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ABSTRACT 
In many real-life computer and networking applications, the distributions of service times, or times between arrivals of requests, or both, 
can deviate significantly from the memoryless negative exponential distribution that underpins the product-form solution for queueing 
networks.  Frequently, the coefficient of variation of the distributions encountered is well in excess of one, which would be its value for the 
exponential.  For closed queueing networks with non-exponential servers there is no known general exact solution, and most, if not all, 
approximation methods attempt to account for the general service time distributions through their first two moments.   

We consider two simple closed queueing networks which we solve exactly using semi-numerical methods. These networks depart from the 
structure leading to a product-form solution only to the extent that the service time at a single node is non-exponential.  We show that not 
only the coefficients of variation but also higher-order distributional properties can have an important effect on such customary steady-state 
performance measures as the mean number of customers at a resource or the resource utilization level in a closed network. 

Additionally, we examine the state that a request finds upon its arrival at a server, which is directly tied to the resulting quality of service.  
Although the well-known Arrival Theorem holds exactly only for product-form networks of queues, some approximation methods assume 
that it can be applied to a reasonable degree also in other closed queueing networks.  We investigate the validity of this assumption in the 
two closed queueing models considered.  Our results show that, even in the case when there is a single non-exponential server in the 
network, the state found upon arrival may be highly sensitive to higher-order properties of the service time distribution, beyond its mean 
and coefficient of variation.   

This dependence of mean numbers of customers at a server on higher-order distributional properties is in stark contrast with the situation in 
the familiar open M/G/1 queue.  Thus, our results put into question virtually all traditional approximate solutions, which concentrate on the 
first two moments of service time distributions.  
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1. INTRODUCTION 
The objective of this paper is to show that there can be big discrepancies between exact results and traditional approximations due to the 
influence of distributional properties of inter-arrival and service times on the performance of queueing networks.  Here, we consider two 
very simple closed queueing networks which deviate from the product form only in that a single node is non-exponential.  We examine 
customary steady-state performance metrics (mean number of requests at a server, server utilization), as well as the degree of departure 
from the Arrival Theorem.   

Since in many real-life situations the service and/or inter-arrival times tend to exhibit high variability (e.g. due to the use of caching, or 
intrinsic nature of  certain types of Internet traffic [7]), we focus on the case where the coefficient of variation of the service time exceeds 
one.  Using a recently-developed semi-numerical solution method [8] and its generalization [9], we show that the state found upon arrival 
and customary steady-state performance metrics may exhibit important dependence on higher-order properties of the service time 
distribution.  Such dependence casts a doubt over the value of approximations traditionally limited to the first two moments of the 
distribution.   

In a large number of real-life computer and networking applications, the state of a resource that a request finds upon its arrival at the 
resource greatly impacts the resulting quality of service.  To some extent, what an arriving request “sees” may be viewed as more important 
than the customary steady-state performance metrics such as the mean number of requests or server utilization.  As an example, from the 
standpoint of an I/O request generated by the host the probability that the requests find a free I/O path is a more critical performance 
measure than the overall path utilization. 



The Arrival Theorem [29, 20, 30] for closed product-from networks states that the state found upon arrival is the same as the steady-state of 
the network without the arriving request.  This theorem is at the heart of the Mean Value Analysis of queueing networks [24, 26, 27, 31].  
The elegant simplicity of the Arrival Theorem makes it an attractive basis for approximations even when the network does not posses a 
product-form solution [5, 25, 1, 18, 2, 12, 32, 10, 15, 17, 36]. 

To the best of our knowledge, there is a limited number of studies attempting to quantify the degree of applicability of the Arrival Theorem 
in networks with non-exponential service times [6, 4, 15, 11].  Possibly inspired by the distributional dependence factor in the Pollaczek-
Khintchine formula [19, 3] for the M/G/1 queue, most existing studies seem to concentrate on the influence of the coefficient of variation of 
the service time distribution [6, 4, 15].  This appears to be the case as well in some attempts to improve the approximation given by the 
“raw” Arrival Theorem by introducing corrective terms related to the first two moments of the service time distribution [25, 1, 17, 36].  The 
influence of properties of order higher than two (such as skewness and kurtosis) of the service time distribution seems to have attracted 
little attention [37, 35, 6]. 

Our contribution is threefold.  First, we show that, even for a very simple closed network with just a single non-exponential server, the 
performance of the system may depend in an important way on higher-order properties, beyond the first two moments, of the service time 
distribution. This provides evidence that many traditional approximations for non-exponential closed queueing networks (e.g. [22, 23, 28, 
33, 38, 17]) need to be re-evaluated.  Second, we examine the degree of applicability of the Arrival Theorem as a function of both the 
distribution of the service times and the number of users in the system.  Our results provide some indication when the theorem can be 
expected to be a reasonable approximation, and when the deviation from it can be almost arbitrarily large. Third, we show that the 
influence of higher order properties is not limited to the skewness of the service time distribution but includes properties of even higher 
order. 

