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Abstract

Current computer systems and communication networks tend
to be highly complex, and they typically hide their internal
structure from their users. Thus, for selected aspects of ca-
pacity planning, overload control and related applications, it
is useful to have a method allowing one to find good and rela-
tively simple approximations for the observed system behav-
ior. This paper investigates one such approach where we at-
tempt to represent the latter by adequately selecting the pa-
rameters of a set of queueing models. We identify a limited
number of queueing models that we use as “Building Blocks”
(BBs) in our procedure. The selected BBs allow us to accu-
rately approximate the measured behavior of a range of dif-
ferent systems. We propose an approach for selecting and
combining suitable BB, as well as for their calibration. Fi-
nally, we validate our methodology and discuss the potential
and the limitations of the proposed approach.

1 Introduction

A commonly used method for analytic performance modeling
of computer and communication systems, which we refer to
as the constructive approach, is to attempt to reproduce in the
mathematical model essential aspects of the system structure
and operation [6]. This constructive approach has its limits.
First, important aspects of large and heterogeneous computer
or communication systems may be largely unknown. Sec-
ond, extensive knowledge and expertise might not be avail-
able to correctly identify key system components and features
lest the resulting models become unrealistic or intractable in
their complexity. These difficulties motivate in part our ap-
proach. In our high-level modeling, we don’t necessarily seek
to “mimic” the structure of the system under study. Rather,
we focus on the observable behavior as given by measure-
ments of the system, and attempt to infer from it a possible
high-level model structure capable of adequately reproduc-
ing the observed system. In doing so, we forego the detailed
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representation of the system in favor of the possibility that
a relatively simple model, not necessarily related to the ap-
parent structure of the system, might be able to capture the
behavior of the system under consideration. An obvious jus-
tification for our approach is that, even in a complex system,
it is possible that a small number of components, or a single
component, may be the critical bottleneck, effectively driv-
ing the system behavior. This idea is by no means novel, and
has been frequently employed in the past, e.g. in the case of
an Internet path ([9] and [1]), disk arrays ([11]), time-sharing
system ([10]) and a Web server ([4]).

Our approach has several advantages. First, it requires a pri-
ori little information about the system, and can be easily em-
bedded in an automatic software tool that does not need any
special modeling or queueing theory expertise from the end
user. Second, our approach may provide the performance an-
alyst with a ready-to-use model to generate reliable estimates
for system performance at other workload levels, without the
expense and the effort of obtaining additional measurements.
Finally, it may help discover properties of the system not im-
mediately apparent from the system structure by deliveringa
simple model able to adequately represent the system.

2 General framework

Systems considered in our study may represent a whole com-
puter or communication system, or specific components such
as processors, a disk array, an Ethernet network or a WLAN,
etc. Requests refer to the individual entities that are treated by
the system, such as packets or frames in the case of networks,
I/O requests in the case of storage systems, HTTP requests
in the case of web servers, etc. The workload (offered load)
includes all the requests that are submitted to the system for
treatment. In our view, the system performance changes in
response to the workload, and these changes are reflected in
the corresponding measurements.

Our approach relies on the availability of measurements of
specific system performance parameters such as throughput,
loss probability, average response time and queue length, de-
noted byX̄mes, L̄mes, R̄mes andQ̄mes respectively. The through-
put X̄mes represents the average number of requests that leave
the system per unit time (this quantity may differ from the
offered workload if the system is subject to losses).L̄mes

gives the probability that an arriving request is rejected.R̄mes

defines the average sojourn time (waiting for and receiving



service) experienced by a request inside the system. Finally,
Q̄mes represents the average number of requests in the system.
Note that, by Little’s law [8],Q̄mes = X̄mes × R̄mes so that it
suffices to measure any two of these three quantities. Each
measurement point corresponds to a set of performance pa-
rameters that have been measured at a particular state of the
load (e.g.(X̄mes, R̄mes)) and may in general also include input
parameters such as the corresponding offered load. A total of
n measurement points for the same system constitutes a set
of measurements. In computer networks, a point from a set
of measurements may contain typical performance parame-
ters such as the throughput at an interface, the time spent by
packets inside the network and possibly the packet loss ratio.
In disk arrays, a set of measurements may include parameters
such as the I/O response time, I/O request throughput, device
utilization, etc.

3 High-Level Modeling

3.1 Set of Building Blocks
One of the premises of our high-level approach is that a com-
plex system may exhibit behavior that can be reproduced by
a relatively simple queueing model. We use a set of generic
models that we call “Building Blocks” (denoted by “BBs” in
the rest of the paper). BBs include queues such as the M/M/C,
M/M/C/K, M/G/1, M/G/1/K [3], as well as the M/G/C ap-
proximation [7], and original queueing systems whose service
times are driven by the congestion parameters of an embedded
model. Reference [2] discusses in more detail these models
with load-dependant service times. To represent the fact that,
in some systems, the response time comprises a fixed over-
head as an additive load-independent component, we expand
our BBs to include a fixed “offset” value (denoted byOff in
figures). Note that this offset does not affect the congestion
at the server, and the response time in our BBs is simply the
sum of the offset value and the response time at the server.

