
Evaluation of an End-to-End Delay Estimation in
the Case of Multiple Flows in SDN Networks
Huu-Nghi Nguyen

Univ Lyon, UCB Lyon 1,
ENS Lyon, Inria, CNRS,

LIP UMR 5668 - Lyon, France
huu.nguyen@ens-lyon.fr

Thomas Begin
Univ Lyon, UCB Lyon 1,
ENS Lyon, Inria, CNRS,

LIP UMR 5668 - Lyon, France
DIVA Lab, University of Ottawa,

thomas.begin@ens-lyon.fr

Anthony Busson
Univ Lyon, UCB Lyon 1,
ENS Lyon, Inria, CNRS,

LIP UMR 5668 - Lyon, France
anthony.busson@ens-lyon.fr

Isabelle Guérin Lassous
Univ Lyon, UCB Lyon 1,
ENS Lyon, Inria, CNRS,

LIP UMR 5668 - Lyon, France
isabelle.guerin-lassous@ens-lyon.fr

Abstract—Though SDN (Software Defined Network) provides
the executive building blocks for programming data-plane appli-
ances, controller decisions must be grounded in an accurate out-
look on the network topology and performance. In this context,
we focus on the possibility of providing accurate measurements
for the end-to-end (E2E) delay in SDN networks. In practice, like
many variable quantities, a good description of the E2E delay
requires characterizing its first two moments, i.e., expectation
and variance. We propose to estimate the E2E delay by making
use only of measurements collected locally on each node of
the network. We extend a procedure that has been proposed
to estimate the E2E delay in the case of one flow to handle
the case of multiple competing flows. We compare its accuracy
using several scenarios, with different types of traffic following
real traces, different topologies and bandwidth. Also, an analysis
of the computational and networking costs of our solution is
proposed.

I. INTRODUCTION

Software Defined Networking (SDN) is a disruptive tech-
nology that thoroughly redefines the way computer networks
are managed. SDN has two key features. First, within an SDN,
the control plane is decoupled from the data plane. Second, the
control plane of an SDN enables a controller to directly control
data-plane appliances (e.g., routers and switches). Controllers
decide rules describing how data-plane appliances handle
packets and flows, and then communicate them to the data-
plane appliances using an Application Programming Interface
(API) such as OpenFlow [1]. SDN computer networks can
leverage this unified architecture in order to have a simple,
efficient and scalable management of their resources [2].

Though SDN provides the executive building blocks for
programming data-plane appliances, controller decisions must
be grounded in an accurate outlook on the network topology
and performance. For instance, routing decisions for flows
with stringent requirements of Quality of Service (QoS) could
be supported by an estimate of the end-to-end (E2E) delay.
Other potential examples include admission control and load
balancing. Hence, SDN controllers would highly benefit from
having at their disposal a performance dashboard that they can
query prior to take a decision. This dashboard will typically
include metrics such as CPU utilization at virtual switches,
current number of active flows at virtual switches, consumed
throughput on link, and E2E delay.

In this paper, we focus on the possibility of providing ac-
curate measurements for the E2E delay to the SDN controller.
Broadly speaking, the E2E delay refers to the time taken for
a packet to be transmitted across a network from its source
to its destination. For flows like interactive video or audio
streams, the E2E delay is a critical parameter [3] as opposed
to the round-trip time (RTT), which is of little interest in these
cases.

Because packets taking the same path across a network
typically may experience different amounts of delay, one
should consider statistical metrics to characterize the E2E
delay of a flow. In practice, like many variable quantities, a
good description of the E2E delay requires characterizing its
first two moments, i.e., expectation and variance. The expected
value (or mean value) is the most important parameter to
consider. However, estimating its variance (or, similarly, its
standard deviation) can be of much interest because it enables
a better understanding on the variation of the E2E delay, as
well as probabilistic bounds on the range of possible values
(e.g., Chebyshev’s inequality).

