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ABSTRACT 
We propose a simple approximation to assess the steady-state 
probabilities of the number of customers in Ph/Ph/1 and 
Ph/Ph/1/N queues, as well as probabilities found on arrival, 
including the probability of buffer overflow for the Ph/Ph/1/N 
queue.  The phase-type distributions considered are assumed to be 
acyclic.  Our method involves iteration between solutions of an 
M/Ph/1 queue with state-dependent arrival rate and a Ph/M/1 
queue with state-dependent service rate.  We solve these queues 
using simple and efficient recurrences.  By iterating between these 
two simpler models our approximation divides the state space, and 
is thus able to easily handle phase-type distributions with large 
numbers of stages (which might cause problems for classical 
numerical solutions). The proposed method converges typically 
within a few tens of iterations, and is asymptotically exact for 
queues with unrestricted queueing room.  Its overall accuracy is 
good: generally within a few percent of the exact values, except 
when both the inter-arrival and the service time distributions 
exhibit low variability.  In the latter case, especially under 
moderate loads, the use of our method is not recommended.   

Categories and Subject Descriptors 
G.3 [Probability and Statistics]: Queueing theory; D.4.8 
[Performance]: Queueing theory 

Keywords 
Ph/Ph/1 and Ph/Ph/1/N queue, steady-state probabilities, buffer 
overflow probability, large number of phases, approximate 
solution, numerical stability.  

1. INTRODUCTION 
Despite the recent proliferation of multi-server facilities in 
numerous application areas, e.g. [GAN03, GEP06], many 
situations remain where the processing of requests (customers) is 
performed by a single server.  This is the case, for instance, for 
packets at a network interface [BOL93] or requests at a database 

lock.  Clearly, the distributions of the times between customer 
arrivals, as well as of the request service times are dependent on 
the particular application and, in general, need not be close to the 
exponential distribution.  In many cases, there may be a high 
variability, in both the inter-arrival and service times.  We use 
acyclic phase-type distributions (e.g. [BOB05]) to represent the 
time between arrivals and the service time so that the resulting 
model is a Ph/Ph/1 queue.  As is well known, any distribution can 
be approximated arbitrarily closely by a phase-type distribution 
[OCI90].  Since in all human-made systems the queueing room is 
finite, the unrestricted Ph/Ph/1 queue may not be an adequate 
model for higher traffic intensity as the buffer overflow 
probability becomes of interest in many applications.  Hence, we 
also explicitly consider a queue in which the total number of 
customers cannot exceed a given value , i.e. the Ph/Ph/1/N 
queue. 

Although there is a considerable body of literature devoted to the 
single-server queue, e.g. [CHAU92, COH82, OTT87, JAG88, 
ABA93], no explicit easily usable solution exists in the general 
case, not even for the average number of customers with 
unrestricted queueing room [BOL05, page 265].  There are 
established numerical methods to solve Ph/Ph/1 queues (e.g. 
matrix-geometric methods [LAT99, BIN05]), however, due to the 
cardinality of the resulting state space, they may not scale well for 
large numbers of phases needed to adequately represent empirical 
distributions. 

A number of approximations exist for the mean waiting time 
[BUZ93, KIM91, KUE79, SHA80, BOL05, RAO99], however, 
with few exceptions [WHI89], they are limited to the first two 
moments of the service and inter-arrival times, and none seems 
readily applicable to the evaluation of buffer overflow 
probabilities.   

Recently, a simple numerically stable recurrent solution has been 
proposed to compute the steady-state probabilities for the number 
of customers in the M/Ph/1 queue with state-dependent arrivals 
[BRA08], and an analogous recurrent approach to the 
computation of the steady-state probabilities in a Ph/M/c queue 
with state-dependent service [BRA12].  We propose to use these 
recurrent solutions to obtain an approximation for the steady-state 
distribution of the number of customers in the Ph/Ph/1 and the 
Ph/Ph/1/N queues.  The resulting approximation has the 
advantage of taking into account the actual form (as opposed to 
only the first two moments) of the service and inter-arrival 
distributions.  The knowledge of the stationary probability for the 
number of customers in the system allows us to assess the state of 
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the queue found by arriving requests, including the probabilities 
of buffer overflow. 

In the following section, we derive our approximation.  Section 3 
gives numerical examples to illustrate the typical performance of 
this approximation.  Section 4 concludes this paper. 