3.2 Error criterion
We need a way to measure the goodness of fit of a given model
(a Building Block together with a set of values of its parame-
ters) versus the measurement set. This is the role of the error
criterion, referred to asθ, that aims at providing a convenient
way to compare fairly any models. A simple way to define
this function is to consider the sum of the deviations between
mean sojourn time obtained from measurements and the one
obtained from the model for values of throughput equal to the
measured throughput (see Figure 1).θ can be formally ex-
pressed by relation 1, wherēRmes,i (i = 1, . . . ,n) are the mea-
sured mean response time values, andR̄th,i (i = 1, . . . ,n) are
the corresponding mean response times obtained from a given
model. Some adjustments to the definition ofθ are possible
in order to take into account absolute and relative components
for deviations, as well as confidence weights associated with
measures.

θ =
n

∑
i=1

|R̄th,i − R̄mes,i| (1)
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Figure 1: Error criterion

3.3 Search for an adequate model among the Building
Blocks
In our high-level approach, we attempt to automatically cal-
ibrate each BB separately and select among them the “best”
model (the best BB with the best calibration). By calibration
of a BB we mean the search for a set of values of model pa-
rameters that minimizes the error criterionθ. In general, this
leads to a non-linear numerical regression problem. We avoid
algorithms based on derivatives ofθ. In most cases, differen-
tiatingθ, if at all possible, is time consuming and it is specific
to each BB. We cast the calibration of a BB as a numeric op-
timization problem, and we choose to employ Derivative Free
Optimization (DFO) methods [5]. These methods have the
advantage that no derivatives are invoked or estimated. They
are not specific to a particular BB, so that the introduction of
a new BB is an easy task. In our specific implementation,
we use a local quadratic approximation, which implies a low
computational cost while speeding up the convergence. The
results of our experiments indicate that the proposed search
method tends to be robust and very fast for BBs with a lim-
ited number of parameters (say, up to 5 or 6). More details
about the technique can be found in a technical report [2].

3.4 Requirements for the methodology
Measurements represent a key component for our approach.
To be of use, the sets of measurements must satisfy certain
common sense conditions. First, all measurement points from
a particular set must come from the same system whose struc-
tural properties must not change between measurements. In
particular, the background traffic that shares the system re-
sources with the measured traffic should be either negligible,
constant, or in a clear relationship to the measured traffic for
all measurement points. Second, the available measurement
data must adequately capture the salient features of system
behavior in the range of interest. Clearly, for instance, ifthe
system response exhibits an inflection point and this point is
not present in the measurement data, there is little chance that
the model proposed by our approach will correctly reproduce
such a behavior.

4 A case study from real-life disk controllers

The model selected by our proposed approach is referred to as
the laureate model. In addition to simply matching the data



points in the measurement set, we would want the laureate
model to be able to correctly predict the performance of the
system within some reasonable domain. Therefore, we delib-
erately remove one or more data points from the measurement
sets. Having found the laureate model for such reduced data
set, we then test the ability of this model to predict the system
performance at the removed data points.

We present here two sets of measurements obtained for disk
controllers in mainframe environments. The measurement
points give the expected I/O response time as a function of the
attained I/O throughput (in requests per time unit) for mea-
surement Set 1 and Set 2, respectively in Figures 2 and 3.
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Figure 2: Disk controllers - Set 1

We observe in Figure 2 that the best model - among the BBs
considered - in this case is the M/M/C/K queue, while for the
measurement set of Figure 3 it is the M/G/1 queue. In both
cases, the laureate models not only closely reproduce the data
points used in the calibration process, but are also able to ad-
equately predict the performance for the removed data points.
The relative prediction errors for the removed data points are
below 1% both for the expected throughput and the mean I/O
time in Figure 2, and below 5% in Figure 3. We note that
removing different points during the calibration process leads
to similarly successful predictions by the laureate models.
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Figure 3: Disk controllers - Set 2

Our approach has been successfully applied to various real-
life systems such as networks, as well as a multiprocessor
system. These case studies are described in a technical report
[2].

5 Conclusions

We have presented a high-level modeling approach based on
measurement data. Unlike in constructive modeling, we don’t
seek to represent “explicitly” the structure of the system being
studied. We focus on the measurement results, and attempt to
discover a more or less elementary model that might correctly
reproduce the observed behavior. Our main contribution lies
in the automation of the search for the laureate model among
a set of “Building Blocks” (BB). As a result, performance an-
alysts with a minimal queueing network background can use
the resulting tool. The laureate models obtained from our ap-
proach are useful to predict performance at workload levels
for which measurements may not have been obtained. The
nature of the best-fitting BB may also be of help for construc-
tive modeling of the system. Indeed, it may provide guidance
in the search for simple approximations, by indicating which
BB may and which ones may not work. The potential draw-
back of our approach is that there is in general no clear read-
ily seen relationship between the parameters of the laureate
model and the “natural” parameters of the corresponding con-
structive model. This limits also the predictive application of
the laureate model in that it is not typically clear how the pa-
rameters of the laureate should be modified to reflect a change
in the characteristics of the system being modeled. However,
we believe that, packaged as a ready-to-use tool, our approach
can be of significant value both to the performance analyst in
capacity planning situation, and to the performance modeler
in general.
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