Because the E2E delay is a one-way delay, its direct
measurement requires two synchronized clocks at different
locations. Unfortunately, this direct measurement approach
would lead to inaccuracies due to the problem of clock syn-
chronization, unless expensive GPS device are used [4], [5],
[6]. Moreover, most of the proposed solutions for estimating
the E2E delay insert probing packets that may affect the
performance of the existing traffic [7]. Alternately, we propose
to estimate the E2E delay of a given path across the network
by making use only of measurements collected locally on
each node of the network. We assume that each node can
monitor its buffers so that the SDN controller has local delay
measurements for each node interface.

Given measurements of the delay at each node composing
the path under study, the expected value of E2E delay is simply
obtained by adding them all together. One could attempt to
apply a similar approach to approximate the variance, or
better yet, the whole distribution of the E2E delay. Though
direct measurement approach would work if the delays at
each node of the path were independent, it will lead in
practice to large errors, usually underestimating the actual
value of the variance. We illustrate the inapplicability of this

approach by calculating the variance (resp. the distribution)
of the E2E delay by summing up the delay variances (resp.
convoluting the delay distributions) measured at each node
composing a path of 5 nodes (similar to that considered in
Section III). The approximate variance was found to be almost
three times smaller than the exact one found by sampling
the path. As for the whole distribution of the E2E delay,
the approximate solution significantly differs from the exact
one (see Fig 1). This example demonstrates that independency
between the local delays composing a path cannot be assumed
when estimating the variance of the E2E delay. Their strong
correlation compels a more holistic approach.

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Seconds

0

100

200

300

400

500

600

700

Em
pi

ric
al

 p
ro

ba
bi

lit
y

de
ns

ity
 fu

nc
tio

n Approximate distribution
found by convolution
Exact distribution

Fig. 1. Approximating the distribution of E2E delay by convoluting the delay
distributions found on each node generally leads to poor results.

In a previous paper [8], we described a procedure to estimate
the first two moments of the E2E delay in case of a single flow
transmitted on a path. In a separate work [9], we proposed
another procedure that pursues the same objective but using
a different approach. In this paper, we extend the former
procedure to handle the case of multiple competing flows. We
compare its accuracy with that of the latter procedure using
several scenarios, as well as their computational and network-
ing costs. The rest of this paper is organized as follows. In
Section II, we describe the proposed solution to estimate the
first two moments of the E2E delay. Numerical results and
comparison to another existing solution are reported in Section
III. Section IV concludes this paper.

II. VARIANCE OF THE END-TO-END DELAY

A. Assumptions and definitions

Considering that the SDN controller attempts to monitor the
E2E delays for different flows in the network, we propose a
procedure to estimate their mean and variance. Without loss of
generality, we describe our procedure to obtain this quantity
for a particular flow, hereafter named the primary flow, and
denoted by f1. Note that in this paper, our definition of a flow
refers to a set of packets entering and leaving the network at
the same nodes, and, importantly, taking the same path. Thus,
this flow can aggregate multiple IP flows, which happen to
take the same path on their way to their destination.

We refer to the primary path as being the set of nodes
and links traversed by the primary flow. We denote by N
the number of nodes composing the primary path, numbered
from 1 to N . The link between node k and node (k + 1)

is characterized by its transmitting capacity Ck (in Mbps),
and its propagation time Rk (in sec). Packets queued in each
node and waiting for transmission are processed according to
a First-In-First-out discipline.

Beside the primary flow, secondary flows may come across
the primary path. Their packets compete with those of the
primary flow in the access to the links. We use fk,l to denote
a secondary flow entering the primary path at node k and
leaving it at node l (with 1 ≤ k < l ≤ N). Figure 2 illustrates
two examples of primary path with several flows, including
f1.