This paper is organized as follows.  In Section 2 we describe the first queueing network considered and we present our numerical results for 
this system.  Section 3 is devoted to the second simple network and its numerical results. Section 4 concludes this paper.  

2. SIMPLE TWO-NODE NETWORK 
We first consider the two-node closed queueing network represented in Figure 1.  This network consists of a multi-server queue with s  
servers and a single-server queue, referred to as Nodes 1 and 2, respectively. 

We start by examining the effect of a single non-exponential server in a two-node network where the other server has exponentially 
distributed service times.  In such a simple network one might think that the presence of an exponential server would make it close to an 
M/G/1 queue where only the first two moments of the non-exponential server matter for the computation of the mean number of users.  
This case is studied in Section 2.1.  Given the current tendency to use multiple processors in many real-life applications, it seems important 
to examine our network with multiple non-exponential servers at one of its nodes.  Section 2.2 is devoted to such a case.  In Section 2.3 we 
consider a similar network but with multiple exponential servers at one of its nodes and a single non-exponential server at the other.  This 
allows us to see how much the performance of a memoryless multi-server is affected by high-variability of service at the queue feeding the 
former.    

We denote by 

! 

N  the total number of users (tokens, customers, requests) in this network.  The service time at the multi-server node is 
represented by a two-stage Coxian distribution [13], with mean 

! 

1/µ
1
.  We denote by 

! 

µ
1a

 and 

! 

µ
1b

 the respective service rates of the stages 
of this distribution, and by 

! 

ˆ q 
1a

= 1" q
1a

 the probability of moving from stage 

! 

a to stage 

! 

b . To represent an exponential distribution, it 
sufficies to set 

! 

ˆ q 
1a

= 0. The service time at the single-server node is also represented by a two-stage Coxian distribution with mean 

! 

1/µ
2
.  

For the latter distribution, we denote by 

! 

µ
2a

 and 

! 

µ
2b

 the respective service rates of this distribution, and by 

! 

q
2a

 the probability to complete 
the service process following the first stage. 

! 

ˆ q 
2a

= 1" q
2a

 denotes the probability that the customer arrival process proceeds to the second 
stage upon completion of the first stage. We denote by 

! 

cv
1
 and 

! 

cv
2
 the coefficients of variation at Nodes 1 and 2, respectively. 

We denote by 

! 

n 
1
(N )  the steady-state mean number of requests at Node 1 in a network with a total of 

! 

N  users, and by 

! 

n 
1

A
(N )  the mean 

number of users found at Node 1 by a request arriving from Node 2.  If the Arrival Theorem was to apply in our network, the state of 
Node 1 found by a request leaving Node 2 would correspond to the steady state of Node 1 in a network with the same service time 
distributions but 

! 

N "1 users.  Therefore, we measure the deviation from the Arrival Theorem by the quantity 

! 

"(N ) = 1# n 
1
(N #1) /n 

1

A
(N ) , 

expressed in percent. 



 
 

Figure 1. Simple two-node network 

Additional quantities studied in this paper include the server utilization level for Node 1 defined as 

! 

U
1
(N ) = m 

1
(N ) /s , where 

! 

m 
1
(N )  is the 

steady-state expected number of busy servers at Node 1 in a network with a total of 

! 

N  customers. 

We use a generalization to Ck/C2/c-type queues [9] of a recently published semi-numerical solution method for M/Ck/1-type queues [8] to 
obtain the above quantities.  This method yields the steady-state probability 

! 

p( j,l
2
,n)  that the system is in the state described by 

! 

( j,l
2
,n)  

where 

! 

n  is the current total number of customers at Node 1, 

! 

l
2
 is the number of Node 1 customers in the second stage of their Coxian 

service time, and 

! 

j  is the current service stage at Node 2.  The solution methods used rely on a Markovian model with standard balance 
equations.  For single-server queues the method [8] requires no iteration and is thus exact.  The solution for multi-server [9] queues requires 
a fixed-point iteration, and we used the convergence criterion of relative difference of less than 

! 

10
"9  between consecutive iterates.  

Let 

! 

P
N

A
(n)  be the steady-state probability that a request arriving from Node 2 finds 

! 

n  users at Node 1 in a network with a total of 

! 

N customers.  As we show in the Appendix, we have in general  

! 

