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Abstract—The Internet of Things (IoT) is the convergence of
the physical and the digital worlds. It enables a large spectrum of
applications such as smart building, smart tracking, smart meter-
ing, predictive maintenance, remote control, augmented reality or
video surveillance. The diversity of these applications has caused
a profusion of the IoT communication technologies offerings for
exchanging data between IoT devices and applications. The latter
technologies come with different features in terms of range,
throughput, latency, scalability, energy, etc. Each technology
can fit several use cases and a use case can leverage several
technologies. It is complex, yet critical, for an IoT architect to
evaluate the adequacy and the limits of a network technology
for a targeted application and to continuously optimize its
configuration as the deployment evolves. This paper introduces
ADIperf, a canvas to simplify and systematize the evaluation of
the performance of an IoT communication technology for a given
IoT use case and context. The ADIperf approach pays special
attention to the energy efficiency as well as to the ability of an IoT
communication technology to properly scale up with the number
of end-devices, with the ultimate goal of giving guidelines and
tools for IoT architects to select the technology and configure the
network that fulfill their application’s needs over time.

Index Terms—Internet of Things, Applications, Canvas, Per-
formance Evaluation, Simulation.

I. INTRODUCTION

The Telecommunication Standardization Sector of ITU
(ITU-T) [1] defines the IoT as a global infrastructure for
the information society, enabling advanced services by
interconnecting (physical and virtual) things based on existing
and evolving inter-operable information and communication
technologies. As a whole, the IoT forms a complex ecosystem
for exchanging a large variety of information. The data can
flow (i) from sensors to gateways and data center servers
where collected data are processed and decisions made,
and/or (ii) from the cloud or edge servers down to actuators,
or more generally, to end-devices to transmit information
or commands. Compared to traditional Internet devices, IoT
devices often have limited memory, processing and network
resources.

New connectivity technologies have emerged and continue
to evolve to accommodate the specific needs of IoT traffic,

devices and digital services. Solutions for long-range low-
power communications include LoRaWAN [2], Sigfox [3],
Mioty [4], Wi-Fi HaLow [5], NB-IoT [6], LTE-M [7] while
short or medium-range communication technologies comprise
Zigbee [8] and Wi-Fi [9]. Each of these technologies has its
own pros and cons, and most of them are evolving regularly.
The profusion and diversity of technologies can be confusing
and are disorienting IoT users but also IoT architects in charge
of selecting and calibrating them. In such a context, decision-
making can be a complex and risky task. These decisions
can affect the entire initiative, both for the achievement of
the objectives set and for its future. Under- or over-sizing
an IoT system is often not an option as budget, capacity
and performance can be highly constrained. Ultimately, the
decision generally comes down to the best trade-off between
cost, range, throughput and battery lifetime for the targeted
IoT application. These decisions need visibility and forecasts
that are difficult, time-consuming and error-prone if done by
hand.

In this paper, we introduce ADIperf, a canvas and as-
sociated tools to assist IoT architects in the evaluation the
ability of a network technology to meet the specific needs
brought by a real-life IoT application. This approach defines
and computes network- and energy-related key performance
indicators (KPIs) that score the performance of a setting for
a given topology and workload. To show the relevance of the
method, we present the results of its application to two case
studies inspired by IoT real-life.. Finally, we discuss how IoT
architects can exploit the outcome of this evaluation canvas.

The remainder of the paper is organized as follows. Sec-
tion II provides a state of the art in IoT networks evaluation.
Section III describes the proposed application-driven evalua-
tion canvas. We explore three real-life inspired case studies
to showcase the potential of our canvas in Section IV. A
discussion on the obtained results and guidelines on how they
can be used are provided in Section V. Finally, Section VI
concludes this paper and gives perspectives.