From a practical standpoint, our proposed method requires
some information from the nodes composing the primary
path. First, each node knows the transmitting capacities of the
links composing the primary path. Second, nodes are able to
measure the size, inter-arrival time and the waiting time (time
queued in the buffer of the node) of incoming packets. Note
that this latter quantity can be obtained using a single clock.
Finally, based on the IP source and destination addresses,
nodes are able to distinguish the different flows from each
other.

B. Proposed solution by decomposition

We now describe our solution to estimate the variance of
the E2E delay for the primary flow f1. Note that we do not
address the case of the expectation of the E2E delay (i.e., its
mean value) because its best estimate is simply obtained by
summing all together the mean delays measured on each node
composing the primary path. However, the variance of the E2E
delay contains a complex covariance term, which captures the
correlation between the local measurements. As we rely on a
decomposition approach to approximate its value, we refer to
our solution as the Decomposition method.

Let D be the random variable representing the E2E delay of
f1, and Dk be the random variables accounting for the times
spent by packets of f1 between nodes k and k + 1. Each Dk

has 3 main components:

• The waiting time, Wk, corresponding to the amount
of time packets are queued in node k prior to their
transmission;

• The transmission time, Sk, expressing the time needed to
transmit packets on the link between nodes k and k + 1
once their waiting times are over;

• The propagation time, Rk, on the link between nodes k
and k + 1.

Note that the processing times, including the times to process
the packet headers and to look for the routing rules, can be
neglected in comparison with the other quantities. The promi-
nent framework to process packets, DPDK library, enables
the processing of a packet in less than 80 CPU cycles [10].
Besides, propagation times are constants, and hence their
variances are zero.

By definition, the E2E delay for f1 can be expressed as:
D =

∑
kDk. Applying the variance operator on this equation,

we obtain:

V[D] = V[
N−1∑
k=1

Dk] = V[
N−1∑
k=1

(Wk + Sk)] (1)

= V[
N−1∑
k=1

Wk] + V[
N−1∑
k=1

Sk] +

N−1∑
k=1,l=1

Cov(Wk, Sl).

We now explain how we approximate each of these terms.
Let denote by Pf1k the random variable representing the packet
size for the flow f1 at node k. The transmission time on the
k-th link is given by Sk =

P
f1
k

Ck
. The term V[

∑N−1
k=1 Sk] is

computed by node N such as:

V[
N−1∑
k=1

Sk] =

(
N−1∑
k=1

1

Ci

)2

V[Pf1N]. (2)

Using the definition of the covariance, Cov(Wk, Sl) can be
estimated by each node k with the following estimation:

Cov(Wk, Sl) ≈
1

Cl

(
E[WkP

f1
k]− E[Wk]E[Pf1k]

)
. (3)

At this point, the only quantity left unknown is
V[
∑N−1
k=1 Wk]. Its value is more complex as it contains the

covariance capturing the correlation between the waiting times
among the different nodes. By expanding it in different terms,
we get:

V[
N−1∑
k=1

Wk] =

N−1∑
k=1

V[Wk] + 2

N−1∑
k=1,l=2,k<l

Cov(Wk,Wl). (4)

The variance terms appearing in Eq. (4) can be calculated
locally by each node using the classical estimator for variance.
However, it is not possible to obtain a simple empirical
estimator of the covariance terms. It would suppose to know
the waiting times at the different nodes for the same packets,
which requires a complex synchronization between nodes.

Our solution relies on a recurrent function that allows a
given node k to infer the waiting time that a packet is expected
to experience in subsequent nodes l (with l > k). Arguments
of this function include the packet sizes, the link capacities as
well as the time elapsing between two successive arrivals. For
the sake of clarity, in the following, quantities being found by
this function are marked with a “hat” (e.g., ŵmk+1).

To explain the inner-working of the recurrent function, let
us consider the m-th packet of the primary flow at node k. We
denote its size by pmk , and its transmission time on the k-th
node by smk . These quantities are estimated locally. Then, node
k infers Îmk+1 the inter-arrival time between packets m−1 and
m at the next node k + 1. Also, node k estimates ŵmk+1 the

waiting time of packet m at node k + 1, and ŝm−1k+1 =
pm−1
k

Ck+1

the service time of packet m−1 at node k+1. Eq. (5) details
the recurrent function.