P
N

A
(n) =

µ
2 j
q
2 j

p( j,l
2
,n)

l2 =0

min(c,n)

"
j=1

k

"

µ
2 j
q
2 j

p( j,l
2
,l)

l2 =0

min(c,l )

"
j=1

k

"
l<N

"
 

for 

! 

n = 0,1...,N "1.            

! 

n 
1

A
(N )  is then expressed as 

! 

nP
N

A
(n)

n=0

N"1

# .  In the particular case when the service time at Node 2 is exponentially distributed, we get for the 

probability upon arrival  

! 

P
N

A
(n) =

p(l
2
,n)

l2 =0

min(c,n)

"

p(l
2
,l)

l2 =0

min(c,l )

"
l<N

"
 for 

! 

n = 0,1...,N "1. 

The set of Cox-2 distributions used throughout our paper is described in Table 1. 

2.1 Single non-exponential server (Cox-2) at Node 1 and exponential server at Node 2 
We start our study by assuming that the service time at Node 2 is exponentially distributed and that there is only one non-exponential server 
at Node 1 (

! 

s = 1).  Thus, in a sense, Node 1 may be viewed as an M/G/1-like queue in a closed network. 

Figure 2a shows the deviation (expressed in percent) from the Arrival Theorem in a network with 

! 

N = 10  users, for varying server 
utilization levels and several Cox-2 distributions at Node 1 with a mean of 1 and coefficient of variation of 2, 4, 6, 8 and 10, respectively.  
The corresponding actual values of 

! 

n 
1

A
(N )  are represented in Figure 2b.  The parameter values for the Cox-2 distributions used in our 



examples are given in Table 1.  The distributions are identified in our graphs by their index in Table 1 and by their coefficient of variation 
denoted by 

! 

cv  in our figures.    

Table 1. 

Distribution 
Index Mean value 

! 

cv
i
 Skewness Kurtosis 

! 

µ
ia

 

! 

µ
ib

 

! 

q
ia

 

D1 1.0 2.0 19.26 608.91 1.11 6.25E-02 9.938E-01 

D2 1.0 2.0 3.07 12.77 1000.0 4.00E-01 6.010E-01 

D3 1.0 4.0 54.10 4107.3 1.11 1.32E-02 9.987E-01 

D4 1.0 4.0 6.01 48.28 1000.0 1.18E-01 8.830E-01 

D5 1.0 6.0 86.00 10087.28 1.11 5.68E-03 9.994E-01 

D6 1.0 6.0 9.01 108.30 1000.0 5.40E-02 9.460E-01 

D7 1.0 8.0 116.99 18480.19 1.11 3.17E-03 9.997E-01 

D8 1.0 8.0 12.01 192.43 1000.0 3.10E-02 9.690E-01 

D9 1.0 10.0 147.58 29276.89 1.11 2.02E-03 9.998E-01 

D10 1.0 10.0 15.02 300.63 1000.0 1.98E-02 9.802E-01 

D11 0.67 6.0 86.04 10097.03 1.67 8.52E-03 9.994E-01 

D12 0.67 6.0 9.01 111.30 1500.0 8.10E-02 9.461E-01 

 

  

Figure 2a. Relative deviation from the Arrival Theorem for a 
subset of distributions from Table 1 used for the service time at 

Node 1 with 

! 

N = 10  

Figure 2b. Mean number found on arrival for the same subset of 
distributions from Table 1 used for the service time at Node 1 

with 

! 

N = 10  

We observe that, for the distributional parameters considered, the deviation from the Arrival Theorem seems to depend on both the server 
utilization level and the coefficient of variation of the service time distribution at Node 1.  In this particular case, the deviation ranges from 
some 10% to around 70% and tends to peak for relatively small server utilization levels.  These observations seem to confirm the 
conclusions of previous research [15].  We also note that, for this particular example, the expected number of users found by an arrival, 

! 

n 
1

A
(N ) , does not depend much on 

! 

cv
1
, the coefficient of variation of the service time distribution.  To properly interpret these results it is 

important to note that the value of the service rate at Node 2 has been adjusted for each value of 

! 

cv
1
 so as to maintain the specified 

utilization levels. 

In reality, things appear more complicated than implied by previous research.  In Figures 3a and 3b, we have represented analogous results 
using a different set of Cox-2 distributions with the same mean and coefficients of variation as in Figures 2a and 2b but different higher 
order properties.  The parameter values for the Cox-2 distributions used in this example correspond to another subset of distributions given 
in Table 1.  

