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Abstract. The M/G/1 queue is a classical model used to represent a large 
number of real-life computer and networking applications. In this note, we 
show that, for coefficients of variation of the service time in excess of one, 
higher-order properties of the service time distribution may have an important 
effect on the steady-state probability distribution for the number of customers in 
the M/G/1 queue. As a result, markedly different state probabilities can be 
observed even though the mean numbers of customers remain the same.  This 
should be kept in mind when sizing buffers based on the mean number of 
customers in the queue.  Influence of higher-order distributional properties can 
also be important in the M/G/1/K queue where it extends to the mean number of 
customers itself.  Our results have potential implications for the design of 
benchmarks, as well as the interpretation of their results. 
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1   Introduction 

The M/G/1 queue is a classical model used to represent a large number of real-life 
computer and networking applications. For example, M/G/1 queues have been applied 
to evaluate the performance of devices such as volumes in a storage subsystem [1], 
Web servers [13], or nodes in an optical ring network [3].  In many applications 
related to networking, the service times may exhibit significant variability, and it may 
be important to account for the fact that the buffer space is finite.   It is well known 
that, in the steady state, the mean number of users in the unrestricted M/G/1 queue 
depends only on the first two moments of the service time distribution [11].  It is also 
known [4] that the first three (respectively, the first four) moments of the service time 
distribution enter into the expression for the second (respectively, the third) moment 
of the waiting time.  In this note our goal is to illustrate the effect of properties of the 
service time distribution beyond its mean and coefficient of variation on the shape of 
the stationary distribution of the number of customers in the M/G/1 queue.  In 
particular, we point out the risk involved in dimensioning buffers based on the mean 
number of users in the system. 



2   M/G/1 queue 

Assuming a Poisson arrival process, a quick approach to assess the required 
capacity for buffers in a system is to evaluate it as some multiplier (e.g. three or six) 
times the mean number of customers in an open M/G/1 queue (e.g. [12]).  From the 
Pollaczek-Khintchine formula [11], this amounts to dimensioning the buffers based 
on only the first two moments of service time distribution.  Unfortunately, the steady-
state distribution of the number of customers in the M/G/1 queue can exhibit a strong 
dependence on higher-order properties of the service time distribution.   

 
This is illustrated in Figure 1, which compares the distribution of the number of 

customers for two different Cox-2 service time distributions with the same first two 
moments, and thus yielding the same mean number of customers in the system.  The 
parameters of these distributions are given in Table 1.  Note that both distributions I 
and II correspond to a coefficient of variation of 3 but have different higher-order 
properties such as skewness and kurtosis [14].  Similarly, distributions III and IV both 
correspond to a coefficient of variation of 5 but again different higher-order 
properties.  The stationary distribution of the number of customers in this M/G/1 
queue was computed using a recently published recurrence method [2].  We observe 
that, perhaps not surprisingly, the effects of the distribution tend to be more 
significant as the server utilization and the coefficient of variation of the service time 
distribution increase.  It is quite instructive to note, for instance, that with a coefficient 
of variation of 3 and server utilization of 0.5, the probability of exceeding 20 users in 
the queue (a little over 6 times the mean) is about 0.1% in one case while it is an order 
of magnitude larger for another service time distribution with same first two 
moments.  

 
 

Table 1. Parameters and properties of the service time distributions used in Figure 1. 

Distribution 
Mean 

service 
time 

Coefficient 
of variation Skewness Kurtosis 

Rate of 
service at 
stage 1 

Probability 
to go to 
stage 2 

Rate of 
service at 

stage 2 
Dist. I 1 3 4.5 27.3 10000.0 2.00*10-1 2.00*10-1 
Dist. II 1 3 3557.4 1.90*107 1.0 2.50*10-7 2.50*10-4 
Dist. III 1 5 7.5 75.1 10000.0 7.69*10-2 7.69*10-2 
Dist. IV 1 5 6913.2 6.63*107 1.0 8.33*10-8 8.33*10-5 



 

 
(a) Coefficient of variation: 3, server utilization: 0.5 

 
(b) Coefficient of variation: 3, server utilization: 0.9 

 
(c) Coefficient of variation: 5, server utilization: 0.5 



 
(d) Coefficient of variation:0.5, server utilization: 0.9 

Fig. 1. Effect of service time distributions on the number of customers in the M/G/1 queue.  

3   M/G/1/K queue 

Clearly, using the M/G/1/K, i.e., the M/G/1 queue with a finite queueing room 
would be a more direct way to dimension buffers.  There seem to be fewer theoretical 
results for the M/G/1/K queue than for the unrestricted M/G/1 queue, but it is well 
known that the steady-state distribution for the M/G/1/K queue can be obtained from 
that for the unrestricted M/G/1 queue after appropriate transformations [10, 7, 4].  
Clearly, this approach can only work if the arrival rate does not exceed the service 
rate since otherwise the unrestricted M/G/1 would not be stable. 

 
While the steady-state distribution for the M/G/1/K queue can be derived from the 

one for the unrestricted M/G/1 queue, and the mean number of users in the latter 
depends only on the first two moments of the service time distribution, this is not the 
case for the M/G/1/K queue.  Table 2 shows that even the first three moments of the 
service time distribution do not generally suffice to determine the mean number of 
customers in the M/G/1/K queue.  Here we illustrate the results obtained for two Cox-
3 distributions sharing the first three moments but with different properties of higher-
order.   
 