{
Îmk+1 = smk +max{0, Imk − wm−1k − sm−1k }
ŵmk+1 = max{0, ŵm−1k+1 + ŝm−1k+1 − Îmk+1} , k ≥ 1.

(5)

Any node k can apply this formula recursively in order to
forecast the waiting time on a subsequent node (k + i), i.e.,
ŵmk+i.

We now discuss the applicability of this recurrent function.
In fact, the estimates returned by the recurrent function may
differ from the actual waiting times for two main reasons. First,
in order to keep the calculations tractable, it only considers
the primary flow, and hence explicitly neglects the secondary
flows. By doing so, we assume that the additional delays
caused by secondary flows are sufficiently independent from
the waiting time in queue k so that they do no significantly
affect the covariance terms. However, note that we implicitly
do take into account the influence of secondary flows when
we compute the variance of the waiting times, Wk. Second,
we do not consider the actual finite size of buffers in Eq. (5),
thus neglecting potential packet losses. However, packet losses
tend to occur rarely in wired computer networks due to their
general oversizing [11]. Nonetheless, based on our numerical
results (including different types of traces, network topologies,
buffer sizes, and levels of load), it appears that this recurrent
function provides fair predictions for our purpose.

Overall, every node k of the primary path can calculate
V(Wk), Cov(Wk, Sl) (with l > k), as well as Cov(Wk,Wl)
(with l > k) using the proposed recurrent function. Node N
can compute V[

∑N−1
k=1 Sk]. Then, they periodically communi-

cate these values to the SDN controller that is in charge of
summing them in order to obtain an estimate of the variance
of the E2E delay of flows f1 as given by Eq. (1).

III. NUMERICAL RESULTS

In this section, we assess the goodness of our proposed so-
lution, i.e., Decomposition method, to approximate the second
moment of the E2E delay. However, instead of considering
the variance, we focus on the standard deviation of the E2E
delay, denoted by σ hereafter. Note that the latter is simply the
square root of the former. Dealing with the standard deviation
is often more convenient from a practical standpoint as it is
expressed in the same units as the mean.

The results provided by our Decomposition method are
indexed by Dec. For the sake of completeness, we compare
its found values for the standard deviation of the E2E delay,
i.e., σDec, with those delivered by three other means:
• σExact, whose values are found by using the classical em-

pirical estimator for the standard deviation on the actual
E2E delay of packets. Though awkwardly implementable
in a real network, this Oracle is used as the reference and
allows us to estimate the error of the different methods
and to compare them objectively;

• σTrivial, whose values are simply obtained by neglecting
the correlation between the waiting times and between
the transmission times. In other words, covariance terms
in Eq. (2) and in Eq.(4) are set to zero;

• σCond, whose values are found using the solution de-
scribed in [9], which relies on a conditional approach.

We implemented these four solutions in the discrete-event
simulator NS-3.

f1

1 2 3 4
C1 C2 C3

f2,3

f2,3

Bottleneck

(a) Scenario 1: 2 flows and 4 nodes.

f1 + f1,2

1 2 3 4 5 6
C1 C2 C3 C4 C5

f1,2

f2,4 + f2,5

f2,5

f3,4

f3,4 + f2,4

Bottlenecks

(b) Scenario 2: 5 flows and 6 nodes.

Fig. 2. Considered scenarios.