Quite unlike what we saw before, the deviation from the Arrival Theorem in this example can exceed 800% and appears to increase as the 
server utilization level increases.  Additionally, Figure 3b shows that, in this particular case, the expected number of users found by an 
arrival 

! 

n 
1

A
(N )  varies significantly as 

! 

cv
1
, the coefficient of variation of the service time distribution at Node 1, changes. Notice that here 

large deviations from the Arrival Theorem occur for relatively large values of the mean number of users found upon arrival.  Thus such 
deviations   cannot be viewed as large relative errors limited to small mean numbers of users.  Again, note that the value of the service rate 
at Node 2 has been adjusted for each value of 

! 

cv
1
 so as to maintain the specified utilization levels. 



  
Figure 3a. Relative deviation from the Arrival Theorem for 

another subset of distributions from Table 1 used for the service 
time at Node 1 with 

! 

N = 10  

Figure 3b. Mean number found on arrival for the same subset of 
distributions from Table 1 used for the service time at Node 1 

with 

! 

N = 10  

Comparing the results of these two examples (Figures 2b and 3b), it is clear that properties of order higher than two (i.e., beyond the mean 
and the coefficient of variation) of the service time distribution may have a dramatic effect on the mean number of users found upon 
arrival.  As it turns out, higher-order distributional properties influence not only the expected state found upon arrival but also such 
customary steady-state performance measures as the mean number of customers at a node or the node utilization level. 

  
Figure 4a. Influence of higher-order moments of the service time 

distribution at Node 1 on the mean number of users

! 

n 
1
(N )  

Figure 4b. Influence of higher-order moments of the service time 
distribution at Node 1 on the server utilization level 

! 

U
1
(N )  

  

Figure 4c. Influence of higher-order moments of the service time 
distribution at Node 1 on the mean number of users found by an 

arriving request

! 

n 
1

A
(N )  

Figure 4d. Relative deviation from the Arrival Theorem 

! 

"(N )  
for two distributions of the service time at Node 1 with the same 

first two moments (on logarithmic scale) 

Thus, Figure 4a displays the mean number of users at Node 1, 

! 

n 
1
(N ) , as a function of the total number of users in the network, 

! 

N , for the 
two sets of parameters given in Table 1 for 

! 

cv
1

= 6 .  Figure 4b shows the corresponding server utilization levels 

! 

U
1
(N ) .  Figures 4c and 4d 

display the values of 

! 

n 
1

A
(N )  and of 

! 

"(N ) , respectively, to illustrate how these quantities vary with 

! 

N .  Recall that both Cox-2 



distributions labeled D5 and D6 have the same mean and coefficient of variation but different higher-order properties.  The mean service 
time at Node 2 is 1/1 2 =µ . 

We notice in Figure 4a the important effect higher-order properties have on 

! 

n 
1
(N ) , the mean number of customers at Node 1.  This is quite 

unlike what one would expect in an open M/G/1 queue where only the first two moments of the service time distribution would matter.  

Similar effects of the higher-order properties of the service distribution can be observed for the server utilization levels and the mean 
number of users found by an arriving request in Figures 4b and 4c, respectively.  As illustrated in Figure 4d, the values of 

! 

"(N ) , the 
deviation from the Arrival Theorem, also differ significantly for the two distribution types considered.  In general, although the deviation 
from the Arrival Theorem decreases as 

! 

N  increases, it remains non-negligible even for higher numbers of users in the network (note the 
logarithmic y-axis scale in Figure 4d).  The amplitude of the deviation from the Arrival Theorem varies with network parameters, and, as 
an example, is close to 50% for 100=N when the mean service time at Node 2 is 5.0/1 2 =µ . 

With respect to the state “seen” by an arriving request, so far we have considered the mean number of users found upon arrival at Node 1, 
and we found that it may depend on higher-order properties of the service time distribution.  Figure 5 illustrates the actual probability 
distribution of the number of users found by an arriving request at Node 1, for the two Cox-2 distributions given in Table 1 for 

! 

cv
1

= 4 .  As 
before, service at Node 2 is exponentially distributed.  The value of the mean service time for Node 2 is 

! 

1/µ
2

= 1/3 in this example.  Recall 
that we denote by 

! 

p
N

A
(n)  the probability that an arrival finds 

! 

n  requests at Node 1, where 

! 

N  is the total number of users in the network, 
and we have 

! 

n = 0,1,..,N "1.  The results in Figure 5 have been obtained for a total of ten requests in the network (

! 

N = 10 ). 

 
Figure 5. Influence of higher-order moments of the service time distribution at Node 1 on 

! 

p
N

A
(N )  

We observe how strikingly different the distributions 

! 

p
N

A
(n)  can be for the same mean and coefficient of variation of the service time at 

Node 1.  In particular, if one considers 

! 

p
N

A
(0), the probability that the arriving request does not have to wait before service, it varies from 

close to zero in one case to almost 40% in the other. 