II. RELATED WORK

IoT network technologies have been evaluated in many stud-
ies. For instance, in [10], the authors analyze the performance
of LoRaWAN on four use-cases using the LoRaSim simulator
with a modified MAC protocol. In [11], the authors use sim-
ulation to compare the reliability of LoRaWAN, Sigfox, and
NB-IoT for the specific case of a smart water grid scenario.
Another case in point is [12] wherein the authors compare the
performance of Wi-Fi and cellular technologies in terms of
throughput and latency in metro areas. We observe that, despite
the abundance of IoT network research, there is a relative
paucity for developing a reproducible and robust approach to
systematically analyze the matching between an application
and a network solution and its scalability. Most papers are
indeed either restricted to the study of a single communication
technology, or alternately, to only one application. Moreover,
unlike fields like linear algebra and image processing, the
IoT community lacks a reproducible approach to assess the
performance of an IoT network technology in a well defined
usage context.

Several papers have tackled the issue of selecting the most
adequate network technology for an IoT application. For
instance, [13] compares between LoRaWAN, NB-IoT, Wi-Fi
HaLow [5] and Sigfox on the following metrics: data rate,
loss, cost, power consumption, bandwidth, coverage and SNR.
However, the performance of each technology in terms of
these metrics does not take into account the targeted scenario
the network technology is used for. A similar remark can be
made about [14] and [15], where the selection is done using
approximately the same metrics, but with different network
technologies. In addition, other works like [16] do not consider
the energy consumption criteria which is important in the IoT
domain. Hence, the evaluation process has its limitation since
an IoT technology can be very efficient for an application in a
given context and inadequate for another one. Therefore, we
argue that a formal evaluation method for effectively studying
IoT network performance in realistic context is lacking.

III. ADIPERF EVALUATION CANVAS

In this section, we describe ADIperf, our application-based
IoT network performance evaluation canvas. It consists in two
types of inputs, an instrument and a set of outputs. These four
building blocks are: (i) an application scenario specification
(input), (ii) network setup characteristics (inputs), (iii) an
evaluation tool (instrument) and (iv) a set of network metrics
(outputs) to assess the performance of the IoT network tech-
nology on the selected scenario. Figure 1 gives an overview of
our evaluation canvas, with highlighting its inputs and outputs.
We detail each of these components in the sections bellow.

1) Application scenario specification: To characterize an
IoT application, we define a scenario by a list of parameters
an architect can specify. These parameters are of four types:
(i) the end-devices characteristics: their number, their relative
location and their batteries capacity, (ii) the transport protocol
(e.g., UDP/TCP, etc.), (iii) the traffic type and (iv) workload
(defined by the message size and the inter-messages period).

Figure 1: Overview of ADIperf building blocks.

We propose to classify the IoT traffic types by (i) their di-
rection: upstream (from end-devices to gateways or the cloud)
or downstream (from the cloud or gateways to end-devices)
and (ii) their profile: periodic or stochastic (for sporadic or
bursty traffic). The periodic traffic corresponds to a fixed data
rate, while the stochastic traffic has a variable rate. Although
some applications have bidirectional traffic, we observe that
a majority of IoT applications have unidirectional data flows.
Table I categorizes the different IoT traffic types. We illustrate
each traffic type by possible applications. The "overload" IoT
traffic types 5 and 6 of Table I, though not corresponding to
realistic traffic, are proposed to evaluate the IoT technologies
in extreme conditions, giving us an insight on the technologies
limits. Figure 2 shows a classical IoT system architecture
where the end-devices can either be sensors or actuators,
depending on the traffic direction, upstream or downstream
respectively.

2) Network setup: The IoT network setup is defined by
(i) its PHY and MAC layers, (ii) the propagation model, (iii)
radio frequency, (iv) bandwidth, (v) specific radio parameters
(Spreading Factor SF, Modulation and Coding Scheme MCS,
etc.) and (vi) the network topology, with the number of gate-
ways and their location. Depending on the network topology,
some parameters may be null. For example, there will be no
gateway in a mesh topology. Even though we focus in the
tested use-cases on networks with a star topology, the canvas
can be also applied to a mesh topology. Depending on the
chosen evaluation tool, some parameters like the propagation
model properties can be defined by the user (in case of
analytical models and simulation) or be fixed by the evaluation
environment (in case of real experiments).