A. Scenarios

To illustrate the behavior of our solution, we consider two
different scenarios. Scenario 1 represents a small topology
wherein the primary path is made up of four nodes, and
only one secondary flow competes to access some links.
Fig. 2(a) illustrates this first scenario. In our second scenario,
the primary path consists of 6 nodes and, aside the primary
flow, four secondary flows cross the path. Fig. 2(b) depicts
Scenario 2. Each scenario can operate in two modes: low-
capacity and high-capacity. In the low-capacity mode, the link
capacities are expressed in Mbps, whereas when we consider
the high-capacity mode, capacities are thousand fold larger,
and thus expressed in Gbps. More precisely, the link capacities
are as follows: C1 = 8, C2 = 5, C3 = 3 for Scenario 1, and
C1 = 6, C2 = 4, C3 = 7, C4 = 3, C5 = 5 for Scenario 2.

Secondary flows fill the primary path at a fixed and constant
(in average) rate. In Scenario 1, f2,3 is set to 2 Mbps (resp.
Gbps) when considering the low-capacity (resp. high-capacity)
mode. As for Scenario 2, f1,2, f2,4, f2,5 and f3,4 are configured
to with a mean rate of 1, 0.8, 0.2 and 1.5 Mbps (resp. Gbps)
for the low-capacity (resp. high-capacity) mode. Unless stated
otherwise, all buffers are of size 15, 000 bytes when the low-
capacity mode is on, and 75, 000 bytes for the high-capacity
mode.

We now discuss the statistical profile of the traffic used
to generate the packets of the flows (primary and secondary
flows alike). Packet sizes and inter-arrival times are drawn
using one of the two real traces at our hand. Our first
trace was captured on the campus of the Stuttgart University
(Germany) [12]. The part of the trace we used spans over four
hours of communications, from 6 p.m to 10 p.m, and contains
44 millions packets with a maximum workload measured
at 60 Mbps (measured in one second). The second trace
was downloaded from the Center for Applied Internet Data
Analysis website (CAIDA) [13]. This trace originates from the
Equinix exchange points in Chicago. It is composed of several
files, each one contains one minute of traffic that represents
between 15 and 30 millions of packets. Table I reports the
distribution of packet sizes for each trace. While small packets
account for almost half of the total packets in the Campus
trace, they represent a third in the CAIDA trace wherein large
packets are the majority.

By considering these two scenarios combined with two
different real traces, we seek to evaluate the impact of the
number of secondary flows, the path size, and the low/high
transmission rates on the accuracy of our method, thereby

TABLE I
DISTRIBUTION OF THE PACKET SIZES.

Packet sizes (bytes) < 200 200 - 1400 > 1400
Campus trace 45.96 % 23.74 % 30.30 %
CAIDA trace 32.86 % 16.10 % 51.04 %

providing a fair outlook on the accuracy of our proposed
solution.

B. Distribution of the accuracy

We begin our analysis by calculating the standard deviation
of the E2E delay found by our proposed solution, σDec, on
each scenario wherein the traffic may either be extracted from
the Campus trace or from the CAIDA trace. This leads to a
total of four combinations.

As the value found for σDec depends on the particular
considered excerpt of trace (besides the whole trace itself), we
repeat its calculation over hundreds of independent excerpts.
More precisely, we conduct 600 independent experiments
using the CAIDA trace, and 1440 using the Campus trace,
resulting in 600 and 1440 samples for each method. Each
individual sample of standard deviation was found by running
our proposed solution over 100 consecutive packets of the
primary flow. We then use these samples to derive the median
error, and the cumulative distribution function of the relative
error committed by the different solutions. Note that the
relative error is simply calculated as follows: |σ−σExact|

σExact
where

σ can be σDec, σCond, or σTrivial.
1) Scenario 1 with Campus trace: To begin with, we

consider Scenario 1 wherein the traffic is generated from
the Campus trace. We set links to the low-capacity mode.
We consider two different levels of loads for the primary
flow, f1: moderate and high, corresponding respectively to an
average rate of 1 and 1.5 Mbps. Fig. 3 depicts the cumulative
distribution for the relative error committed by our solution
(σDec), as well as by the trivial solution (σTrivial) and by the
Conditional method (σCond). Fig. 3(a) reports the case when
the rate of f1 is moderate, while Fig. 3(b) exhibits the case of
a high load. Either way, the trivial solution leads to very poor
predictions, thereby invalidating this approach. Indeed, only
around 30% of samples differed by less than 10% from the
exact value. As for the Conditional solution, it tends to lead
to satisfactory results with almost 90% of samples being less
than 10% away from the exact value. Finally, our proposed
solution delivers a very high level of accuracy. Virtually all its
samples are within less than 5% of the exact value.

