of competing nodes, the Frame
Error Rate (FER), the offered load, and the transport protocol to name a few. This
high-dimensionality contributes to hinder the design of robust and versatile models.

This prospective project would explore a new approach by letting a dataset of measure-
ments determine a learned (data-driven) model of performance. This dataset, which
will contain IEEE 802.11 measurements of throughput under various networking config-
urations, will serve as the training set for the model. Clearly, this project relies on a
descriptive approach of modeling [E20] (as opposed to a constructive approach). The
ultimate goal of this project is to provide an easy to use tool for predicting IEEE 802.11
performance given a particular network configuration.

In my opinion, the largest difficulties pertain to the definition of the training set. This
requires to identify all parameters of an IEEE 802.11 network that may significantly affect
its performance. Additionally, the process of collecting the performance values together
with the corresponding network parameters (output and inputs) will prove to be complex
and lengthy. Therefore, to begin with, and as a proof of concept, I intend to start by
using discrete-event simulator (in place of real-life experiments) and considering a network
made of only a couple of Access Points (APs).

On the bright side, I have a good understanding of IEEE 802.11 and I acquired experience
with real-life 802.11 measurements (see Section 5.1). Last but not least, during my Ph.D.,
I developed a descriptive approach for performance modeling [E2] that involves concepts
such as gradient descent, feature scaling, mean normalization, training, cross validation
and test sets, overfitting and regularization factor.

This problem belongs to the class of Nonlinear Regression problems, and because of its
large number of dimensions, I expect to use Artificial Neural Networks (that are known
to deal easily with hundreds of dimensions).

B - Supervized Learning Approach for IEEE 802.11-based Multi-Hop Wireless Net-
works

Note that the ideas presented here are the results from joint-reflexions with Isabelle Guérin
Lassous and Bruno Baynat.

The Distributed Coordination Function (DCF) technique employed by the Medium Access
Control (MAC) protocol in IEEE 802.11 is known to be potentially unfair and poorly
efficient when applied to Multi-Hop Wireless Networks (MWNs). A number of solutions
have been proposed to address this issue by adapting some inner 802.11 parameters like
its contention window (e.g., [E1, E17]) However, none of them seems able to perform well
in any configuration of an MWN due to their lack of adaptability [E18]. In practice, some
solutions may work just fine in some MWN configurations, and not in other configurations.

90

In this project, the main idea is to let each node of an MWN discover their environment so
as to select the best adaptation of their parameters. The plan proceeds as follows. First,
we will identify so-called “unitary scenarios”, each representing a specific performance issue
arising in MWNs (e.g., cell, symmetrical hidden node, asymmetrical hidden node, flow in
the middle) [E8, E14]. Second, we will build a training set that includes MWNs in which
we label some nodes to be in certain unitary scenarios (e.g., based on our understanding
of 802.11 , or on networking parameters such as the number of one-hop neighbor nodes,
medium utilization, idle periods, frame error rates, queueing delay). Third, we will use
this set to train a classifier that would allow labeling the most likely unitary scenario for
other nodes. The potential use of this project would be to enable nodes of an MWN to self-
assess their environment, and to adapt the values of their MAC parameters accordingly.

In my opinion, the biggest difficulty lies in the definition of the unitary scenarios that aim
together at covering all possible states of a node with overlapping as little as possible. To
this aim, I will benefit from my previous experiences on IEEE 802.11 as well as those of
my research team colleagues.

As such, this project is formulated as a Multi-Class (Semi-)Supervized Learning problem
for which neural networks seem a natural candidate.

C - Graph Signal Processing

This third project is actually a recently started work with Marija Stojanova and Paulo
Gonçalves. Instead of revolving around ML techniques, this work relies on a Graph Signal
Processing (GSP) approach that, however, shares several aspects.

Graphs are a natural abstraction for representing a variety of systems, including com-
puter and communication networks. Recently, GSP has emerged as a promising field for
analyzing and modeling signals that are supported on a graph. GSP aims at extend-
ing classical signal processing concepts and tools such as Fourier transform, filtering and
spectral response to data residing on graphs [E19].