3) Evaluation instrument: In theory, the performance eval-
uation could be realized through different instruments: exper-
imentation, simulation or analytical modelling. These instru-
ments have their own advantages and drawbacks. Depending
on their requirements, users can choose between one or several



Traffic Traffic Traffic Examples
type profile direction

1 Periodic Upstream Telemetry,
Geolocation...

2 Periodic Downstream Webcast,
Virtual Reality...

3 Stochastic Upstream Video Surveillance,
Cloud gaming...

4 Stochastic Downstream Notifications,
Alerts, Remote commands...

5 NA Upstream Overload
6 NA Downstream Overload

Table I: Traffic types characteristics.

Figure 2: Classical high-level overview of an IoT architecture.

of these evaluation instruments. If real performance results are
expected, experimentation will be preferred. For example, the
architect will run a real test if he needs to precisely estimate
the battery power consumption under a given workload. If
a scalability analysis is considered, analytical modelling or
simulation is very likely more appropriate. An IoT architect
will often conduct studies combining several evaluation tools
to get precise at-scale results.

4) IoT-relevant KPIs: Now, we propose to define IoT rele-
vant key performance indicators (KPIs) as evaluation outputs:
(i) attained throughput, (ii) latency, (iii) success rate, (iv)
power consumption, (v) energy efficiency ratio, (vi) battery
lifetime, and (vii) scalability index.

Attained throughput, latency and success rate are classical
networking performance parameters. Attained throughput rep-
resents the overall speed of the network at conveying data or
the data rate delivered to each IoT device. Latency is the time
that a packet takes to transit from its source to its destination.
The success rate (a.k.a. packet delivery ratio) is the ratio of the
packets successfully received from all the sent packets. Note
that from the IoT application perspective, a message is the
fundamental data unit while the packet is the classical network
data unit. There may be several packets in one application
message. But for the sake of simplicity and without loss of
generality we assume a message corresponds to one packet
here.

Energy is highly important in the IoT industry where end-
devices often have limited power supply and are equipped

with a battery. Power consumption represents the rate at which
energy is consumed over a period of time. It can be measured
on the overall network or on each IoT end-device. In this
work, we define the energy efficiency ratio as the amount
of bytes that each transmitter can successfully transmit to
the receiver using a single joule of energy. The higher this
quantity, the more energy efficient the IoT technology is. The
battery lifetime gives an indication on the IoT system’s lifetime
without recharging batteries.

We call "scalability index" the maximum number of devices
that can be connected to a single gateway without deteriorating
the performance in terms of IoT metrics. It gives an indication
on the deployment cost.

IV. APPLICATION OF THE EVALUATION CANVAS

In this section, we apply our canvas to two different use
cases: telemetry and video surveillance. We evaluate the
adequacy and the performance of the Wi-Fi and LoRaWAN
network technologies, for these use cases. We use simulation
in the ns-3 environment as the evaluation tool.

Let’s consider first the following telemetry use-case: an
IoT architect has to design a WSN-based (Wireless Sensors
Network) service to count passengers in urban trains, where
sensors are placed over each door. The counting service will
operate near real time to optimize the passenger flows. A
typical train will have up to twenty wagons and a length going
up to 1000m. In this case, the key questions the IoT architect
would have is how many gateways should be installed as well
as how frequently messages can be exchanged with a 99%
reliability.

The second use case is related to video surveillance. We
consider a large event gathering a large crowd (Olympic
games, trade fairs, concerts, etc.) where a camera-based
surveillance system is needed. For mobility, installation time
and logistic reasons, the only possible solution is to adopt
a wireless connectivity. This means that cameras have to
be placed at specific locations, while being self-powered
with batteries. Video frames will then be transmitted to a
server through a wireless network. A crucial challenge for
IoT architects is to know how long will the batteries last,
depending on the number of the cameras and the video quality.
Moreover, it would be interesting for them to know how many
cameras should be placed, at what distance from each other to
avoid collisions. The energy efficiency ratio is also studied as it
represents the energy consumption behaviour in an interesting
way.