0 5 10 15 20 25 30 35 40
Absolute Relative Error (%)

0

20

40

60

80

100
C

D
F

 (
%

)

σTrivial

σDec

σCond

(a) Rate of f1: 1.0 Mbps.

0 5 10 15 20 25 30 35 40
Absolute Relative Error (%)

0

20

40

60

80

100

C
D

F
 (

%
)

σTrivial

σDec

σCond

(b) Rate of f1: 1.5 Mbps.

Fig. 3. Scenario 1 with Campus trace: Cumulative distribution function of
the relative errors for the standard deviation of the E2E delay.

Due to space limitation, we do not present the results
obtained with Scenario 1 with CAIDA trace in the high-
capacity mode. Note that, our proposed solution provides very
accurate predictions for the standard deviation of the E2E
delay, that are even better than with the Campus trace.

2) Scenario 2 with Campus trace: We now consider the
more complex Scenario 2. Fig. 4 represents the corresponding
results when the Campus trace is used to generate the traffic
and the links are set to high-capacity mode. First, and regard-
less of the rate of the primary flow f1, the trivial solution
fails to provide accurate results. Second, with this scenario,
the difference between the Decomposition method (σDec) and
the Conditional method (σCond) is much less marked. Both
tend to deliver around 80% of samples within less than 10%
when the rate f1 is equal to 1 Mbps, while this number drops
to less than 70% when the rate of f1 grows to 1.5 Mbps.

0 5 10 15 20 25 30 35 40
Absolute Relative Error (%)

0

20

40

60

80

100

C
D

F
 (

%
)

σTrivial

σDec

σCond

(a) Rate of f1: 1.0 Mbps.

0 5 10 15 20 25 30 35 40
Absolute Relative Error (%)

0

20

40

60

80

100

C
D

F
 (

%
)

σTrivial

σDec

σCond

(b) Rate of f1: 1.5 Mbps.

Fig. 4. Scenario 2 with Campus trace: Cumulative distribution function of
the relative errors for the standard deviation of the E2E delay.

3) Scenario 2 with CAIDA trace: In our last case, we use
the CAIDA trace to generate the traffic while maintaining
the Scenario 2, in high-capacity mode though. Here, we
observe, on Fig. 5, that our proposed solution (σDec) steadily
outperforms the Conditional method (σCond). Indeed, with f1
= 1.0 Gbps, more than 80% of the found samples σDec differ
by less than 10% to the exact value, against 60% of samples
σCond. When the rate of f1 is larger, both methods tend to be
less accurate but the drop is less pronounced for our proposed
solution.

C. Workload influence on the accuracy
In this section we study more carefully the influence of the

rate of the primary flow f1 on the accuracy of our proposed

0 5 10 15 20 25 30 35 40
Absolute Relative Error (%)

0

20

40

60

80

100

C
D

F
 (

%
)

σTrivial

σDec

σCond

(a) Rate of f1: 1.0 Gbps.

0 5 10 15 20 25 30 35 40
Absolute Relative Error (%)

0

20

40

60

80

100

C
D

F
 (

%
)

σTrivial

σDec

σCond

(b) Rate of f1: 1.5 Gbps.

Fig. 5. Scenario 2 with CAIDA trace: Cumulative distribution function of
the relative errors for the standard deviation of the E2E delay.

solution. To do that, we consider several rates for f1, ranging
from a low level to a high level and we study the median
of the empirical standard deviation of the E2E delay. Fig 6
clearly shows that the evolution of σDec as well as σCond are
very close to σExact, which is not the case of σTrivial. In Fig.
6(b), we see that the accuracy of σDec decreases. This can be
explained by packet losses that increase with the workload and
that skew our estimator.