While designing our performance modeling approach for IEEE 802.11-based WLAN (pre-
sented in Chapter 3), we wondered if the GSP toolbox could provide a much easier way of
addressing this issue. Cast as a GSP problem, the considered signal on the graph repre-
senting the weights on the vertices (viz. 802.11 nodes) is bivariate. It should encode both
the level of the load at this Access Point and the selected rate of channel transmission.
Then, using a graph-based Moving Average filter (MA), we explore how this latter can
accurately forecast the throughput attained by each node (filter output) of the network
given the conflict graph (viz. network topology) between the nodes as well as the level
of load and channel transmission rate on each node (filter inputs). The advantage of
this approach, aside from its simplicity, is that it intrinsically captures the whole conflict
graph as it involves the adjacent matrix.

The difficulty here lies in the coefficients of the MA filter. Capping the filter at a low
order may lead to an inaccurate modeling of the data (bias) while considering a high order
may result in overfitting the data.

Although it is too early to draw any conclusion on the effectiveness of this approach, our
preliminary results appear to be encouraging.

91

Disseminating Knowledge

Aside from these scientific projects, I will keep disseminating the knowledge and skills
generated from them. So far this has taken the form of lecture classes at the university
(e.g., Master courses on SDN and NFV following research projects on these fields) or ex-
planatory websites (e.g., http://queueing-systems.ens-lyon.fr/ that illustrate some
of our contributions in queueing theory).

References for Chapter 5

[E1] A. Aziz, D. Starobinski, and P. Thiran. Understanding and tackling the root causes
of instability in wireless mesh networks. IEEE/ACM Transactions on Networking
(TON), 19(4):1178–1193, 2011.

[E2] T. Begin, A. Brandwajn, B. Baynat, B. E. Wolfinger, and S. Fdida. High-level
approach to modeling of observed system behavior. Performance Evaluation,
67(5):386–405, 2010.

[E3] M. Bkassiny, Y. Li, and S. K. Jayaweera. A survey on machine-learning techniques
in cognitive radios. IEEE Communications Surveys & Tutorials, 15(3):1136–1159,
2013.

[E4] A. Brandwajn and T. Begin. Reduced complexity in M/Ph/c/N queues. Perfor-
mance Evaluation, 78:42–54, 2014.

[E5] A. Brandwajn and T. Begin. Breaking the dimensionality curse in multi-server
queues. Computers & Operations Research, 73:141–149, 2016.

[E6] J. P. Buzen. Queuing Network Models of Multiprogramming Ph. D. PhD thesis,
Thesis, Harvard University, Cambridge, MA, 1971.

[E7] CAIDA - Center for Applied Internet Data Analysis. http://www.caida.org.

[E8] C. Chaudet, D. Dhoutaut, and I. G. Lassous. Performance issues with IEEE 802.11
in ad hoc networking. IEEE Communications magazine, 43(7):110–116, 2005.

[E9] S. Chen and K. Nahrstedt. On finding multi-constrained paths. In IEEE ICC,
volume 2, pages 874–879. IEEE, 1998.

[E10] T. A. Davis and Y. Hu. The university of florida sparse matrix collection. ACM
Transactions on Mathematical Software (TOMS), 38(1):1, 2011.

[E11] A. K. Erlang. Solution of some problems in the theory of probabilities of signifi-
cance in automatic telephone exchanges. Post Office Electrical Engineer’s Journal,
10:189–197, 1917.

[E12] N. Feamster, J. Rexford, and E. Zegura. The road to SDN: an intellectual history
of programmable networks. ACM SIGCOMM Computer Communication Review,
44(2):87–98, 2014.

[E13] C. Figuera, J. L. Rojo-Álvarez, M. Wilby, I. Mora-Jiménez, and A. J. Caamaño.
Advanced support vector machines for 802.11 indoor location. Signal Processing,
92(9):2126–2136, 2012.

92

[E14] M. Garetto, T. Salonidis, and E. W. Knightly. Modeling per-flow throughput and
capturing starvation in CSMA multi-hop wireless networks. IEEE/ACM Transac-
tions on Networking (TON), 16(4):864–877, 2008.

[E15] L. Kleinrock. Message delay in communication nets with storage. PhD thesis,
Massachusetts Institute of Technology, 1963.

[E16] C. Kolias, G. Kambourakis, A. Stavrou, and S. Gritzalis. Intrusion detection in
802.11 networks: empirical evaluation of threats and a public dataset. IEEE Com-
munications Surveys & Tutorials, 18(1):184–208, 2016.

[E17] B. Nardelli and E. W. Knightly. Closed-form throughput expressions for CSMA
networks with collisions and hidden terminals. In IEEE INFOCOM, pages 2309–
2317. IEEE, 2012.