2. APPROXIMATION 
As stated before, we assume that the times between arrivals and 
the service times are represented as acyclic phase-type 
distributions [OCI90].  Figure 1 shows the corresponding Ph/Ph/1 
queue.   We denote by  the number of phases in the distribution 
of the times between arrivals, and by  the number of phases in 
the distribution of the service times.  The total current number of 
requests in the system is denoted by .  The steady-state of this 
queue can be described by the current phase of the arrival process 

, the current phase of the service process (if the queue is 
nonempty) , and by the total number of requests in the system, 
viz. . In the case of a finite queueing room, we consider 
that the arrival process continues unperturbed when the buffer is 
full and arriving customers are then simply lost.  Other 
assumptions on the arrival process (e.g. blocking of the request 
source) are possible.  Table 1 summarizes the notation used in our 
paper.    

If we consider a marginal state description , our queue can 
be represented as Queue 1 in Figure 2 where the state-dependent 
rate of customer arrivals  is given by 

               (1) 

Analogously, if we consider the marginal state description , 
our queue can be represented as Queue 2 shown in Figure 2 where 
the state-dependent rate of service  is given by 

         (2) 

To derive our approximation, we assume that  
and .  Consequently, we have  
and . Queue 1 in Figure 2 then becomes an M/Ph/1 
queue with a state-dependent arrival rate , and Queue 2 
becomes a Ph/M/1 queue with a state-dependent service rate 

.  A simple recurrence can be used to obtain an efficient and 
numerically stable solution of the M/Ph/1 queue [BRA08] 
yielding the state-dependent service rate .  Similarly, an 
analogous simple recurrence can be used to obtain the state-
dependent arrival rate  [BRA12].   Hence, the obvious idea 

to iterate between the solutions of these two queues until a fixed 
point is reached for the arrival and service rates. 
Having obtained the arrival and service rates  and , we 
can compute the steady-state probability for the number of 
customers in the system  as  

               (3) 

 is a normalization constant chosen so that  .  The 

mean number of customers in the system is . The 

probability that an arriving customer finds  customers already 
present in the system, , can be expressed as 

              (4) 

The proposed approximate solution can be described as follows 
(superscripts denote the iteration number) 

(a) Set the initial value of the arrival rate  to the inverse 
of the mean time between arrivals for all values of   

(b) Solve the simple recurrence for the M/Ph/1 queue [BRA08] 
with arrival rate  (  is the iteration number) 
to produce the state-dependent service rate  for 

.  With a finite buffer,  is the maximum 
number of customers in the system , and with unrestricted 
buffer, it is the value of the number of customers  for 
which the rate  is close enough to its asymptotic value 
(cf. [BRA08].)  Compute also the expected number of 
customers in the system  from the M/Ph/1 model. 

 
Figure 1. Ph/Ph/1 queue. 

 

Table 1. Principal notation used in this paper 
 Probability that arrival process starts in phase 

,  
 Completion rate for phase  of arrival process  
 Probability that arrival process continues in 

phase  upon completion of phase , 
  

 Probability that arrival process ends (new 
request generated) upon completion of phase 

,  
 Probability that service of a request starts in 

phase ,   
 Completion rate for phase  of service process 
 Probability that service process continues in 

phase  upon completion of phase , 
 

 Probability that service process ends (request 
departs the system) upon completion of phase 

,  
 Conditional probability that the service stage is 

 given that the number in the system is  and 
the current arrival stage is  

 Conditional probability that the arrival stage is 
 given that the number in the system is  and 

the current stage of the service process is  
 



 
Figure 4. Relative error for mean number in system for a 

range of coefficients of variation in Example B. 
 

 
Figure 3. Relative error for mean number in system for a 
range of numbers of stages in arrival and service Erlang 

distributions (same number of stages for both) in Example A. 

(c) Solve the Ph/M/1 queue with the service rate  from 
Step (b), using the simple recurrence given in [BRA12], to 
produce the state-dependent arrival rate  for 

.  Compute also the expected number of 
customers in the system  from the Ph/M/1 model.  

(d) If , where  is the desired convergence 
stringency, go to Step (e), otherwise perform another step of 
the iteration, i.e., go to Step (b). 

(e) Compute  and  from formulae (3) and (4), 
respectively. 

In the next section we discuss the accuracy and speed of 
convergence of the proposed approximate solution. 