Since the mean number of customers in the unrestricted M/G/1 queue depends only 
on the first two moments of the service time distribution, and in the M/G/1/K for K=1 
there is no distributional dependence at all (since there is no queueing), it is 
interesting to see how the dependence on properties of higher-order varies with K, the 
size of the queueing room.  This is the objective in Figure 2 where we have 
represented the relative difference in the probabilities of having exactly one customer 
in the system, as well as in the probabilities of the buffer being full, for distribution I 
and II of Table 1.  We observe that, although the first two moments of the service 



time distribution are the same for both distributions, higher-order properties lead to 
drastically different values for the selected probabilities.  Interestingly, for the 
probability of the buffer being full, although the relative difference between the 
distributions considered decreases as the size of the queueing room, K , increases, it 
remains significant even for large values of the latter. 

Table 2. Effect of properties beyond the third moment on the mean number in the M/G/1/K 
queue. 

 First Cox-3 Second Cox-3 Relative 
differences 

Rate of arrivals 1 1 
Size of queueing 

room 30 30 

Mean service 
time 1 

Coefficient of 
variation 6.40 

Skewness 2331.54 
Kurtosis 7.43*106 1.44*107 

 

Mean number in 
the M/G/1/K 3.98 5.07 27.4 % 

 
 

 
Fig. 2. Relative difference in selected probabilities for distributions I and II as a function of the 
queueing room in the M/G/1/K queue.  

 
To further illustrate the dependence on higher-order properties of the service time 

distribution, we consider read performance for two simple cached storage devices.  
When the information requested is found in the cache, a hit occurs and the service 
time is viewed as a constant (assuming a fixed record length).  When the information 



is not in the cache, it must be fetched from the underlying physical storage device.  In 
Table 3 we show simulation results [8] obtained for two different storage systems 
with the same first two moments of the service time (resulting from the combination 
of hit and miss service times), and queueing room limited to 10.  In one case the 
service time of the underlying physical device (i.e. miss service time) is represented 
by a uniform distribution, and in the other by a truncated exponential [9].  We are 
interested in the achievable I/O rate such that the mean response time does not exceed 
5 ms. We observe that the corresponding I/O rates differ by over 20% in this example 
(the coefficient of variation of the service time being a little over 1.6).  

 
It has been our experience that the influence of higher-order properties tends to 

increase as the coefficient of variation and the skewness of the service time increase.  
It is interesting to note that this is precisely the case when one considers instruction 
execution times in programs running on modern processors where most frequent 
instructions are highly optimized, less frequent instructions can be significantly 
slower, and certain even less frequent instructions may be implemented as subroutine 
calls with order of magnitude longer execution times. 

Table 3. I/O rate for same mean I/O time in two storage subsystems. 

 Uniform miss 
service time 

Truncated 
exponential miss 

service time 

Relative 
differences 

Mean service 
time 1.9 

Coefficient of 
variation 1.62 

Hit probability 0.9 0.985 
Hit service time 1 1.64 

Miss service time Uniform [2,18] 
Truncated 

exponential mean: 
20, max: 100 

 

Attainable I/O 
rate for Mean I/O 

time of 5 ms   
0.257 0.312 21.4 % 

 
 
As another example of the effects of higher-order properties of the service time in 

an M/G/1 queue, consider the probability that a small buffer of 10 messages at an 
optical network node is full.  Incoming packets can be of three different lengths.  In 
the fist case, abstracted from reported IP traffic, the packet lengths are 40, 300 and 
1500 bytes with probabilities 0.5, 0.3 and 0.2, respectively.  In the second case, longer 
packets are used: 150, 500 and 5000 bytes, with respective probabilities 0.426, 0.561 
and 0.013.  Both packet length distributions have the same mean of 410 bytes with a 
coefficient of variation of 1.36, but different higher order properties. With the average 
packet arrival rate at 1 per mean packet service time, simulation results indicate that 
the probability of the buffer being full differs by some 20% depending on the packet 



mix (12.5% in the first case vs. 10.5% in the second) even though both packet mixes 
have the same fist two moments. 

4   Conclusion 

In conclusion, we have shown that, for coefficients of variation of the service time 
in excess of one, higher-order properties of the service time distribution may have an 
important effect on the steady-state probability distribution for the number of 
customers in the M/G/1 queue.  As a result, markedly different state probabilities can 
be observed even though the mean numbers of customers remain the same.  This 
should be kept in mind when sizing buffers based on the mean number of customers 
in the queue.  Influence of higher-order distributional properties can also be important 
in the M/G/1/K queue where it extends to the mean number of customers itself.  The 
potentially significant impact of higher-order distributional properties of the service 
times should be kept in mind also when interpreting benchmark results for systems 
that may be viewed as instances of the M/G/1 or M/G/1/K queue, in particular, 
transaction oriented systems.  Our results imply that it may not be sufficient to look 
just at the mean or even the mean and the variance of the system execution times to 
correctly assess the overall system performance.  Another implication relates to 
benchmark design since, unless one is dealing with a system that satisfies the 
assumptions of a product-form queueing network, it may not be sufficient to simply 
preserve the mean of the system load [6].  
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