[E18] B. Nardelli, J. Lee, K. Lee, Y. Yi, S. Chong, E. W. Knightly, and M. Chiang.
Experimental evaluation of optimal CSMA. In IEEE INFOCOM, pages 1188–1196.
IEEE, 2011.

[E19] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst. Graph
signal processing: Overview, challenges, and applications. Proceedings of the IEEE,
106(5):808–828, 2018.

[E20] K. Salamatian and S. Fdida. A framework for interpreting measurement over In-
ternet. In MoMeTools, pages 87–94. ACM, 2003.

[E21] H. Zou, X. Lu, H. Jiang, and L. Xie. A fast and precise indoor localization algorithm
based on an online sequential extreme learning machine. Sensors, 15(1):1804–1824,
2015.

93

94

Chapter 6

Co-Authored Publications

International Journals

[G1] Tulin Atmaca, Thomas Begin, Alexandre Brandwajn, and Hind Castel-Taleb. Per-
formance evaluation of cloud computing centers with general arrivals and service.
IEEE Transactions on Parallel and Distributed Systems, 27(8):2341–2348, 2016.

[G2] Thomas Begin, Bruno Baynat, Guillaume Artero Gallardo, and Vincent Jardin.
An accurate and efficient modeling framework for the performance evaluation of
DPDK-based virtual switches. In IEEE Transactions on Network and Service Man-
agement, pages 1–14, 2018.

[G3] Thomas Begin, Bruno Baynat, Alexandre Brandwajn, and Francis Sourd. A
DFO technique to calibrate queueing models. Computers & Operations Research,
37(2):273–281, February 2009.

[G4] Thomas Begin, Bruno Baynat, Isabelle Guérin Lassous, and Thiago Abreu. Perfor-
mance analysis of multi-hop flows in IEEE 802.11 networks: A flexible and accurate
modeling framework. Performance Evaluation, 96:12–32, 2016.

[G5] Thomas Begin and Alexandre Brandwajn. Higher-order distributional properties
in closed queueing networks. Performance Evaluation, 66(11):607–620, November
2009.

[G6] Thomas Begin, Alexandre Brandwajn, Bruno Baynat, Bernd Wolfinger, and Serge
Fdida. High-level approach to modeling of observed system behavior. Performance
Evaluation, 67(5):386–405, May 2010.

[G7] Alexandre Brandwajn and Thomas Begin. A recurrent solution of Ph/M/c/N -like
and Ph/M/c-like queues. Journal of Applied Probability, 49(1):84–99, March 2012.

[G8] Alexandre Brandwajn and Thomas Begin. Reduced complexity in M/Ph/c/N
queues. Performance Evaluation, 78:42–54, August 2014.

[G9] Alexandre Brandwajn and Thomas Begin. Breaking the dimensionality curse in
multi-server queues. Computers & Operations Research, 78:141–149, September
2016.

[G10] Alexandre Brandwajn and Thomas Begin. Multi-server preemptive priority queue
with general arrivals and service times. Performance Evaluation, 115:150–164, 2017.

95

[G11] Alexandre Brandwajn and Thomas Begin. First-Come-First-Served Queues with
Multiple Servers and Customer Classes. Performance Evaluation, 2018.

[G12] Alexandre Brandwajn, Thomas Begin, Hind Castel-Taleb, and Tulin Atmaca. A
study of systems with multiple operating levels, probabilistic thresholds and hys-
teresis. IEEE Transactions on Parallel and Distributed Systems, 29(4):748–757,
April 2018.

[G13] Paulo Gonçalves, Shubabrata Roy, Thomas Begin, and Patrick Loiseau. Dynamic
resource management in clouds: A probabilistic approach. IEICE Transactions on
Communications, special session on Networking Technologies for Cloud Services,
95(8):2522–2529, 2012. Invited paper.

[G14] Hossein Soleimani, Thomas Begin, and Azzedine Boukerche. Safety message genera-
tion rate adaptation in lte-based vehicular networks. Computer Networks, 128:186–
196, 2017.

[G15] Marija Stojanova, Thomas Begin, and Anthony Busson. Conflict graph-based
model for IEEE 802.11 networks: A Divide-and-Conquer approach. Performance
Evaluation, 2018.