3. ACCURACY AND SPEED OF 
CONVERGENCE 
We performed a large number of tests of the proposed 
approximation comparing its results to those of an exact numeric 
solution.  In addition to the mean number of customers in the 
system the test quantities included the probability that a customer 
has to wait before service, as well as the general shape of the 
steady-state probability distribution .  It is interesting to note 
that our approximation produces the correct server utilization in 
the case of an unrestricted queueing room.  For queues with 
restricted queueing room, we examined also the server utilization 
and the probability of buffer overflow.  The typical accuracy tends 
to be good, within a few percent of the exact values.  In virtually 
all cases a low number of iterations (a few tens) is sufficient to 
attain a fixed-point convergence of our approximate solution (in 
all examples, we used ). 

Four examples illustrate the behavior of the proposed method.   

Example A: Small coefficients of variation (less than 1) for 
arrivals and service 

We start by the case when the times between arrivals and the 
service times both exhibit low variability, viz., we consider an 
unrestricted Ek /Ek/1 queue with the same number of stages in the 
arrival and service distributions.  In Figure 3 we show the relative 
error in the mean number of customers in such a system as a 
function of the server utilization for the  number of stages varying 
from 2 to 10 , i.e., the squared coefficient of variation varying 
from 0.5 to 0.1. The approximation is, of course, exact for the 
M/M/1 queue.  We notice that the largest relative errors tend to 
occur in the range of moderate to moderately high server 
utilizations (say, 0.6 to 0.9).  In this range, the accuracy of the 
approximation tends to degrade with the number of stages in the 
Erlang distribution, and exceeds 20% with 7 or more stages.  

Interestingly, as the server approaches saturation, the 
approximation accuracy improves.  In fact, one can show that our 
approximation is asymptotically exact as  (see Appendix 
A.) This explains the improved accuracy near server saturation 
seen in Figure 3.  

Intuitively, the lower accuracy when both arrivals and service 
exhibit high regularity, appears to be due to the fact that with 
hypo-exponential distributions, when the number of customers in 
the system is low (especially, just one user), the knowledge of the 
current stage of the service distribution   provides non-negligible 
information on the possible stage of the arrival process   (and vice 
versa).  In particular, when there is a single user in the system and 
it is in its first stage of service, it is very likely that the arrival 
process is also in its first stage. This knowledge is lost in our 
approximation. Because the method tends to be inaccurate when 
both the time between arrivals and the service times exhibit low 
variability (say, coefficients of variation less than 0.3), especially 
for moderate loads, our approximation is not recommended in this 
case.   

Example B: Coefficients of variation greater than 1 

In our second example, we consider an unrestricted queue with 
times between arrivals represented by a two-phase hyper-
exponential distribution (H2).  The service times are represented 
by a different two-phase H2 distribution with mean 1 and the same 
coefficient of variation as the distribution of the times between 

 
Figure 2. Iterations between M/Ph/1 and Ph/M/1 queues. 

 



arrivals (see Appendix.) Figure 4 shows the relative error for the 
mean number of users in the system for a range of traffic 
intensities and for coefficients of variation ranging from 2 to 16.      

We observe that, in this example, the relative errors of the 
proposed approximation are small, on the order of a percent, and 
remain below 1% even for a traffic intensity of 0.99 and 
coefficients of variation of 16. 

Example C: Large coefficient of variation for time between 
arrivals and small coefficient of variation for service  

Our next example is a queue with a finite queueing room of 200 
( ).  The time between arrivals is represented by a two-
phase hyper-exponential distribution with a coefficient of 
variation of 20, and the service time is represented by an Erlang-5 
distribution (squared coefficient of variation of 0.2).  We show in 
Table 2 the results obtained for this example, including the 
number of iterations needed to achieve the convergence, for a 
range of server utilization values.   

We observe that the relative errors of the proposed approximation 
remain below one percent despite the small coefficient of 
variation of the service time distribution.  We also observe that 
only a few iterations are required to attain convergence.  In our 
next example we take a closer look at the convergence pattern of 
our approximation in the context of a larger total number of 
phases. 

Example D: Pareto-like distribution of the time between 
arrivals with 16 phases and four-phase service time 
distribution 

 In our last example, we consider a Ph/Ph/1/N queue with a buffer 
size of  .  The arrival process is represented by a Pareto-
like distribution with a total of 16 phases, 10 of which are used in 
the heavy-tail part of the distribution [BRA11].  The service time 
is represented as a mixture of two Erlang-2 distributions with 
overall mean 1 and coefficient of variation 3. The rate of a single 
stage in the first Erlang-2 distribution is  and this 
distribution is selected with probability . With probability 

 the second Erlang-2 distribution is selected.  The rate of a 
single stage for this distribution is . 