All these answers have a critical impact, especially on
the financial view point, since they may give the maximum
number of gateways, sensors or cameras that can be installed,
they can also inform on how often the batteries will have to
be changed, etc. We explore these questions in the following,
using ADIperf to analyze costs and scalability. In order to
provide actionable result, we vary parameters that are criti-
cal from the application perspective (message size, message
period, etc.), as well as the number of end-devices.



We would like to emphasize the fact that there may be
several parameters which are not taken into account in what
follows. However, we consider that the considered parameters
are enough to have an interesting overview of the behaviour
of a network technology for a given application.

A. Case study A: Telemetry on LoRaWAN

This example is devoted to the case of a telemetry applica-
tion deployed over LoRaWAN. The sensors collect data before
exchanging them to the gateway for further processing.

The application scenario is defined as the following: We
let the number of sensors vary from 1 to 15,000 and we
position them uniformly at a distance ranging from 100 to
3,000 meters from the gateway. Each sensor is equipped
with a battery of 2,400 mAh capacity powered by 3.3 V (
[17]). The traffic type corresponds to the type 1 (periodic
and upstream) of Table I. Regarding the workload, the size
of packets (a.k.a. payload) is set to 23 bytes unless specified
otherwise, and we consider three possible periods for the rate
at which sensors generate their packets: 300, 600, and 900
seconds. For the network setup, we consider that the sensors
communicate using LoRaWAN, on the 868 MHz frequency
band with a bandwidth of 125 KHz. We use the log-distance
path loss model for the propagation model of the radio waves.
To evaluate the influence of the SF over the KPIs, we consider
two of its value: 7 and 9. The network has a star topology with
one gateway. As mentioned before, we used simulation as the
evaluation instrument.

To evaluate the performance parameters for this example,
we run simulations of 3600 seconds using ns-3. Although the
official release of ns-3 does not include methods to estimate
the energy costs incurred by LoRaWAN communications,
Magrin et al. provide an ns-3 module [18] to do so. The power
consumption of the NIC (Network Interface Card) is obtained
thanks to a state machine whose states and associated drawn
currents are given in Appendix (Table V). Having set this
module, we are then able to obtain the KPIs for this network.

Figure 3 shows the results provided by our canvas for
case study C. As shown by Figure 3a, the success rate
remains relatively high until a couple of thousands of sensors
regardless of the specific configurations in use for the SF and
the packet generation periods. More precisely, we observe
that the success rate tends to drop faster when the periods
between successive packets are short and when the SF is
large (i.e., when sparser modulations, which keep the radio
channel busy for a longer time, are in use). Note that we
did not represent the packet latency as the latter does not
depend on the number of concurrent sensors. Indeed, unlike
Wi-Fi, LoRaWAN does not belong to the listen-before-talking
protocols and does not include packet retransmissions so that
the packet latency is not workload-dependent. For an SF of 7
and 9 and a packet of 23 bytes, the packet latency is equal
to 72 and 230 ms, respectively. These values are typically
compliant with the performance requirements of telemetry
systems. Figure 3b represents the energy efficiency ratio for
LoRaWAN in our example of telemetry for a success rate

Energy consumption Battery lifetime
(mJ) (Years)

Period (s)
SF 7 9 7 9

300 250 442 13 7
600 134 229 25 14
900 94 158 36 21

Table II: Case study C: Energy consumption per device over
3600 seconds and battery lifetime for LoRaWAN simulations.

larger than 50%. We notice that the energy efficiency ratio
tends to deteriorate with the number of concurrent sensors
due to the increasing probability of collisions that reduce the
number of bytes successfully conveyed. We can also note the
Spreading Factor has a stronger impact on this metric than the
period. The use of a small SF is more energy efficient than
using a higher SF.

Table II reports the energy consumption by each sensor over
the 3600 seconds of simulation as well as the corresponding
expected lifetime of their battery given their capacity. As
expected, we observe that using a smaller SF (i.e., denser
modulation) for the packet transmission results in a longer
battery lifetime. The table also shows that depending on the
selected period between packet generations, battery lifetime
may range from a decade to several tens of years.