Articles in Proceedings of International Conferences with Program
Committee

[H1] Thiago Abreu, Bruno Baynat, Thomas Begin, and Isabelle Guérin Lassous. Hierar-
chical modeling of IEEE 802.11 multi-hop wireless networks. In Proceedings of the
16th International Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems, ACM MSWIM’13, pages 143–150, Barcelona, Spain, Novem-
ber 2013.

[H2] Thiago Abreu, Bruno Baynat, Thomas Begin, Isabelle Guérin Lassous, and Huu-
Nghi Nguyen. Modeling of IEEE 802.11 multi-hop wireless chains with hidden
nodes. In Proceedings of the 17th International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems, ACM MSWIM’14, pages 159–162,
Montréal, Canada, September 2014.

[H3] Thiago Abreu, Nghi Nguyen, Thomas Begin, Isabelle Guérin Lassous, and Bruno
Baynat. Substitution Networks: Performance Collapse due to Overhead in Com-
munication Times. In Proceedings of the 4th International Conference on Ad Hoc
Networks, AdhocNets’12, pages 1–16, Paris, France, October 2012. Invited paper.

[H4] Doreid Ammar, Thomas Begin, and Isabelle Guérin Lassous. A new tool for gen-
erating realistic internet traffic in NS − 3. In Proceedings of the 4th International
ICST Conference on Simulation Tools and Techniques, IEEE SIMUTools’11, pages
81–83, Barcelona, Spain, March 2011.

[H5] Doreid Ammar, Thomas Begin, Isabelle Guérin Lassous, and Ludovic Noirie. Eval-
uation and comparison of MBAC solutions. In Proceedings of the 36th Conference
on Local Computer Networks, IEEE LCN’11, pages 215–218, Bonn, Germany, Oc-
tober 2011.

96

[H6] Doreid Ammar, Thomas Begin, Isabelle Guérin Lassous, and Ludovic Noirie.
KBAC: Knowledge-Based Admission Control. In Proceedings of the 37th Confer-
ence on Local Computer Networks, IEEE LCN’12, pages 537–544, Miami, Florida,
October 2012.

[H7] Doreid Ammar, Thomas Begin, Isabelle Guérin Lassous, and Ludovic Noirie.
Traffic-aware flow admission control. Demo at Alcatel Lucent, Open Days, May
2012.

[H8] Doreid Ammar, Julien Brochet, Thomas Begin, Isabelle Guérin Lassous, and Lu-
dovic Noirie. Knowledge-Based Admission Control: A real-time performance anal-
ysis. Demo at the 37th Conference on Local Computer Networks, IEEE LCN 2012,
October 2012.

[H9] Guillaume Artero Gallardo, Bruno Baynat, and Thomas Begin. Performance mod-
eling of virtual switching systems. In Proceedings of the 24th IEEE International
Symposium on Modelling, Analysis and Simulation of Computer and Telecommuni-
cation Systems, MASCOTS’16, pages 125–134, London, England, September 2016.

[H10] Thomas Begin and Azzedine Boukerche. A note on the causes degrading com-
munication between RSUs and vehicles in overloaded conditions. In Proceedings
of the 13th ACM International Symposium on Performance Evaluation of Wire-
less Ad Hoc, Sensor, and Ubiquitous Networks, ACM PE-WASUN’16, pages 27–31,
Valletta, Malta, November 2016. Invited paper.

[H11] Thomas Begin and Alexandre Brandwajn. A Tool for solving Ph/M/c and
Ph/M/c/N queues. Proceedings of the 9th ACM International Conference on Quan-
titative Evaluation of SysTems, QEST12, September 2012.

[H12] Thomas Begin and Alexandre Brandwajn. A note on the accuracy of several existing
approximations for M/Ph/m queues. In Proceedings of the 4th IEEE International
Workshop on High-Speed Network and Computing Environment, IEEE HSNCE’13,
pages 730–735, Kyoto, Japan, July 2013.

[H13] Thomas Begin and Alexandre Brandwajn. Predicting the system performance by
combining calibrated performance models of its components - a preliminary study.
In Proceedings of the 7th ACM/SPEC International Conference on Performance
Engineering, ICPE’16, pages 95–100, Delft, Netherlands, March 2016.

[H14] Thomas Begin, Alexandre Brandwajn, Bruno Baynat, Bernd Wolfinger, and Serge
Fdida. High-level approach to modeling observed system behavior. In SIGMET-
RICS Performance Evaluation Review, volume 35, pages 34–36, Cologne, Germany,
October 2007. Presented as a Poster at Performance 2007.