Figure 5 illustrates the convergence pattern of our approximation 
to its fixed-point solution for this example.  We observe the 
evolution of the relative difference in mean number of customers 
between the M/Ph/1 and Ph/M/1 models as the iteration 
progresses for server utilizations of 0.5, 0.8 and 0.9.  In all three 

cases, the decrease in the relative difference appears to be 
geometric after the first few iterations.  Such a geometric decrease 
seems typical for the convergence of the proposed method. 

Figure 6 illustrates the ability of our approximation to reproduce 
the shape of the steady-state distribution of the number of 
customers in the system  (for server utilization of 0.8). We 
observe that the general shape of the steady-state distribution is 
well represented and the relative errors for individual state 
probabilities are moderate. 

Summary discussion of empirical results 

In the last three examples, the relative errors of the proposed 
approximation tend to be within just a few percent of the exact 
values and the method converges within a limited number of 
iterations.  Loss probabilities (not reported in this paper) similarly 
tend to be with a few percent of the exact values. The above 
behavior appears typical for the method.  As shown by example 
A, the proposed method tends to be less accurate when both the 
time between arrivals and the service times exhibit low variability 
(say, coefficients of variation less than 0.3), especially for 
moderate loads.  Therefore, our approximation is not 
recommended in this case.  Note that, as illustrated by example C, 
if only one of the inter-arrival or service time distributions 
exhibits low variability the method’s accuracy does not seem 
affected.  

 
Figure 5. Speed of convergence of proposed approximation for 

various levels of server utilization for Example D. 

 
Figure 6. Exact and approximate probabilities for server 

utilization of 0.8 in Example D. 
 

Table 2. Accuracy and convergence of speed in Example C 
Mean number in the 

system 
No wait 

probability Server 
utilization 

Exact Appr. Exact Appr. 

Number 
of 

iterations 

0.1 0.1079 0.1079 0.8834 0.8834 3 
0.2 0.2365 0.2365 0.7669 0.7669 3 
0.3 0.3968 0.3968 0.6503 0.6503 3 
0.4 0.6097 0.6097 0.5337 0.5337 3 
0.5 0.9191 0.9191 0.4172 0.4172 4 
0.6 1.4374 1.4373 0.3007 0.3007 4 
0.7 2.5600 2.5599 0.1842 0.1843 4 
0.8 7.3596 7.3590 0.0682 0.0682 5 
0.9 173.623 173.861 0.0001 0.0001 15 

 

 



Overall, the accuracy of the proposed approximation varies 
somewhat with the shape of the inter-arrival and service 
distributions (not just their first two moments).  It tends to be 
particularly good when these distributions are skewed (e.g. 
unbalanced hyper-exponentials).  Highly skewed distributions 
tend to be characteristic of the traffic in computer networks. It is 
important to note that these cases happen to be most difficult for 
some numerical methods [CHAU92] and discrete-event 
simulation alike [ASM00].  As illustrated by examples B and C, 
our method can easily handle problems with very large 
coefficients of variation.   

It is worthwhile noting that the speed and numerical stability 
advantage of the proposed approximation over an exact numerical 
solution is particularly glaring with higher numbers of stages in 
the phase distributions.   In our experimentation, the method 
easily handled distributions with hundred phases.  

4. CONCLUSIONS 
We have proposed an approximation to obtain steady-state 
probabilities of the number of customers in Ph/Ph/1 and 
Ph/Ph/1/N queues, as well as related probabilities “seen” by an 
arriving customer, including the probability of buffer overflow in 
the case of the Ph/Ph/1/N queue.  The phase-type distributions 
considered are assumed to be acyclic.  Our method iterates 
between solutions of an M/Ph/1 queue with state-dependent 
arrival rate and a Ph/M/1 queue with state-dependent service rate.  
Each of these queues is solved using an efficient numerically 
stable recurrence.  The resulting method is simple and easy to 
implement.  

Although we don’t have a theoretical proof of convergence of our 
method, in practice it converges typically within a few tens of 
iterations.  The results produced by our approximation tend to be 
within a few percent of the exact values, except when both the 
inter-arrival and the service time distributions exhibit low 
variability.  In the latter case, especially under moderate loads, the 
use of our method is not recommended. 