We conclude this case study by observing that the scalability
index is more impacted by the Spreading Factor than by the
packet generation period. Still, a LoRaWAN based telemetry
system can handle between 3,000 and 15,000 stations.

B. Case study B: Telemetry on Wi-Fi

In our second example, we consider a telemetry system
in which Wi-Fi is used to send data from the sensors (end-
devices) up to the access point (gateway).

For the application scenario, the sensors are located in the
vicinity of the gateway and their number can vary from 1 to
60. We consider that their batteries have capacity of 5,200
mAh powered by 12 V. The used transport protocol is UDP.
The traffic originating from the sensors also matches type 1
of Table I. For the workload, we assume two possible sizes
for the packets: 23 and 1,000 bytes as well as 3 possible
periods for the rate at which packets are generated by each
sensor: 6, 60, and 360 seconds. For the network setup, we
resort to the log-distance path loss model to represent the
radio propagation model. Cameras will use the 802.11ac
amendment of the IEEE 802.11 standard on the 5 GHz with
a channel width of 80MHz, a single spatial stream, without
frame aggregation and long guard intervals. We set the MCS
value to a value of 9. The network also has a star topology with
one gateway. We also use ns-3 to evaluate the performance of
the considered network. Performance parameters such as the
attained throughput, packet latency, and success rate are rather
straightforward to obtain from the simulator execution.

To estimate the energy cost of communications, we use
the ns-3 module that was developed based on the energy
model of Wu et al. [19]. The power consumption of Wi-Fi
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Figure 3: Case study C: Key Performance Indicators (KPI) for telemetry on LoRaWAN.

communications is also estimated thanks to a state machine,
which maps values of drawn current to each possible state of
the Wi-Fi NIC. We calibrated the drawn current parameters
of each state using the experiments provided by Serrano et
al. in [20]. Through this model, which is embedded within
ns-3, we are able to compute the power consumption of any
sensor resulting from its Wi-Fi communications. We can also
easily obtain the energy efficiency ratio as well as the expected
battery lifetime.

For a total number of sensors between 1 and 60, the
simulation results show that the success rate for the packet
transmission is kept to 100% and that the packet latency
remains at its lowest level (below tens of milliseconds and
then much lower than the typical requirements for telemetry).
These results owe to a total workload having its maximal
value at 0.07 Mbps (with 60 sensors, packet size of 1,000
bytes and a periodicity of 6 seconds) when the radio channel
supports a data rate of 50 Mbps. The power consumed by
Wi-Fi for each sensor (due to the exchange of communication
with the access point) amounts to nearly 47 J for a simulation
time of 3600 sec regardless of the number of concurrent
sensors. Interestingly, this value also remains about the same
for the different combinations of packet sizes and periodicity.
This underlines the important energy overhead brought by
Wi-Fi resulting from the lack of sleep state in most 802.11
implementations (unlike LoRaWAN) and, to a lesser extent,
from the frequent receptions of beacons sent by the access
point every 100 ms. Having computed the consumed power
resulting from the Wi-Fi communications, we can derive the
expected battery lifetime, which we find to be approximately
200 days.

Given that we arguably tested what could be the upper
bounds for the packet size and periodicity for the purpose
of telemetry applications, we can conclude that Wi-Fi will
do network-wise (provided that its radio range is enough) but
that the batteries of sensors will typically last less than a year
unless they have some form of self-harvesting capabilities or

are on electric supply.
Then, we compute the energy efficiency of Wi-Fi using

packets of larger sizes. Table III reports the energy efficiency
ratios obtained for a packet size of 23 bytes as well as those
measured when the packet size is set to 1,000 bytes for three
different rates of packet generation (i.e., periods of 6, 60
and 360 seconds). As expected, we observe that the energy
efficiency ratio grows significantly with the size of packets
(and decreases with the period between packet generations).
Regardless of the considered period for the time between
packet generation, increasing the packet size by 43 fold (from
23 to 1,000 bytes) approximately results in a 30 fold increase
of the energy efficiency ratio.

