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Abstract—High variability of system parameters is a complicat-
ing factor in the modeling of the performance of big data systems.
In this paper, we assess the potential inaccuracy of several existing
approximations for evaluating the mean number of jobs queued
in a parallelized device that can be represented as an M/Ph/m
queue. Unlike existing studies, we consider the effect of the third
moment of the service time, or equivalently, its skewness.
We show that the approximations accuracy can be poor even
for “easy” examples with a low coefficient of variation of the
service time. Our examples demonstrate the important influence
of the skewness of the service time distribution on the accuracy
of the approximations. None of the approximations accounts for
this property. We provide recommendations for the choice of
the approximation that allow the user to choose the best suited
approximation based on the actual queue parameters.

Index Terms—M/Ph/m queue; Phase type distribution; Skew-
ness; Approximate solution; Relative error.

I. INTRODUCTION

With the rapid emergence of cloud computing, the prolif-
eration of social networking sites and the continuous growth
of storage systems, practitioners are increasingly facing the
challenge of dealing with extremely large datasets, commonly
referred to as big data. The processing of these datasets raises
many new issues related to their capture, storage, search,
sharing, analysis, visualization and performance evaluation.
For this latter purpose, the process of modeling systems, which
include big data, is generally seen as complex due to, among
other things, the high variability of some system parameters.
For instance, in the case of a high-performance disk controller,
the time needed to process an I/O request is likely to exhibit
a skewed distribution because of the underlying multi-tier
storage architecture.

Thus, when modeling a system, practitioners are often
inclined to replace complex variables with more compact but
approximate descriptions. By doing so, they tend to simplify
the model and hopefully its solution. However, the resulting
cost in terms of (in)accuracy is often unclear. In this paper, we
assess the potential inaccuracy of several well-established ap-
proximations for evaluating the performance of a parallelized
device. We focus our study on the case of highly variable
workloads as it is likely to be the case in the context of big
data.

The remainder of the paper is organized as follows. In
Section II we present the simplest model to represent the
behavior of a parallelized system. We briefly review existing
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Fig. 1. Illustration of an M/Ph/m queue.

approximations to evaluate its steady-state performance, and
we detail our methodology to assess the applicability domain
of these approximations. Section III presents the numerical
results and discussions. Section IV concludes the paper.

II. MODEL OF PARALLELIZED DEVICE AND ITS SOLUTION

The simplest yet meaningful model for a parallelized device
with a skewed service time distribution is the so-called M/Ph/m
queue. This queue represents a system with m homogeneous
servers, where the time between arrivals are exponentially dis-
tributed and job service times have a phase type distribution1.
The buffer (i.e., queueing room) size is assumed to be infinite,
so there is no limit on the number of jobs it can contain. The
arrivals occur at a rate λ. The service time distribution has
a mean of 1/µ and a coefficient of variation of cB . Recall
that the coefficient of variation is defined as the ratio of
the standard deviation to the mean, and can be seen as a
normalized second order moment. The servers utilization is
given by ρ = λ/(m.µ). Of course, if ρ < 1, i.e., λ < m.µ,
the model is stable and the number of jobs in the system has
a stationary distribution. Figure 1 depicts the M/Ph/m queue
considered while Table I summarizes the principal notation
used in our paper.

In the general case, no simple derivation exists to compute
the exact stationary queue length distribution of an M/Ph/m
queue, even for its first moment. However, several approximate
solutions have been proposed in the literature. Several of
these approximations presents an easily implementable closed-
form formula to evaluate the mean queueing time for a job2.

1A phase type distribution can approximate arbitrarily closely any positive
valued distribution [9].

2By Little’s law [1], the mean queueing time WM/Ph/m and the mean queue
length LM/Ph/m are related as follows: LM/Ph/m = λ.WM/Ph/m.



m Number of servers
λ Rate of jobs arrivals
1/µ Mean service time for a job
σ Standard deviation of the service time distribution
cB Coefficient of variation of the service time distribution
sB Skewness of the service time distribution
ρ = λ/(m.µ) Server utilization
WM/Ph/m Mean queueing time of a job in the M/Ph/m queue
LM/Ph/m Mean queue length in the M/Ph/m queue

TABLE I
PRINCIPAL NOTATION USED IN THIS PAPER.