2.2 Multiple non-exponential (Cox-2) servers at Node 1 and exponential server at Node 2 
We now turn our attention to the case where there are several servers at Node 1.  As before, the service time at Node 2 is exponentially 
distributed.  Figure 6a illustrates the deviation from the Arrival Theorem as a function of the number of users in the network for 2, 4, and 8 
servers.  We use the set of parameter values corresponding to distribution labeled D4 in Table 1 (

! 

cv
1

= 4 ) for the service time distribution 
at Node 1.  The mean service time at Node 2 is 1/1 2 =µ .  Here we observe that 

! 

"(N )  peaks for lower values of 

! 

N  and then decreases as 
the number of users increases.  In our example, with two servers at Node 1 (

! 

s = 2) the deviation reaches almost 140% while the decrease 
with 

! 

N  tends to be slow, so that the deviation exceeds 30% with 30 users in the network.  Perhaps not surprisingly, the deviation decreases 
as the number of servers increases, but, even with 8 servers, it can exceed 40%. 

In Figure 6b we examine the deviation from the Arrival Theorem for a fixed population level (

! 

N = 16 ) as a function of the server 
utilization level for different values of the number of servers 

! 

s.  The same Cox-2 distribution labeled D4 in Table 1 is used as the service 
time distribution for the non-exponential servers at Node 1.  Note that the value of the service rate at Node 2 has been adjusted for each 
value of the number of servers

! 

s so as to maintain the specified server utilization levels.  

 



  
Figure 6a. Relative deviation from the Arrival Theorem 

! 

"(N )  
as a function of the number of users in the network 

! 

N  for 
varying number of servers 

! 

s at Node 1 

Figure 6b. Relative deviation from the Arrival Theorem 

! 

"(16)  
as a function of the server utilization level for varying  number 

of servers 

! 

s at Node 1 

From the results shown in Figures 6a and 6b, it is apparent that for queues with multiple non-exponential servers, just like in the case of a 
single server, one has to approach with caution approximations based on the Arrival Theorem.  

  

Figure 7a. Influence of higher-order moments of the service time 
distribution at Node 1 on the mean number of users 

! 

n 
1
(N )  

Figure 7b. Influence of higher-order moments of the service time 
distribution at Node 1 on the mean number of users found by an 

arriving request 

! 

n 
1

A
(N )  

The dependence on higher-order properties of the service time distribution in the open M/G/c queue has been suspected and later shown 
empirically by some authors, e.g. [37, 34, 21, 35, 16].  Hence, it may not be surprising that this type of dependence is also present in our 
network.  Figure 7a shows the steady-state mean number of users at Node 1 with 4 servers (

! 

s = 4 ) for the two distributional parameters 
given in Table 1 in the case when the coefficient of variation of the service time is 6 (

! 

cv
1

= 6 ), labeled D5 and D6.  The exponential service 
time distribution at Node 2 has a mean of 

! 

1/µ
2

= 0.35 .  We observe that the values for 

! 

n 
1
(N )  differ by close to 100% (or 50%, depending 

on how you look at it) as 

! 

N  exceeds 50 users in the system.  The corresponding values of 

! 

n 
1

A
(N ) , the mean number found upon arrival, 

are shown in Figure 7b.  It is interesting to note that, depending on the number of users in the network, one or the other of the distribution 
types can lead to a larger value of 

! 

n 
1

A
(N ) .  Again, we observe the important influence of higher-order properties of the service time 

distribution.  We also observe that this influence varies with the number of users in the network and persists as the latter increases.  This 
persistence is consistent with distributional dependencies in M/G/c queues [16, 34].  Results not reported in this paper indicate that, for a 
given  server utilization level, distributional effects tend to decrease for larger numbers of servers.    

2.3 Multiple exponential servers at Node 1 and single non-exponential (Cox-2) server at Node 2 
In Sections 2.1 and 2.2 we looked at the effect of higher-order properties of the service time on the non-exponential server.  It is interesting 
to examine how a single non-exponential server with high service time variability affects the performance of a multi-server node with 
memoryless service.  Hence, we consider here the case where the service time at Node 1 is exponentially distributed and Node 2 has a 
general service time distribution.  As illustrated in Figure 8, here again we observe significant dependence on higher-order properties of the 
non-exponential service time distribution.  Figure 8 shows the values of 

! 

n 
1

A
(N )  for 

! 

s = 2 servers at Node 1, mean service time at this node 
1/1 1 =µ , and values 

! 