Interestingly, we observe that the values obtained here are
worse than those obtained for LoRaWAN with a packet size
of 23 bytes but that they somehow reach the same efficiency
as Wi-Fi if the latter use packets of size 1,000 bytes with a
period of 60 s. This observation may resonate with the work
of Abedi et al. in which the authors showed that Wi-Fi may
be more energy-efficient than Bluetooth [21].

Packet size (Bytes)
Period (sec) 6 60 360

23 0.44 0.04 0.007
1,000 13.67 1.36 0.21

Table III: Case study B: Energy efficiency ratio (KBytes/joule)
with Wi-Fi for different sizes of packets and packet generation
rates.

C. Case study C: Video surveillance on Wi-Fi

In this example, we study how Wi-Fi can be used to
support the communication exchanges in a video surveil-
lance application. Such a scenario is expected to be strongly
supported by IoT networks [22]. Each camera (end-device)
generates a stream of video frames that are sent upwards to
the access point (gateway) and then transferred to a back-
end server. We do not explore this use case on LoRaWAN



as the minimum bandwidth requirement for video traffic (a
minimum of 1Mbps) is not met with a low power technology
like LoRaWAN (a maximum of 27kbps).

The application scenario is defined as the following: Cam-
eras are also located in the proximity of the gateway and their
number vary from 1 to 60, with the same batteries as for
Case Study B and also with UDP as transport protocol. Note
that this traffic corresponds to type 3 from Table I. For the
workload, we consider three different rates for the application
rate: 2, 5, and 8 Mbps that can be viewed as three different
codecs, corresponding to real video traces [23] having frames
of different sizes, with a fixed FPS (Frames per Seconds) of
30. The same network setup parameters are used as for Case
Study B, with the only difference that the MCS takes a value
either of 6 or of 9. The former MCS represents a medium
value for the data rate of the radio channel while the latter
represents a high value. Simulation with ns-3 is also used as
the evaluation instrument.

We now turn to the simulation results summarized in
Figure 4. First, looking at Figure 4a, we observe that Wi-Fi can
sustain up to 8 or 9 cameras when each of them generates a
stream of 8 Mbps. Beyond 9 cameras, the success rate rapidly
decreases with packets being dropped as the radio channel
activity increases. Using a lower video codec like 5 Mbps and
2 Mbps allows to expand the maximum number of supported
cameras to 15 and 30, respectively. Interestingly, we notice
that the value of MCS does not impact much the results here.
As expected, the packet latency increases with the number
of cameras connected to the access point (see Figure 4b).
Although it rapidly increases with the number of cameras, its
absolute value remains relatively low and does not affect the
good behavior of the system even for a total of 40 cameras.
Because a video surveillance system with a success rate below
60% can be considered as a non-functional system, we limit
our analysis in Figures 4c and 4d to cases where the number
of cameras leads to a success rate larger than 60%. Figure 4c
indicates that the number of successfully delivered bytes per
joule over Wi-Fi mostly depends on the number of concurrent
cameras as its value can decrease 10 fold, ranging from a
bit more than 15 MBytes per joule when there is only one
camera with MCS 9 and a video rate of 8 Mbps up to less
than 3 MBytes per joule for a total of 29 cameras with MCS 6
and a video rate of 2 Mbps. Finally, Figure 4d represents the
estimated lifetime of the battery. The results demonstrate the
importance of having a low video rate to improve the battery
lifetime especially if the number of cameras remains relatively
low, say no more than 10.

Overall, we observe with this case study that the scalability
index (the maximum number of cameras that can be connected
to a gateway without degrading the performance) strongly
depends on the rate of the video data stream, and much less
on the selected MCS. A Wi-Fi based video surveillance can
handle between 5 and 20 cameras and connected cameras can
live on their battery for a month or two [24] depending on the
codecs in use.