[H15] Thomas Begin, Alexandre Brandwajn, Bruno Baynat, Bernd Wolfinger, and Serge
Fdida. Towards an automatic modeling tool for observed system behavior. In
Proceedings of the 4th European Performance Engineering Workshop, EPEW’07,
pages 200–212, Berlin, Germany, September 2007. LNCS.

[H16] Thomas Begin, Anthony Busson, Isabelle Guérin Lassous, and Azzedine Bouk-
erche. Video on Demand in IEEE 802.11p-based Vehicular Networks: Analysis and
Dimensioning. In Proceedings of the 21st International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, ACM MSWIM’18, pages
1–8, Montréal, Canada, October 2018.

97

[H17] Alexandre Brandwajn and Thomas Begin. A note on aspects of workload characteri-
zation in parallel access volumes. In Proceedings of 19th the Computer Measurement
Group, CMG’09, pages 1–6, Dallais, US, December 2009.

[H18] Alexandre Brandwajn and Thomas Begin. A note on the effects of service time
distribution in the M/G/1 queue. In Proceedings of the Standard Performance
Evaluation Corporation Benchmark Workshop, SPEC’09, pages 138–144, Austin,
Texas, January 2009.

[H19] Alexandre Brandwajn and Thomas Begin. Preliminary results on a simple approach
to G/G/c-like queues. In Proceedings of the 16th International Conference on An-
alytical and Stochastic Modelling Techniques and Applications, ASMTA’09, pages
159–173, Madrid, Spain, June 2009.

[H20] Alexandre Brandwajn and Thomas Begin. Performance evaluation of a single
node with general arrivals and service. In Proceedings of the 18th International
Conference on Analytical and Stochastic Modelling Techniques and Applications,
ASMTA’11, pages 85–98, Venice, Italy, June 2011.

[H21] Alexandre Brandwajn and Thomas Begin. An approximate solution for Ph/Ph/1
and Ph/Ph/1/N queues. In Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering, ICPE’12, pages 57–62, Boston, Mas-
sachusetts, April 2012.

[H22] Jean-Baptiste Delavoix, Shubabrata Roy, Thomas Begin, and Paulo Gonçalves.
Demonstrating a Versatile Model for VoD Buzz Workload in a Large Scale Dis-
tributed Network. Demo at the 1st International Conference on Cloud Networking,
IEEE CloudNet 2012, November 2012.

[H23] Sébastien Doirieux, Bruno Baynat, and Thomas Begin. On finding the right
balance between fairness and efficiency in WiMAX scheduling through analyti-
cal modeling. In Proceedings of the 17th IEEE/ACM International Symposium on
Modelling, Analysis and Simulation of Computer and Telecommunication Systems,
MASCOTS’09, pages 1–10, London, England, September 2009.

[H24] Huu-Nghi Nguyen, Thomas Begin, Anthony Busson, and Isabelle Guérin Lassous.
Approximating the end-to-end delay using local measurements: a preliminary study
based on conditional expectation. In Proceedings of the International Symposium
on Networks, Computers and Communications, IEEE ISNCC’16, pages 1–6, Ham-
mamet, Tunisia, May 2016. Invited paper.

[H25] Huu-Nghi Nguyen, Thomas Begin, Anthony Busson, and Isabelle Guérin Lassous.
Evaluation of an end-to-end delay estimation in the case of multiple flows in SDN
networks. In Proceedings of the 3rd International Workshop on Management of
SDN and NFV Systems, ManSDN/NFV’16, pages 336–341, Montréal, Canada,
November 2016.

[H26] Huu-Nghi Nguyen, Thomas Begin, Anthony Busson, and Isabelle Guérin Lassous.
Towards a passive measurement-based estimator for the standard deviation of the
end-to-end delay. In Proceedings of the Network Operations and Management Sym-
posium, IEEE/IFIP NOMS’16, pages 632–637, Istanbul, Turkey, April 2016.

98

[H27] Van Dan Nguyen, Thomas Begin, and Isabelle Guérin Lassous. Multi-constrained
routing algorithm: a networking evaluation. In Proceedings of the 4th IEEE In-
ternational Workshop on High-Speed Network and Computing Environment, IEEE
HSNCE’13, pages 719–723, Kyoto, Japan, July 2013.