1/µ
2

= 0.67 and 62 =cv  for the Cox-2 distribution of service time at Node 2.  Distributions labeled D11 and D12  in 
this figure refer to parameter values from Table 1.  We note that the influence of higher-order properties persists as the number of users in 
the network increases.  This is consistent with similar distributional dependencies in G/M/c queues [34].  



Not surprisingly, additional results, not shown in this paper, indicate the importance of higher-order distributional properties for 
performance metrics not displayed in our figure, as well as in the case where both Nodes 1 and 2 are non-exponential. 

 
Figure 8. Influence of higher-order moments of the service time distribution at Node 2 on the mean number of users found by an 

arriving request at Node 1 

! 

n 
1

A
(N )  

3. MACHINE REPAIR MODEL  
The second model considered in this study is the machine repairmen model shown in Figure 9.  Here we have a total of 

! 

N  request sources 
or users, the time spent at a source (“machine up time”) is exponentially distributed, and there are 

! 

s servers (“repairmen”) at Node 1.  As 
before, the service time at Node 1 (“machine repair time”) has a Cox-2 distribution with the same notations as in Figure 1.  We denote by 

! 

1/"  the mean time a request remains at a source (“mean machine up time”). 

 

Figure 9. Machine repair model with multiple servers 

Such a model corresponds in particular to a set of users with exponentially distributed idle times and a multiple server resource.  We 
consider this system in the case when the service time distribution at the shared resource has a coefficient of variation greater than one.  As 
noted in the introduction, higher coefficients of variation may be encountered in many systems, including in the presence of caching in I/O 
subsystems or Web servers.  On the surface of things, one might think that the memoryless sources might act as “buffers” to dampen 
distributional effects at the shared multi-server resource.   

We study the behavior of this model with 

! 

s = 4  servers at Node 1.  The mean service time 

! 

1/µ
1
 is set to 1 and the number of sources in the 

network at 

! 

N = 20.   

In Figures 10a and 10b we show the deviation from the arrival theorem for the same two subsets of distributions of Tables 1 used in Figures 
2a and 3a, respectively.  Note that in these figures, analogously to what we did for the network considered in Section 2.1, we adjust the 
value of 

! 

1 "  (“the mean machine up time”) for each distribution so as to maintain the specified server utilization levels. 

While the results shown in Figure 10a may give the impression that the Arrival Theorem works very well for this network, Figure 10b 
shows that for a different set of distributions with the same first two moments deviations may exceed 30%.  It is thus clear from the results 
in Figures 10a and 10b that the deviations from the Arrival Theorem may be more or less significant depending on the specific distribution 
of the service time at the non-exponential servers and on the server utilization level.  With respect to Figure 10a, it is interesting to note that 
the ratio 

! 

n 
1
(N "1) /n 

1

A
(N )  used to measure the deviation from the Arrival Theorem starts out greater than one and then becomes less than 

one as the server utilization level increases.  This accounts for the dip in the amplitude of the deviation seen in Figure 10a.  We conclude 
that higher-order properties of the service time distribution, beyond its mean and coefficient of variation, may significantly influence this 
deviation.  When interpreting the results of Figures 10a and 10b one should keep in mind that the rate 

! 

"  of the exponential sources has 
been adjusted for each distribution so as to maintain the specified server utilization level.   



  

Figure 10a. Relative deviation from the Arrival Theorem for a 
subset of distributions from Table 1 used for the service time at 

Node 1 with 

! 

N = 20  

Figure 10b. Relative deviation from the Arrival Theorem for 
another subset of distributions from Table 1 used for the service 

time at Node 1 with 

! 

N = 20 

 

As a final example, we now fix the value of the “mean machine up time” at

! 

1/" = 0.2  and we examine the influence of higher-order 
distributional properties as the number of users increases.  We show in Figures 11a and 11b the values of 

! 

"(N )  and 

! 

n 
1

A
(N ) , respectively, 

for the two distribution types of Table 1 with 

! 

cv
1

= 6 , labeled D5 and D6.  

  
Figure 11a. Relative deviation from the Arrival Theorem 

! 

"(N )  
for two distributions of the service time at Node 1 with the same 

first two moments in a model with 4 repairmen 

Figure 11b. Influence of higher-order moments of the service 
time distribution at Node 1 on the mean number found on 

arrival 

! 

n 
1

A
(N )with 4 repairmen 

 

It has been our experience that in general the amplitude of the departure from the Arrival Theorem, 

! 

"(N ) , tends to increase as the 
variability of the service time increases, however, the form of its evolution with 

! 

N  clearly depends on higher-order properties of the 
service time distribution.  Similarly, higher-order properties have an important effect on the number of users found upon arrival 
(Figure 11b), as well as the customary mean number of users at Node 1.  Note that the effect of higher-order distributional properties 
remains significant (especially for 

! 

n 
1

A
(N ) ) as the number of users in the system 

! 