Possibly inspired by the distributional dependence factor in
the Pollaczek-Khintchine formula for the M/GI/1 queue3, most
existing studies seem to concentrate on the influence of the co-
efficient of variation of the service time distribution. However,
a few papers [17], [16], and more recently [8], [6], report that
even the common performance parameters like mean queueing
delay depend, sometimes to a large extent, on more than the
first two moments of the service time distribution. Hence, it
would seem unrealistic to expect an approximation based on
only two moments to perform well over a large spectrum of
service time distribution. Most of the existing approximations
base their solutions on the interpolation and extrapolation of
two special cases of the M/Ph/m queue, namely the M/D/m and
the M/M/m queues, for which the mean queue length can be
easily computed (exactly or approximately). We now present
the detailed formula for six of these approximations, often
found in textbooks on performance evaluation, to compute the
mean queueing time WM/Ph/m.

1) Martin’s approximation [13].

WM/Ph/m '
Pm/µ

1− ρ
.
1 + c2B
2m

where Pm is the waiting probability for an arriving job
estimated by the corresponding probability in an M/M/m
queue.

2) Cosmetatos’s approximation [7] (also proposed by
Björklund and Elldin [2]).

WM/Ph/m ' c2BWM/M/m + (1− c2B)WM/D/m

3) Boxma, Cohen and Huffels referred to as BCH’s approx-
imation [5].

WM/Ph/m '
1 + c2B

2

2WM/D/mWM/M/m

2aWM/D/m + (1− a)WM/M/m

where

a =

{
1 if m = 1

1
m−1 (

c2B+1
γ1
−m+ 1) if m > 1

3The well-known Pollaczek-Khintchine formula states that the average
queueing time in an M/GI/1 queue depends only on the first two moments of
the service time.

and

γ1 =
1− c2B
m+ 1

+
c2B
m

4) Tijms’s approximation [15].

WM/Ph/m '
(
(1− ρ)γ1m+

ρ

2
(c2B + 1)

)
WM/M/m

where γ1 is defined as in the BCH approximation.
5) Lee’s approximation [12].

WM/Ph/m '
1 + c2B

2
WM/M/m

6) Kimura’s approximation [10]

WM/Ph/m '
1 + c2B

2c2B
WM/M/m

+
1−c2B
WM/D/m

Following guidelines of [4], we used in the above approxi-
mation

WM/D/m '
1

2
.WM/M/m

(
1 + (1− ρ)(m− 1)

√
4 + 5m− 2

16ρm

)
.

We implemented other options for WM/D/m (e.g. see eq. (4.17)
and (4.29) in [11]) but they produce virtually identical results
in our study. For more details on the rationale behind Martin,
Cosmetatos, BCH and Tijms approximations, please refer to
[4], and to [11] for the others, though their respective domain
of applicability is often left unclear.

Overall, little seems to be known about the actual accuracy
of these approximations. We briefly review the related state of
the art. Not surprisingly, these approximations tend to be fair
when the server utilization is low (say less than 0.5). The rea-
son here is that under such condition there is little queue built
up in the system, and its performance are mainly driven by
the first moment of the service time distribution. Conversely,
if the server utilization is high (close to 1), then an M/Ph/m
queue is not an adequate model anymore. In such a congestion
regime, one needs a queueing model with a finite buffer to
assess the system behavior. Existing literature suggests that
these approximations will give excellent results when the
variability of the service time distribution is low, which means
its coefficient of variation ranges from 0 to not much higher
than 1. This is quite expected since, by design, most of these
approximations rely on the specific solutions of M/D/m and
M/M/m queues. Furthermore, statistical distributions with low
variability tend to be alike, and thus their expected queueing
times tend to be close to those of M/D/m and M/M/m queues.
On the other hand, with increasing values of the coefficient
of variation of the service time, it is generally known that
the approximations accuracy will gradually decrease, although
it is generally not stated at what rate. In [4], the authors
compare several approximations introduced above, namely
Martin, Cosmetatos, BCH and Tijms, with the results obtained
from discrete-events simulation. They consider an M/Ph/m
queue with 5 servers, a server utilization rate of 0.7 and
values of cB ranging from 0 to 3.2. They conclude that “all



approximations are good for cB < 1.4, and that for higher
values of cB the approximation due to Cosmetatos is very
good and the others are fair.”