0.6 0.8 1.0 1.2 1.4 1.6 1.8

Primary flow workload (Mbps)

4

5

6

7

8

9

10

11
10
−

3
 s

e
co

n
d
s

σExact

σTrivial

σDec

σCond

(a) Scenario 1 with campus trace, low
capacity (in Mbps).

600 800 1000 1200 1400 1600 1800 2000

Primary flow workload (Mbps)

2

3

4

5

6

7

8

9

10
−

6
 s

e
co

n
d
s

σExact

σTrivial

σDec

σCond

(b) Scenario 2 with Caida trace, high
capacity (in Gbps).

Fig. 6. Median of the empirical standard deviation of the E2E delay.

D. Buffer size influence on the accuracy

Finally, we study the influence of the buffer sizes at each
node on the accuracy of our proposed solution. This is of
important matter because the most difficult component of the
end-to-end delay is the waiting time that highly varies as it
depends on the buffer state found upon arrival (e.g., its value is
null if the buffer is found empty upon arrival). The workload
of f1 is set to 1.5 Mbps for the low-capacity mode (1.5 Gbps
for the high-capacity mode). Fig. 7 shows the evolution of
the median of σExact, σDec, σCond and σTrivial for different
sizes of buffer, ranging from 7,000 to 40,000 bytes for the low-
capacity mode (7,500 to 105,000 bytes for the high-capacity
mode). As the size of buffers increases, so does the actual
values of standard deviation of the E2E delay, as shown by
σExact. We observe that, in this case, σDec tends also to
increase with growing values of buffers, and is kept very
close to the exact values in Scenario 1. With Scenario 2, the
standard deviation median converges immediately to reach a
plateau, meaning that the buffer size has a weak influence on
the accuracy of our method in this case. The two standard
deviations, σCond and σDec, present a similar behavior with

TABLE II
NUMBER OF OPERATIONS TO APPLY THE DIFFERENT METHODS ASSUMING A NETWORK OF N NODES AND M PACKETS. IN THE CONDITIONAL METHOD,

Lk ∈ [1..M] IS THE NUMBER OF BINS CONSIDERED IN THE CONDITIONAL EXPECTATION AT k-TH NODE.

Decomposition method Conditional method Trivial method
Number of operations on N(3M + 2) + 2(11M + 3) if 1 < k < N − 1 5M + 2
the k-th node (1 ≤ k < N) N(17M + 5)− (k + 1)(14M + 3) N(3M + 2) + 11M + 3 if k = 1 or k = N − 1
Computations
at the N -th node only 2N + 3M + 1 2N + 3M + 1 0
Number of operations on
the SDN controller N − 1 4(N − 3)Lk +N − 1 N − 2

an error of approximately 10%. The difference with σExact is
greater than the one found in Scenario 1. It is due to the path
size and the number of secondary flows that are greater for
this scenario.

15000 20000 25000 30000 35000

Buffer Size (bytes)

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10
−

3
 s

e
co

n
d
s

σExact

σTrivial

σDec

σCond

(a) Scenario 1 with Campus trace.

20000 40000 60000 80000 100000

Buffer Size (bytes)

4.0

4.5

5.0

5.5

6.0

6.5

10
−

6
 s

e
co

n
d
s

σExact

σTrivial

σDec

σCond

(b) Scenario 2 with CAIDA trace.

Fig. 7. Evolution of the standard deviation against buffer sizes.