N  increases.  

Overall, it is clear just from the two simple models considered in this paper that the performance of closed queueing networks with non-
exponential servers is sensitive not only to the first two moments of the service time distributions but also, and in many cases to a large 
degree, to higher-order properties of those distributions.  In general, the larger the service time variability the more important higher-order 
properties appear to be.  The results presented so far, given the particular form of the distribution used, viz. Cox-2, do not allow us to 
determine the individual importance of the skewness and kurtosis.  We briefly address this question in the Appendix (6.3). 

4. CONCLUSION 
In this paper we have examined the influence of the service time distributions on the mean number of users at each node and the server 
utilization levels, as well as the degree of departure from the Arrival Theorem for two simple closed queueing networks.  These networks 
depart only minimally from the product-form structure since only one node has non-exponential service times.  Our results indicate that 



higher-order properties of the service time distribution, beyond the first two moments, may have an important effect on both steady-state 
properties and the state found upon arrival.   

The observed dependence on higher-order properties clearly shows that approximations limited to the first two moments of the service time 
distribution may be highly inaccurate.  Our results suggest that the effect of higher-order properties of the service distribution tends to 
increase as the service time variability increases.  The amplitude of the departure from the Arrival Theorem also tends to increase under 
similar conditions.  As the number of users in the system increases, the deviation from the Arrival Theorem tends to decrease although it 
can  remain significant even for larger numbers of users.  The influence of higher-order distributional properties on the state found upon 
arrival (and on the mean number of users) persists for larger values of the number of users in the system.   

Results not shown in this paper confirm that the Arrival Theorem may be a good approximation when the service time distributions have a 
coefficient of variation of less than one [1, 15].   However, in closed networks of queues with high-variability service time distributions, the 
Arrival Theorem may be totally wrong.  The degree of departure from the theorem varies with the level of server utilization but there 
appears to be no obvious and simple relationship one can establish between the two.  For some distributions the discrepancy is most 
obvious in the middle range of server utilization, while for others it may increase as the server utilization increases.  Moreover, the ratio 

! 

n 
1
(N "1) /n 

1

A
(N )  may be greater or smaller than one depending on the distribution and the server utilization or the number of users, so that 

no systematic bias or correction can be easily established.  It appears that the relative deviation from the Arrival Theorem tends to be more 
important for distributions with lower skewness values.    

Our results show that, unlike what happens for the open M/G/1 queue, in a closed queueing network, the dependence on higher-order 
properties may be important even for the mean queue length at a node with a single server (the fact that higher order properties matter in 
the open M/G/c queue is generally known).  Mean queue lengths, server utilization, and the state found upon arrival may be radically 
different for two service time distributions with the same mean and coefficient of variation but different higher-order moments.  Since the 
state upon arrival has a direct influence on the quality of service, our results have clear implications for performance studies in this domain.  

One could argue that in real life it is difficult to know the coefficients of variation of many service time distributions, much less higher-
order properties, so that the fact that various performance metrics may exhibit strong dependence on properties of higher order can be 
safely overlooked.  We believe, however, that it is important to realize that, given the influence of higher-order properties, traditional 
approximations for non-exponential queueing networks produce results that cannot be viewed as trustworthy since it is impossible to say 
which one of the infinitely many distributions with the given first two moments they might well correspond to. Results not reported in this 
paper seem to indicate that traditional approximations fare better in cases when the coefficient of variation is below unity.   

An interesting unanswered question is which higher order properties (skewness, kurtosis or perhaps other properties) of the distribution are 
most important. This determination and a search for improved approximations is the subject of future research.   
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6. APPENDIX
6.1 Steady-state probability upon arrival at Node 1  
 

To derive the steady-state probabilities “seen” by a request arriving from Node 2 to Node 1 in the network of Figure 1, we follow a 
reasoning similar to the one presented by Cooper [14].  The state of the system is described by 

! 

( j,l
2
,n)  where 

! 

n  is the current total 
number of customers at Node 1, 

! 

l
2
 is the number of Node 1 customers in the second stage of their Coxian service time, and 

! 

j  is the current 
service stage at Node 2.  The rate of request arrivals from Node 2 to Node 1 when this state is in effect corresponds to the rate of departures 
from the server at Node 2, i.e. 

! 

µ
2 j
q
2 j

.  Hence, the rate of arrivals to Node 1 when there are 

! 

n  requests at this node can be expressed as 

! 

µ
2 j
q
2 j

p( j,l
2
,n)

l2 =0

min(c,n)

"
j=1

k

" .  