[H28] Tahiry Razafindralambo, Thomas Begin, Marcelo Dias De Amorim, Isabelle
Guérin Lassous, Nathalie Mitton, and David Simplot-Ryl. Promoting quality of
service in substitution networks with controlled mobility. In Proceedings of the
10th International Conference on Ad Hoc Networks and Wireless, AdHocNow’11,
pages 248–261, Paderborn, Germany, July 2011.

[H29] Shubabrata Roy, Thomas Begin, and Paulo Gonçalves. A complete framework for
modelling and generating workload volatility of a VoD system. In Proceedings of
the 9th International Wireless Communications & Mobile Computing Conference,
IWCMC’13 - 4th International Workshop on TRaffic Analysis and Classification,
IEEE TRAC’13, pages 1168–1174, Cagliari, Italy, July 2013.

[H30] Marija Stojanova, Thomas Begin, and Anthony Busson. Conflict graph-based
markovian model to estimate throughput in unsaturated ieee 802.11 networks. In
Proceedings of the 15th International Symposium on Modeling and Optimization in
Mobile, Ad Hoc, and Wireless Networks, IEEE/IFIP WiOpt’17, pages 1–8, Paris,
France, May 2017.

[H31] Zidong Su, Bruno Baynat, and Thomas Begin. A new model for dpdk-based virtual
switches. In Proceedings of the 3rd Conference on Network Softwarization, IEEE
NETSOFT’17, pages 1–5. Bologna, Italy, July 2017.

[H32] Zidong Su, Thomas Begin, and Bruno Baynat. Towards including batch services
in models for dpdk-based virtual switches. In Proceedings of the 9th Conference
on Global Information Infrastructure and Networking Symposium, IEEE GIIS’18,
pages 37–44. Saint Pierre, France, October 2017.

Articles in Proceedings of National Conferences with Program
Committee

[I1] Doreid Ammar, Thomas Begin, Isabelle Guérin Lassous, and Ludovic Noirie. Con-
trôles d’admission basés sur des mesures : Evaluation et comparaison de solutions.
In Proceedings of the 15th Colloque Francophone sur l’Ingénierie des Protocoles,
CFIP’11, pages 1–4, Sainte Maxime, France, May 2011. Hermès.

[I2] Doreid Ammar, Thomas Begin, Isabelle Guérin Lassous, and Ludovic Noirie. Con-
trôle d’admission basé sur un plan de connaissance. In Proceedings of the 14th
Rencontres Francophones sur les Aspects Algorithmiques de Télécommunications,
ALGOTEL’12, pages 1–4, La Grande Motte, France, May 2012.

[I3] Thomas Begin, Bruno Baynat, Alexandre Brandwajn, Serge Fdida, Safia Kedad,
and Francis Sourd. Génénaration automatique de modèles calibrés. In Proceedings
of the 12th Colloque Francophone sur l’Ingénierie des Protocoles, CFIP’06, pages
74–86, Tozeur, Tunisia, November 2006. Hermès.

99

[I4] Thomas Begin and Alexandre Brandwajn. Note sur la simulation d’une file M/G/1
selon la distribution du temps de service. In Proceedings of the 12th Rencontres Fran-
cophones sur les Aspects Algorithmiques de Télécommunications, ALGOTEL’10,
pages 1–4, Belle Dune, France, June 2010.

[I5] Thomas Begin and Alexandre Brandwajn. Une solution approchée pour les files
Ph/Ph/1 et Ph/Ph/1/N . In Proceedings of the 13th Rencontres Francophones sur
les Aspects Algorithmiques de Télécommunications, ALGOTEL’11, pages 1–4, Cap
Estérel, France, Mai 2011.

[I6] Mehdi Bezahaf, Thomas Begin, Bruno Baynat, and Serge Fdida. Note sur les per-
formances de TCP dans un environnement sans-fil multisaut. In Proceedings of
the 14th Colloque Francophone sur l’Ingénierie des Protocoles, CFIP’09, pages 1–3,
Strasbourg, France, October 2009.

[I7] Alexandre Brandwajn and Thomas Begin. Note sur les temps de service résiduels.
In Proceedings of the 13th Colloque Francophone sur l’Ingénierie des Protocoles,
CFIP’08, pages 6–18, Les Arcs, France, March 2008.

[I8] Shubabrata Roy, Thomas Begin, and Paulo Gonçalves. An MCMC procedure for
calibrating a VoD workload model. In Proceedings of the 24th colloque Gretsi ,
GRETSI’13, pages 1–4, Cagliari, Italy, July 2013.

100