E. Computational and networking complexity

In Table II, we show the number of operations required
on the nodes (SDN switches) and controller to implement the
three methods. An operation can be an addition, subtraction,
multiplication, division, or the max operator (the one of the
recurrence function). The computations that concern only node
N correspond to the computations of Eq. 2. Otherwise, all
the other local computations (i.e. V[Wk], Cov(Wk,Wl) and
Cov(Wk, Sl)) concern all the other nodes. We can notice that
the complexity differs from one node to another. The trivial
method is the less complex as it neglects some covariance
terms. The difference between the Decomposition method and
the Conditional method is the computation of cov(Wk,Wl).

Concerning the networking complexity, the message sent
to the controller contains only one value for the trivial and
Decomposition methods, since a node sums all its estimates
required to compute the variance. Consequently, the operations
on the controller consists only in summing the values from the
N nodes. For the Conditional method, a node has to send the
sum of the different estimates and one or two histograms that
describe the conditional expectation (one for nodes 1 and N
and two for the others). In terms of packet monitoring, as
already mentioned, each node has to measure three quantities
for each packet: length, waiting time and inter-arrival time.

IV. CONCLUSION

Providing SDN controllers with estimates of the end-to-end
(E2E) delay for flows can enable forthcoming SDN networks

to have a better management of their resources, and to better
deal with flows with stringent requirements of Quality of
Services. In addition to the expectation (mean value), an
estimate of its variance (or, similarly, its standard deviation)
would allow a better characterization of the E2E delay.

In this paper, we extend a previous approach to estimate
the E2E delay of a given path across the network by making
use only of measurements collected locally on each node of
the network. The initial approach was restricted to the case of
a single flow, whereas, in this paper, we handle the case of
multiple competing flows. We compare its accuracy with other
solutions using several scenarios with different numbers of
nodes, workload levels, buffer sizes and traffic traces. We also
include a complexity study to assess the computational and
networking cost of our proposed solution. Numerical results
show the general good accuracy of our proposed solution under
various conditions.

V. ACKNOWLEDGMENT

This work is partly funded by the French ANR INFRA DISCO
under the “ANR-13-INFR-013” project.

REFERENCES

[1] N. McKeown et al., “Openflow: enabling innovation in campus net-
works,” ACM SIGCOMM Computer Communication Review, 2008.

[2] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: an intel-
lectual history of programmable networks,” ACM SIGCOMM Computer
Communication Review, 2014.

[3] G. Almes et al., “A One-way Delay Metric for IP Performance Metrics,”
RFC 7679, Tech. Rep., 2016.

[4] S. B. Moon, “Measurement and Analysis of End-to-end Delay and
Loss in the Internet,” Ph.D. dissertation, University of Massachusetts
at Amherst, 2000.

[5] B.-Y. Choi et al., “Analysis of Point-To-Point Packet Delay In an
Operational Network,” in IEEE INFOCOM, 2004.

[6] ——, “Practical Delay Monitoring for ISPs,” in ACM CoNEXT, 2005.
[7] J. Wang, M. Zhou, and Y. Li, “Survey on the End-to-End internet Delay

Measurements,” in HSNMC, 2004.
[8] N. Nguyen, T. Begin, A. Busson, and I. Guérin Lassous, “Towards a

passive measurement-based estimator for the standard deviation of the
end-to-end delay,” in NOMS 2016, 2016.

[9] ——, “Approximating the end-to-end delay using local measurements:
a preliminary study based on conditional expectation,” in IEEE ISNCC,
2016.

[10] G. Pongrácz, L. Molnár, and Z. L. Kis, “Removing roadblocks from
SDN: openflow software switch performance on intel DPDK,” in
EWSDN, 2013, pp. 62–67.

[11] “ICFA SCIC Network Monitoring Report,” 2016.
[12] D. Sass, “The dormitory network “Selfnet” of the University of

Stuttgart,” Oct. 2004. [Online]. Available: http://www.ikr.uni-stuttgart.
de/∼sass/traces/Welcome.html#selfnet

[13] “The CAIDA Anonymized Internet Traces 2015 Dataset,” 2015.
[Online]. Available: http://www.caida.org/data/passive/passive 2015
dataset.xml