 
The overall rate of departures from Node 2, corresponding to all possible system states, can similarly be expressed as  

! 

µ
2 j
q
2 j

p( j,l
2
,l)

l2 =0

min(c,l )

"
j=1

k

"
l<N

" . 

Thus, the probability that a request leaving Node 2 finds 

! 

n  requests at Node 1 is seen to be  

! 

P
N

A
(n) =

µ
2 j
q
2 j

p( j,l
2
,n)

l2 =0

min(c,n)

"
j=1

k

"

µ
2 j
q
2 j

p( j,l
2
,l)

l2 =0

min(c,l )

"
j=1

k

"
l<N

"
 . 

 
 
 
 

6.2 Selection of the parameters of a Cox-2 distribution given values for mean, coefficient of 
variation and skewness 
 
Denote by 

! 

(m,cv,skew)  the vector of the desired values of mean, coefficient of variation and skewness for a Coxian distribution.  We 
describe a simple method to select the parameters of a matching Cox-2 distribution of the type represented in Figure 12a.  Such a Cox-2 
distribution has three parameters, i.e. 

! 

µ
1
, 

! 

µ
2
 and 

! 

q
1
.  

  
Figure 12a. A Coxian distribution with two stages Figure 12b. A Coxian distribution with three stages 

Let 

! 

"  be a real-valued parameter between 0 and 1.  For a given mean 

! 

m  and coefficient of variation 

! 

cv , the parameters 

! 

µ
1
, 

! 

µ
2
 and 

! 

q
1
 of 

the Cox-2 distribution can be set as follows: 

! 

µ
1

= 1 "m   

! 

q
1

= 1" 2(1"# )2 (cv 2 + (1"# )2 "# 2 )  

! 

µ
2

= p
2
m(1"# )  .  

For different feasible values of 

! 

" , the resulting Cox-2 distribution will have a different skewness value.  More precisely, as 

! 

"  increases, the 
skewness 

! 

skew  increases as well.  Thus, within a certain range, a simple bisection technique allows us to select the value of 

! 

"  so that the 
resulting Cox-2 distribution has the desired skewness.   As an example, the distributions labeled D1 and D2 in Table 1 correspond to values 
of 

! 

"  of 0.9 and 0.001, respectively.  



However, while it is possible to find a Cox-2 distribution whose mean and coefficient of variation match any given couple of values 

! 

m  and 

! 

cv  (provided the latter is greater than 

! 

1 2 ), the range of attainable values for the skewness is limited and depends on the value of 

! 

m  and 

! 

cv .  For this reason, having obtained a value for 

! 

" , one has to ensure that the specified value for skewness is feasible.  For this, it suffices 
to check that the resulting value for 

! 

q
1
 is indeed between 0 and 1.  

For the case of two Cox-3 distributions with the same first three moments considered in Section 4, our procedure is simply to choose a set 
of parameters (

! 

µ
1
, 

! 

µ
2
, 

! 

µ
3
, 

! 

q
1
, 

! 

q
2
) (see Figure 12b), then to compute the values for its mean, coefficient of variation, skewness and its 

kurtosis, and finally to select a Cox-2 distribution with the same first three moments as per the previously described scheme. 
  

6.3 Single non-exponential (Cox-3) server at Node 1 and exponential server at Node 2 
The results presented in Sections 2 and 3 were obtained for Cox-2 distributions, and thus do not allow us to determine the individual 
importance of properties such as skewness and kurtosis.  The Cox-2 distribution has three degrees of freedom, and it is therefore impossible 
to have two Cox-2 distributions with different kurtosis but the same first three moments.  Since in the open M/G/1 queue only the first two 
moments matter in the determination of the mean number in the system, a natural question is whether perhaps only the first three moments 
matter for a closed network or if other quantities come into the picture.  In order to provide an element of answer to this question, we 
studied a network akin to the one considered in Section 2.1 but with a Cox-3 distribution at Node 1. As before, the service time at Node 2 is 
exponentially distributed. Thus we were able to create two distributions with the same mean, coefficient variation and skewness but 
different kurtosis (see Table 2).  This network was solved using a semi-numeric recurrence method [8]. 

Table 2. 

 First Cox-3 Second Cox-3 Relative 
differences 

Mean 1.0 

Coeff. Var. 6.40 

Skewness 2331.54 

Kurtosis 1.44E07 7.43E06  

! 

n 
1
(15) 6.34 7.44 17.4% 

! 

n 
1

A
(15) 5.28 6.93 31.1% 

 

The values presented in Table 2 indicate that the dependence on higher-order properties is not limited to the first three moments since 
distinctly different results are obtained for distributions with different kurtosis and properties of yet higher order. 

 