In this paper, we aim to better characterize the domain
of applicability for each of these six approximations. First,
we show that their accuracy can be very poor, including for
supposedly “easy” examples with a low coefficient of variation
of the service time. Second, our results tend to suggest that
one can get significantly improved approximate results for the
M/Ph/m queue by picking the right approximation according
to the actual value of the third moment of the service time, or
equivalently, its skewness.

III. NUMERICAL RESULTS, DISCUSSION AND CONCLUSION

A. Experimental protocol

To assess the accuracy of the approximate solutions, and
more specifically the influence of the M/Ph/m queue param-
eters, we proceed as follows. We consider values for the
number of servers m ranging from 2 to 12, and for the
server utilization ρ ranging from 0.1 to 0.95. For sake of
simplicity, we keep the mean service time constant at 1/µ = 1.
Taking into account the state-of-the-art, we focus our study on
values of the coefficient of variation of the service time cB
significantly larger than 1, i.e., ranging from 2 to 10. Finally,
unlike most of the existing literature, we pick values for the
skewness parameter of the service time sB ranging from cB
to 100. Recall that the skewness of a random variable X
is defined as follows: s , E[(X−1/µ

σ )3] where 1/µ and σ
are the mean and the standard deviation, respectively. s is
thus the normalized third-order central moment, and it is a
measure of the asymmetry of the distribution. The greater
the skewness, the longer the tail. Note that a skewness of 0
occurs if the distribution is nearly symmetric. Although in
theory negative values are possible for sB , in the case of
non-negative distributions and cB > 1 only positive values
of sB can occur, meaning that the tail of the distribution is
always on the right (see Appendix A). We rely on an easy
computable algorithm [3] to find a phase type distribution that
matches specific values of cB and sB . Then, we compute the
exact value of the mean number of jobs in the corresponding
M/Ph/m queues using an iterative solution, and evaluate the
corresponding relative error for each of the six approximate
solutions.

We explore the obtained results along 4 parameters: m, ρ,
cB and sB splitting our analysis in two. First we let m and
ρ vary while cB and sB are kept constant, and then we do it
reverse.

B. Influence of the number of servers and the server utilization

To assess the influence of m and ρ on the approximate
solutions accuracy, we consider two distinct examples which
we refer to as examples (A) and (B). Their description is given
in Table II.

In example (A), the coefficient of variation of the service
time is set to 8 while the skewness is equal to 30. Figure 2
shows the degree of accuracy attained by each approximate

Example m ρ cB sB
(A) [0; 12] [0.1; 0.95] 8 30
(B) [0; 12] [0.1; 0.95] 5 50
(C) 4 0.7 [2; 10] [cB ; 100]
(D) 8 0.6 [2; 10] [cB ; 100]

TABLE II
THE M/Ph/m QUEUE PARAMETERS.

number of servers
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Fig. 2. Relative errors of the approximate solutions on the mean number of
jobs in the M/Ph/m queue of example (A).

solution on this example. It turns out that, with the exception
of Kimura’s solution, virtually all approximations tend to
overestimate the queue length, whatever the values of ρ and
m. Deviations from the exact solution tend to be higher when
ρ is close to 0.5 for small values of m, whereas they peak
around ρ equal to 0.7 for larger values of m. Based on this
example, the BCH solution with its relative error often less
than 10% and at most of 35% significantly outperforms the
others whose errors attain and exceed 50%.

Example (B) deals with a smaller value of cB but a larger
sB . Figure 3 presents the corresponding results. We observe
that, again, all but Kimura’s solution tend to overestimate
the mean number of jobs in the M/Ph/m queue. Similarly to
example (A), it shows that approximate solutions are the most
likely to fail when ρ is close to 0.5 for m ranging from 2
to 4. For larger values of m the region of lowest accuracy
gradually shifts to higher values of ρ around 0.8. However,
unlike example (A), the solution of Kimura yields the best
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Fig. 3. Relative errors of the approximate solutions on the mean number of
jobs in the M/Ph/m queue of example (B).

results with a relative error not exceeding 10%.
Based on examples (A) and (B), it seems that when the

number of servers is either much larger than the server
utilization (say m verifies m > 33ρ − 4.66), or conversely
much smaller than the server utilization (say m < 50ρ− 33),
all approximate solutions lead to excellent results. On the
other hand, the region where approximate solutions tend to
fail occurs for moderate server utilization. When m is low
(say less than 4) this region tends to cover server utilizations
close to 0.5. As m grows, this region gradually shifts towards
server utilizations around 0.8. It is also worth noting that,
in this example, BCH’s solution always outperforms Martin,
Cosmetatos, Tijms and Lee’s solution. Finally, it appears that
depending on the actual service time distribution (here its cB
and sB), BCH or Kimura’s solution emerges as the best choice.
In the next section, we study in more detail the influence of
the service time distribution.