V. DISCUSSION

The results of the previous section regarding telemetry,
have confirmed the superiority of LoRaWAN setup in terms
of scalability. Up to thousands of sensors can be managed
by a single gateway. Our results show that, despite being
almost an order of magnitude more energy-efficient (in terms
of Bytes successfully transmitted per joule) than LoRaWAN
when the end-devices have a lot of data to exchange, Wi-Fi is
significantly overpowered by LoRaWAN for the battery life of
their end-devices (not mentioning its shorter radio range) in
the case of a telemetry application. Then the key guidelines for
deploying a train passengers metering system using LoRaWAN
would be:

• If the distance between the gateway and sensors is not
very large, lower than a thousand meters, then privileging
lower SFs will ensure more reliability and less energy
consumption. This will be for example the case for the
train passengers metering solution.

• Message periodicity should be carefully set since it may
strongly influence the performance and longevity of the
system. Charts provided by the canvas will be used to
guide the decision.

Note that for both LoRaWAN and Wi-Fi, ADIperf can consider
other kinds of radio channels (more noisy for example) by
using different propagation models [25]. This would be an
other round of experiments that the architect would run to
refine its configuration with respect to the environmental
context.

On an other side, an IoT architect looking for a network
setup for a video surveillance application may select Wi-Fi for
its strong reliability. The following guidelines can be generated
from the previous evaluation results:

• One Wi-Fi access point can manage at least ten cameras.
• The greater the MCS, the better the performance will be.
• Favoring low mean data rates for the video streaming

may strongly influence the scalability and lifetime of the
system, even though the quality of the video may suffer
from it.

• The architect will have to use the results to derive the
best compromise between the required video quality and
battery lifetime.

Figure 5 represents an illustration of ADIperf on the Case
Study A, with the instantiation of the four building blocks.

VI. CONCLUSION

We have presented a canvas to evaluate the performance of
the network technologies for IoT applications where multiple
end-devices exchange data via gateways. The canvas includes
the definition of a scenario and of its KPIs as well as their
evaluation. We used two typical use cases, inspired by real-
life IoT applications, to illustrate the applicability of our
canvas on different network technologies. We paid special
attention to the energy efficiency as well as to the ability of
an IoT communication technology to properly scale up with
the number of end-devices. The application-based evaluation
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Figure 5: Illustration of the evaluation canvas for case study A.



results provided highlight the importance of having a holistic
approach when evaluating the good fit of a communication
technology its field context. For the sake of reproducibility, we
made the code repositories for our numerical results available
in [26] and [27].

As future work, we intend to enhance the evaluation canvas
with a larger set of metrics and to explore emerging IoT
use-cases, which correspond to cellular technologies such as
5G/6G. We will also extend our canvas using decision-making
tools to facilitate the comparison of multiple technologies (e.g.,
NB-IoT, Sigfox, 5G). We believe that our work can simplify
the lif of IoT architect and thus contribute to facilitate the
deployment and adoption of IoT.

VII. ACKNOWLEDGMENT

This work was performed within the framework of the
LABEX MILYON (ANR-10-LABX-0070) of Université de
Lyon, within the program "Investissements d’Avenir" (ANR-
11-IDEX-0007) operated by the French National Research
Agency (ANR). It is also supported by Stackeo SaS.

APPENDIX

Tables IV and V indicate the numerical values we used
throughout this paper to compute the energy consumption of
the Wi-Fi NIC and LoRaWAN NIC, respectively. The values
of Table IV were selected calibrating the state machine against
the measurements provided by Serrano et al. in [20]. The
corresponding parameter values are given in Appendix (Table
IV). The values of Table V are those given by default in the
ns-3 module for the LoRaWAN consumption by Magrin et al.
[18].

State Drawn current value (mA)
Tx 107
Rx 40
CCA Busy 1
Idle 1

Table IV: Drawn current values for each state of the machine
state used in ns-3 simulations to evaluate the power consump-
tion of Wi-Fi communications.

State Drawn current value (mA)
Tx 77
Rx 28
Idle 1
Sleep 0.015

Table V: Drawn current values for each state of the machine
state used in ns-3 simulations to evaluate the power consump-
tion of LoRaWAN communications.
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