Compared to an exact numerical solution of a Ph/Ph/1 queue, by 
dividing the state space (through the iteration between the M/Ph/1 
and Ph/M/1 queues) the proposed method affords a significant 
reduction in computational complexity.  The resulting speed 
advantage is particularly significant with a larger number of 
phases possibly needed to represent empirical distributions.  
Additionally, numerical problems due to floating point underflow 
issues for very small state probabilities are reduced owing to the 
partitioning of the state space into normalized subsets. 

Future work includes the extension of the proposed method to the 
Ph/Ph/c queue.  
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APPENDIX 
A. Solution asymptotically exact 
We will now show that our method produces results that are 
asymptotically exact as  in the case of unrestricted queueing 
room.   

Consider the original Ph/Ph/1 queue described in Section 2.  In steady 
state, the queue can be described by the probability  where  

( ) is the current phase of the arrival process,   is 
the current phase of the service process, and  is the current number of 
customers in the system.  It is easy to show that , the marginal 
steady-state probability for the number of customers in the system, can be 
expressed as  

          (5) 

where 

,           (6) 

,         (7) 

 is a normalization constant chosen so that , and 

 denotes the steady-state conditional probability of the current 
arrival and service phases given the number in system.  Using the identity 

 in the balance equations we obtain explicit 

equations for .  Letting , and denoting by  the 

limit of  as  in these equations, we get the following 

equations for the asymptotic probability  

       (8) 

where 

          (9) 

and 

.                      (10) 

Note that there is no approximation involved in the above derivation. 

Consider now the particular case of an Ea/Eb/1 queue.  As discussed in 
Section 3, because of the sequential nature of the Erlang distribution, 
when there is just one customer and its service is in its first phase, it is 
very likely that the arrival process is also in its first stage.  However, as 
the number of customers in the queue increases, there is less and less link 
between the current stage of service and process.  

Hence, it is intuitively clear that, for an arbitrary Ph/Ph/1 queue, as 
, the knowledge of the current phase of the service process 

provides less and less information on the current phase of the arrival 
process (and vice versa).  Therefore, the probabilities of the current phases 
of arrival and service processes must become independent in the limit so 
that 

         (11) 

where  is the limiting probability that phase of the arrival process is 

, and  is the limiting probability that the phase of the service 
process is .   

Using the product form of the asymptotic probabilities  in (8), (9) 
and (10), and summing over all values of the current phase of the arrival 
process   ( ), we readily obtain after simple manipulation 

,       (12) 

for . 

Similarly, summing over all values of the current phase of the service 
process  , we obtain after simple manipulation 

 ,         (13) 

for . 

Equation (12) turns out to be identical to the asymptotic equation for the 
M/Ph/1 queue, and equation (13) is identical to the asymptotic equation 
for the Ph/1/M queue. Thus, by iterating between the solutions of these 
two queues, we are in effect solving iteratively the exact asymptotic 
equations for the Ph/Ph/1 queue.  

B. H2 distributions used in Examples B and C 
in Section 3 
The mean service time is kept at 1.  The parameters of the H2 distributions 
for the service time are given in the following table. 

Table 3.     Parameters of the service time distributions in 
Example B 

cv    
 2 8.00e-002 1.150e+000 1.121e-002 9.8879e-01 

4 2.353e-002 1.2206e+000 4.340e-003 9.9566e-01 
8 6.150e-003 1.2313e+000 1.206e-003 9.9879e-01 

16 1.556e-003 1.2480e+000 3.097e-004 9.9969e-01 
 
For a mean time between arrivals of 1, the parameters of the H2 
distribution for the inter-arrival time are given in Table 4. 

Table 4.     Parameters of the arrival distributions in Examples B 
and C 

cv    
 2 5.714e-002 1.11e+000 5.480e-003 9.9452e-01 

4 1.681e-002 1.1471e+000 2.187e-003 9.9781e-01 

 8 4.396e-003 1.1615e+000 6.136e-004 9.9939e-01 
16 1.112e-003 1.16537e+000 1.579e-004 9.9984e-01 
20 7.125e-004 1.16584e+000 1.014e-004 9.9990e-01 

 

For higher times between arrivals, the rates  are scaled down 
proportionately, e.g., for a mean time between arrivals of 2, these rates are 
doubled. Other parameters, such as , remain unchanged.  
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