C. Influence of the coefficient of variation and the skewness

In order to investigate the influence of cB and sB , we
now hold constant the number of servers m and the server
utilization ρ.

We consider example (C) where m is 4 and ρ is set to
0.7. The corresponding results are illustrated in Figure 4.
All solutions except Kimura’s approximation yield fair results
even for large values of the coefficient of variation as long
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Fig. 4. Relative errors of the approximate solution on the mean number of
jobs in the M/Ph/m queue of example (C).

as the skewness is low (say less than 20). As the skewness
increases and reaches 40 or 50, then these solutions lead to
highly inaccurate results, unless cB is less than 3. On the
other hand, Kimura’s solution tends to work best when the
other solutions are failing. Except when cB is high and sB
is kept low, its deviations from the exact solution are below
25%.

In example (D) we increase the number of servers to m = 8
and we set the server utilization ρ to 0.6. Figure 5 shows the
corresponding results. Overall, all the approximate solutions
perform better here than in the previous example. Kimura’s
solution yields excellent results unless cB is high and sB
is very low. Conversely, in such a case, all other solutions
produce fair results.

From examples of (C) and (D), we observe that if both cB
and sB are low (say less than 4 and 30, respectively), any of
the six approximate solutions provides accurate results. If the
skewness is large (say 10 times greater than the coefficient of
variation), but the coefficient of variation is low, our results
favor the use of Kimura’s solution. Conversely, when the
skewness is low, and the coefficient of variation is high, then
BCH solution becomes the best option. Finally, when both
cB and sB are high, none of the approximations seem to be
acceptable.

To conclude, based on our four examples, we recommend
the following guidelines:
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Fig. 5. Relative errors of the approximate solution on the mean number of
jobs in the M/Ph/m queue of example (D).

• if m is much larger than ρ (say m > 33ρ − 4.66), or
conversely much smaller (say m < 50ρ − 33), then any
approximate solutions yields excellent results;

• otherwise
– if both cB and sB are low (say less than 4 and 30,

respectively), any of the six approximate solutions
provides accurate results;

– if sB is large (say 10 times greater than the coeffi-
cient of variation) and cB is low, we recommend the
use of the Kimura solution;

– if sB is low and cB is large, we recommend the use
of the BCH solution;

– if both cB and sB are high, none of the approxima-
tions seem to be acceptable.

The use of these guidelines would ensure that, in almost all
our numerous experiments, the discrepancy between the exact
and the approximate mean number of jobs in the queue stays
within a range of 25% relative error (except obviously when
both cB and sB are high and ρ is moderate).

IV. CONCLUSION

The modeling and performance evaluation of systems that
process big data is often hampered by difficulties arising due
to the high variability of system parameters. In this paper, we
assess the potential inaccuracy of several well-established ap-
proximations for evaluating the performance of a parallelized

device. We focus our study on the case of highly variable and
skewed workloads as it is likely to be the case in the context
of big data. We use an exact numerical solution to the M/Ph/m
queue and an extensive set of experiments (thousands of cases)
to evaluate the difference between approximation results and
the exact value of the mean queue length. Unlike existing
studies, we explore the (in)accuracy of these approximations
not only along the commonly explored coefficients of variation
but also through the actual value of the third moment of the
service time, or equivalently, its skewness.

Our work helps to better characterize the domain of ap-
plicability for each of these approximations. First, we show
that their accuracy can be very poor, including for supposedly
“easy” examples with a low coefficient of variation of the
service time. Second, our examples emphasize the important
influence of the skewness of the service time distribution on
the approximations accuracy whereas none of them account
for it. More precisely, our study shows that for 5 out of the 6
tested approximations the results are quite close to each other
results (although some differences do exist) and they tend to
overestimate the congestion level of the queue. Conversely, the
sixth approximate solution is most likely to underestimate the
mean length of the queue. Thus, we provide recommendations
regarding the choice of the approximation based on the actual
set of values for the queue parameters. Using these guidelines
would ensure that, in most cases, the relative error of the
approximation would remain below 25% relative error.

However, it is important to stress that our results only
pertain to a subset of phase type distributions since they were
all obtained using a matching algorithm for the first 3 moments
of the service time distributions that minimizes the number
of phases for the resulting distribution. Thus, a meaningful
extension to this work would consist in studying the accuracy
of the approximations for phase type distributions that are no
more subject to this constraint. Preliminary results (not shown
in this paper) seem to indicate that our recommendations
still apply in the general case. Another option would be to
extend the results of this study to the case of distributions
with negative skewness (and hence coefficient of variation less
than 1).
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[3] Bobbio, A., Horváth, A., and Telek, M., Matching three moments with
minimal acyclic phase type distributions, Stochastic Models, Vol. 21,
2005, pp. 303-326.

[4] Bolch, G., Greiner, S., Meer, H., and Trivedi, K., Queueing Networks and
Markov Chains. Second Edition, Wiley-Interscience, 2005.

[5] Boxma, O. J., Cohen, J. W., and Huffels, N, Approximations of the Mean
Waiting Time in an M/G/s-Queueing System, Operations Research, Vol.
27, No. 6., 1979, pp. 1115-1127.

[6] Brandwajn, A. and Begin, T., Considerations in workload characterization
for Parallel Access Volumes, proceedings of CMG, 2009.

[7] Cosmetatos, G., Some Approximate Equilibrium Results for the Multi-
server Queue (M/G/r), Operations Research Quaterly, USA, 1976, pp.
615-620.



[8] Gupta, V., Harchol-Balter, M., Dai, J. and Zwart, B., The effect of higher
moments of job size distribution on the performance of an M/G/s queueing
system, Performance Evaluation Review, Vol. 35 (2), 2007, pp. 12-14.

[9] Johnson, M. A., and Taaffe, M. R. The denseness of phase distributions.
School of Industrial Engineering, Purdue University. 1988.

[10] Kimura, T., A two-moment approximation for the mean waiting time in
the GI/G/s queue, Management Science, Vol. 32, 1986, pp. 751-763.

[11] Kimura, T., Approximations for multi-server queues: system interpola-
tions, Queueing Systems, Vol. 17, 1994, pp. 347-382.

[12] Lee, A.M. and Longton, P.A., Queueing process associated with airline
passenger check-in, Operations Research Quarterly, Vol. 10, 1957, pp.
56-71.

[13] Martin, J., System Analysis for Data Transmission. Prentice-Hall, En-
glewood Cliffs, NJ, 1972.

[14] Osogami, T. and Harchol-Balter, M., Closed form solutions for mapping
general distributions to quasi-minimal PH distributions, Performance
Evaluation, Vol. 63 (6), 2006, pp. 524-552.

[15] Tijms, H., Stochastic Modelling and Analysis: A Computational Ap-
proach. John Wiley, NY, 1986.

[16] Whitt, W., The effect of variability in the GI/G/s queue, Journal of
Applied Probability, Vol. 17 (4), 1980, pp. 1062-1071.

[17] Wolff, R.W., The Effect of Service Time Regularity on System Perfor-
mance, Computer Performance, North Holland, 1977, pp. 297-304.

APPENDIX

A. Relation between coefficient of variation and skewness

Let X be a non-negative random variable. We denote by mi

its i-th non-central moment, i.e., mi , E(Xi), and by nk its k-
th normalized moments. By definition, we have: n2 , m2/m

2
1

and n3 , m3/(m1m2). It is known (e.g., [14]) that for any
non-negative distribution we have:

n3 ≥ n2. (1)

Using the definitions of n2 and n3, (1) can be rewritten as:

sB ≥ (cB −
1

cB
), (2)

where sB and cB represent the skewness and the coefficient

of variation, respectively. Recall that cB ,
√
m2−m2

1

m1
and that

sB can expressed as sB =
m3−3m1m2+2m3

1

(m2−m2
1)

3/2 .
From (2), it follows:

cB > 1⇒ sB > 0 (3)

since m1 and cB are both positive.
This simple derivation explains (for a non-negative distri-

bution) why the skewness values can only be positive if we
limit the coefficient of variation to values larger than 1.


